
Easily Instrumenting Android Applications
for Security Purposes

Eric Bodden Secure Software Engineering Group
European Center for Security and Privacy by Design (EC SPRIDE)

Technische Universität Darmstadt & Fraunhofer SIT
Darmstadt, Germany

eric.bodden@ec-spride.de

ABSTRACT
With the increasing market share of the Android operating
system, the platform also becomes more and more interest-
ing for adversaries. Current malware on the Android plat-
form exhibits a very diverse spectrum of malicious behaviors
such as sending text messages to costly premium rate num-
bers [6,21], infecting connected computes with malware [12],
or abusing the phone’s resources for bot networks [16,20,21].
In addition, many smartphones users store highly privacy-
sensitive data like calendars, personal photos, SMS mes-
sages, e-mails and more on their phones. Adversaries can
attempt to access this data without the user’s consent for
the purpose of (industrial) espionage or targeted advertise-
ment campaigns.

Such attacks are usually carried out using malicious appli-
cations which, e.g., pretend to be a game, but also contain
malicious code embedded by the original developer. Such at-
tacks are successful since users can hardly estimate the trust-
worthiness of applications offered in the different markets.
Various approaches for analyzing the behavior of untrusted
applications have thus been proposed, both static and dy-
namic [4, 5, 7–11, 13, 15, 18, 19]. While static approaches at-
tempt to assess a program in a black-box fashion by looking
at its (binary) code, dynamic analysis monitor the actual
execution of the target program.

In this tutorial, we will focus on dynamic instrumenta-
tion, i.e., program rewriting techniques. Instrumenting the
program gives access to full runtime information, e.g., user
inputs and environment settings, which greatly increases the
precision of detected policy violations. Additionally, coun-
termeasures can directly be taken by, e.g., blocking the call
to a costly premium rate number of asking the user for con-
sent before proceeding.

We will show three different possibilities for instrument-
ing Android applications. Firstly, we will use the Aspect-
Bench compiler (abc) [1] to declaratively define instrumen-
tations using AspectJ. We will then extend this approach
to Tracematches [2] allowing finite-state policies to be ex-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’13, November 4–8, 2013, Berlin, Germany.
ACM 978-1-4503-2477-9/13/11.
http://dx.doi.org/10.1145/2508859.2516759.

pressed (e.g., no more than three SMS messages to the same
phone number, to prevent spam). We will show where such
techniques are applicable based on practical examples from
the Android world and will also point out where their re-
spective limits are.

Finally, we will show how to manually instrument applica-
tions by loading them into Soot [14], directly manipulating
the Jimple intermediate representation and then producing
a new application package containing the modifications for
maximum flexibility both in terms of program changes and
the policies to be enforced. We will use this technique to
solve example problems that were not applicable to AspectJ
and Tracematches.

Further background information on abc and Soot as well
as general remarks on platform-specific aspects of program
instrumentation on Android will also be given. Unlike system-
level approaches like TaintDroid [5], instrumenting the ap-
plication’s bytecode at the application level requires no mod-
ifications to the operating system and does not require root
access to the device either. The instrumented applications
can be installed and used as usual with no visible difference
to the user, only differing in behavior when an instrumented
action is triggered.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls

General Terms
Security

Keywords
Android, Runtime Enforcement, Instrumentation, Dynamic
Analysis

1. AUDIENCE AND PREREQUISITES
This tutorial is intended for security researchers interested

in instrumenting or rewriting applications on the Android
platform. Previous knowledge of Android application devel-
opment is helpful but not a strict requirement, as example
applications and a short introduction will be given. For the
parts on AspectJ and Tracematches, basic knowledge of the
respective concepts is advantageous. However, the examples
given in the tutorial can also be used as a starting point for
approaching the topic.

1499



2. PROPOSED TIMELINE
We propose the following rough timeline:

• Background: The Android platform and its applica-
tion architecture

• Background: The Android SDK and its tools for de-
velopers

• Background: Soot and its Jimple intermediate repre-
sentation

• Background: Conversion of Android’s dalvik bytecode
into Jimple and back

• Hands-on: Converting an app into Jimple and inspect-
ing its code

• High-level instrumentation: Using tracematches to in-
strument Android code

• Hands-on: Tracematch instrumentation, re-packaging
and execution in emulator

• Limitations of tracematches

• More fine-grained instrumentation with AspectJ as-
pects

• Hands-on: AspectJ instrumentation, re-packaging and
execution in emulator

• Limitations of AspectJ

• More fine-grained, manual instrumentation with Soot
and Jimple

• Hands-on: Jimple instrumentation, re-packaging and
execution in emulator

• Outlook: Combination with static analysis

• Wrap-up

3. PREVIOUS TUTORIALS
An abc tutorial was held at AOSD 2006, however, did not

focus on runtime monitoring. The last tutorial on Soot was
at PLDI 2003 and focused on static analysis rather than
instrumentation. There has never been a tutorial on the
combination of Soot, abc and Android.

Furthermore, we have been invited to give a tutorial on
Java and Android instrumentation using Soot and abc at
RV 2013. The CCS tutorial will be an improved iteration,
re-targeted specifically for the security community.

4. BIOGRAPHY OF PRESENTERS
In the Android space, the Secure Software Engineering

Group is known for its work on the FlowDroid static taint-
analysis system for Android [8], the DroidBench benchmark
suite [17] for Android taint analysis and the SuSi [3] tool for
the semi-automatic detection of sources and sinks of private
information in Android applications.

Prof. Dr. Eric Bodden. Eric is heading the Secure Soft-
ware Engineering group at the Fraunhofer Institute for Se-
cure Information Technology (SIT), the Technische Univer-
sität Darmstadt and the European Center for Security and
Privacy by Design (EC SPRIDE). He is also a principal in-
vestigator at the Center for Advanced Security Research
Darmstadt (CASED). Eric is heading the Emmy-Noether
research group RUNSECURE, which focuses on securing
dynamic program executions through dynamic instrumenta-
tion techniques. He is world renowned as the lead maintainer
of Soot and has been a top contributor to the AspectBench
Compiler (abc) for more than six years. More than a dozen
of his most cited publications are directly based on Soot
and abc. In 2009 Eric finished his doctoral dissertation at
McGill University, under the supervision of Laurie Hendren,
an ACM Fellow and lead scientist in the field of compiler en-
gineering and program analysis. Eric’s thesis topic was the
static ahead-of-time evaluation of inlined reference monitors
using abc. In the past, Eric has won two ACM Distinguished
Paper Awards, both on dynamic program analysis, one of
them related to data-race detection using AspectJ. In 2005
he won the worldwide ACM Student Research Competition
with the topic of his Diploma thesis, which was the first
work to link AspectJ to runtime monitoring.

5. REFERENCES
[1] Chris Allan, Pavel Avgustinov, Aske Simon

Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. abc:
the aspectbench compiler for aspectj. In Proceedings of
the 4th international conference on Generative
Programming and Component Engineering, GPCE’05,
pages 10–16, Berlin, Heidelberg, 2005. Springer-Verlag.

[2] Chris Allan, Pavel Avgustinov, Aske Simon
Christensen, Laurie Hendren, Sascha Kuzins, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace
matching with free variables to aspectj. In Proceedings
of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’05, pages 345–364, New York,
NY, USA, 2005. ACM.

[3] Steven Arzt, Siegfried Rasthofer, and Eric Bodden.
Susi: A tool for the fully automated classification and
categorization of android sources and sinks, Mai 2013.

[4] Michael Backes, Sebastian Gerling, Christian
Hammer, Matteo Maffei, and Philipp von
Styp-Rekowsky. Appguard: enforcing user
requirements on android apps. In Proceedings of the
19th international conference on Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS’13, pages 543–548, Berlin, Heidelberg, 2013.
Springer-Verlag.

[5] William Enck, Peter Gilbert, Byung gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol Sheth. Taintdroid: An information-flow
tracking system for realtime privacy monitoring on
smartphones. In OSDI, pages 393–407, 2010.

[6] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A study of android application
security. In Proceedings of the 20th USENIX

1500



conference on Security, SEC’11, pages 21–21,
Berkeley, CA, USA, 2011. USENIX Association.

[7] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A study of android application
security. In Proceedings of the 20th USENIX
conference on Security, SEC’11, pages 21–21,
Berkeley, CA, USA, 2011. USENIX Association.

[8] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves
le Traon, Damien Octeau, and Patrick McDaniel.
Highly precise taint analysis for android applications,
Mai 2013.

[9] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster.
Scandroid: Automated security certification of android
applications. Manuscript, Univ. of Maryland,
http://www. cs. umd. edu/˜
avik/projects/scandroidascaa, 2009.

[10] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and
Hao Chen. Androidleaks: automatically detecting
potential privacy leaks in android applications on a
large scale. In Proceedings of the 5th international
conference on Trust and Trustworthy Computing,
TRUST’12, pages 291–307, Berlin, Heidelberg, 2012.
Springer-Verlag.

[11] Johannes Hoffmann, Martin Ussath, Thorsten Holz,
and Michael Spreitzenbarth. Slicing droids: program
slicing for smali code. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing,
pages 1844–1851. ACM, 2013.

[12] Victor Chebyshev (Kaspersky Labs). Mobile attacks!,
2013.

[13] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and
Junbum Shin. ScanDal: Static analyzer for detecting
privacy leaks in android applications. In Hao Chen,
Larry Koved, and Dan S. Wallach, editors, MoST
2012: Mobile Security Technologies 2012, Los
Alamitos, CA, USA, May 2012. IEEE.

[14] Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie
Hendren. The soot framework for java program
analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), Oktober
2011.

[15] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and
Guofei Jiang. Chex: statically vetting android apps for
component hijacking vulnerabilities. In Proceedings of
the 2012 ACM conference on Computer and
communications security, CCS ’12, pages 229–240,
New York, NY, USA, 2012. ACM.

[16] Heloise Pieterse and Martin S. Olivier. Android
botnets on the rise: Trends and characteristics. In
Hein S. Venter, Marianne Loock, and Marijke Coetzee,
editors, ISSA, pages 1–5. IEEE, 2012.

[17] Christian Fritz Steven Arzt and Siegfried Rasthofer.
Droidbench - benchmarks, 2013.

[18] Rubin Xu, Hassen Säıdi, and Ross Anderson.
Aurasium: practical policy enforcement for android
applications. In Proceedings of the 21st USENIX
conference on Security symposium, Security’12, pages
27–27, Berkeley, CA, USA, 2012. USENIX
Association.

[19] Zhemin Yang and Min Yang. Leakminer: Detect
information leakage on android with static taint

analysis. In Third World Congress on Software
Engineering (WCSE 2012), pages 101–104, 2012.

[20] Yuanyuan Zeng, Kang G. Shin, and Xin Hu. Design of
sms commanded-and-controlled and p2p-structured
mobile botnets. In Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12, pages 137–148, New
York, NY, USA, 2012. ACM.

[21] Yajin Zhou and Xuxian Jiang. Dissecting android
malware: Characterization and evolution. In
Proceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, pages 95–109, Washington, DC,
USA, 2012. IEEE Computer Society.

1501


	Audience and Prerequisites
	Proposed Timeline
	Previous Tutorials
	Biography of Presenters
	References



