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ABSTRACT
With the increasing market share of the Android operating
system, the platform also becomes more and more interest-
ing for adversaries. Current malware on the Android plat-
form exhibits a very diverse spectrum of malicious behaviors
such as sending text messages to costly premium rate num-
bers [6,21], infecting connected computes with malware [12],
or abusing the phone’s resources for bot networks [16,20,21].
In addition, many smartphones users store highly privacy-
sensitive data like calendars, personal photos, SMS mes-
sages, e-mails and more on their phones. Adversaries can
attempt to access this data without the user’s consent for
the purpose of (industrial) espionage or targeted advertise-
ment campaigns.

Such attacks are usually carried out using malicious appli-
cations which, e.g., pretend to be a game, but also contain
malicious code embedded by the original developer. Such at-
tacks are successful since users can hardly estimate the trust-
worthiness of applications offered in the different markets.
Various approaches for analyzing the behavior of untrusted
applications have thus been proposed, both static and dy-
namic [4, 5, 7–11, 13, 15, 18, 19]. While static approaches at-
tempt to assess a program in a black-box fashion by looking
at its (binary) code, dynamic analysis monitor the actual
execution of the target program.

In this tutorial, we will focus on dynamic instrumenta-
tion, i.e., program rewriting techniques. Instrumenting the
program gives access to full runtime information, e.g., user
inputs and environment settings, which greatly increases the
precision of detected policy violations. Additionally, coun-
termeasures can directly be taken by, e.g., blocking the call
to a costly premium rate number of asking the user for con-
sent before proceeding.

We will show three different possibilities for instrument-
ing Android applications. Firstly, we will use the Aspect-
Bench compiler (abc) [1] to declaratively define instrumen-
tations using AspectJ. We will then extend this approach
to Tracematches [2] allowing finite-state policies to be ex-
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pressed (e.g., no more than three SMS messages to the same
phone number, to prevent spam). We will show where such
techniques are applicable based on practical examples from
the Android world and will also point out where their re-
spective limits are.

Finally, we will show how to manually instrument applica-
tions by loading them into Soot [14], directly manipulating
the Jimple intermediate representation and then producing
a new application package containing the modifications for
maximum flexibility both in terms of program changes and
the policies to be enforced. We will use this technique to
solve example problems that were not applicable to AspectJ
and Tracematches.

Further background information on abc and Soot as well
as general remarks on platform-specific aspects of program
instrumentation on Android will also be given. Unlike system-
level approaches like TaintDroid [5], instrumenting the ap-
plication’s bytecode at the application level requires no mod-
ifications to the operating system and does not require root
access to the device either. The instrumented applications
can be installed and used as usual with no visible difference
to the user, only differing in behavior when an instrumented
action is triggered.
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1. AUDIENCE AND PREREQUISITES
This tutorial is intended for security researchers interested

in instrumenting or rewriting applications on the Android
platform. Previous knowledge of Android application devel-
opment is helpful but not a strict requirement, as example
applications and a short introduction will be given. For the
parts on AspectJ and Tracematches, basic knowledge of the
respective concepts is advantageous. However, the examples
given in the tutorial can also be used as a starting point for
approaching the topic.
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2. PROPOSED TIMELINE
We propose the following rough timeline:

• Background: The Android platform and its applica-
tion architecture

• Background: The Android SDK and its tools for de-
velopers

• Background: Soot and its Jimple intermediate repre-
sentation

• Background: Conversion of Android’s dalvik bytecode
into Jimple and back

• Hands-on: Converting an app into Jimple and inspect-
ing its code

• High-level instrumentation: Using tracematches to in-
strument Android code

• Hands-on: Tracematch instrumentation, re-packaging
and execution in emulator

• Limitations of tracematches

• More fine-grained instrumentation with AspectJ as-
pects

• Hands-on: AspectJ instrumentation, re-packaging and
execution in emulator

• Limitations of AspectJ

• More fine-grained, manual instrumentation with Soot
and Jimple

• Hands-on: Jimple instrumentation, re-packaging and
execution in emulator

• Outlook: Combination with static analysis

• Wrap-up

3. PREVIOUS TUTORIALS
An abc tutorial was held at AOSD 2006, however, did not

focus on runtime monitoring. The last tutorial on Soot was
at PLDI 2003 and focused on static analysis rather than
instrumentation. There has never been a tutorial on the
combination of Soot, abc and Android.

Furthermore, we have been invited to give a tutorial on
Java and Android instrumentation using Soot and abc at
RV 2013. The CCS tutorial will be an improved iteration,
re-targeted specifically for the security community.

4. BIOGRAPHY OF PRESENTERS
In the Android space, the Secure Software Engineering

Group is known for its work on the FlowDroid static taint-
analysis system for Android [8], the DroidBench benchmark
suite [17] for Android taint analysis and the SuSi [3] tool for
the semi-automatic detection of sources and sinks of private
information in Android applications.
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Privacy by Design (EC SPRIDE). He is also a principal in-
vestigator at the Center for Advanced Security Research
Darmstadt (CASED). Eric is heading the Emmy-Noether
research group RUNSECURE, which focuses on securing
dynamic program executions through dynamic instrumenta-
tion techniques. He is world renowned as the lead maintainer
of Soot and has been a top contributor to the AspectBench
Compiler (abc) for more than six years. More than a dozen
of his most cited publications are directly based on Soot
and abc. In 2009 Eric finished his doctoral dissertation at
McGill University, under the supervision of Laurie Hendren,
an ACM Fellow and lead scientist in the field of compiler en-
gineering and program analysis. Eric’s thesis topic was the
static ahead-of-time evaluation of inlined reference monitors
using abc. In the past, Eric has won two ACM Distinguished
Paper Awards, both on dynamic program analysis, one of
them related to data-race detection using AspectJ. In 2005
he won the worldwide ACM Student Research Competition
with the topic of his Diploma thesis, which was the first
work to link AspectJ to runtime monitoring.
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