

Security Enhanced Mobile Agents
Vijay Varadharajan

Distributed System and Network Security Research

School of Computing and IT, University of W.Sydney, Australia
(Visiting Researcher, Microsoft Research Cambridge, UK)

Email: vijay@cit.nepean.uws.edu.au

ABSTRACT
This paper describes a security model for mobile agent based
systems. The model defines the notion of a security-enhanced
agent and outlines security management components in agent
platform bases and considers secure migration of agents from one
base to another. The security enhanced agent carries a passport
that contains its security credentials and some related security
code. Then we describe how authentication, integrity and
confidentiality, and access control are achieved using the agent’s
passport and the security infrastructure in the agent bases. We also
consider the types of access control policies that can be specified
using the security enhanced agents and the policy base in the
agent platforms. We discuss the application of the security model
in roaming mobile agents and consider a simple scenario
involving security auditing in networks.

Keywords: Mobile Agents, Security Model, Secure Agent
based Application

1. INTRODUCTION
Mobile code technologies are beginning to receive a great deal of
interest from both industry and academia as they have a lot to
offer towards achieving the vision of usable distributed systems in
a heterogeneous network environment. The ability to move
computations across the nodes of a wide area network helps to
achieve the deployment of services and applications in a more
flexible, dynamic and customizable way than the traditional
client-server paradigm. Different types of mobile code paradigms
have been proposed over the recent years [e.g. 1,2] such as code
on demand, remote evaluation and mobile agents. In general,
these paradigms are concerned with the movement of the
executable content and the associated execution state between
different computational environments (computer nodes (hosts) on
the network). For instance, if one needs to perform a specified
search of a large database through a computer network, it could be
more efficient to move the program (mobile software agent) to the

database server rather than have the client program communicate
with the server via the classical client server computing especially
if there is a wide area network separating the client and the server.
Mobile code technologies provide several advantages over remote
procedural call and message passing such as reduced network
usage, increased asynchrony between clients and servers,
increased concurrency and addition of client–specified
functionality into servers. However, there lie some fundamental
issues that need to be solved, the major ones being in the areas of
security and robustness. For instance, proper security measures
are required to control the ability of the agents downloaded from
the network as well as to protect the agents from the nodes and
while they are on transit. Key to this is the systematic
understanding of security requirements and a comprehensive
security model for mobile agents that is lacking at present.

In any distributed system, when a request for a certain service is
received by one principal from another, the receiving principal
needs to address at least two questions. Is the requesting principal
the one it claims to be and does the requesting principal have
appropriate privileges for the requested service? These two
questions relate to the issues of authentication and authorisation.
There are also other security concerns such as auditing, secure
communication, availability and accountability. When it comes to
mobile agents, the security issues become further complicated.
First, there is a greater opportunity for abuse and misuse and
second, mobile agents introduce specific issues that are unique,
which challenge some of the common assumptions that are often
made in secure systems design. For instance, it is not always easy
to identify a particular mobile process with a particular known
principal and to depend on the reference monitor approach to
enforce the security policy. Recently, there have been several
pieces of work related to mobile agent security [e.g. 3,4,5,6,7,8].
Work on Java and other script languages for remote programming
such as safe Tcl [5] consider safe execution of untrusted code
using sandboxing technique to address the problem of rogue
agents. Some agent systems propose basic privacy mechanisms
such as secure channel between hosts via encryption of agents and
messages on transmission. Some offer authentication and integrity
via the signing of agents and messages sent between hosts. Even
fewer agent systems consider mechanisms to control resource
consumption. However important challenges still remain. For
instance, there is not a clear solution at present to tackle the
problem of agent being attacked by the host where the agent
resides. Furthermore, there has not been much work done on the
development of a comprehensive and overall security model and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CCS’00, Athens, Greece.
Copyright 2000 ACM 1-58113-203-4/00/0011…$5.00.

200

architecture for mobile agent systems. These are necessary for
widespread commercial adoption of mobile agent systems
technology. The main aim of our project is to develop an overall
security model and design and implement secure agent systems.
The security model should be helpful for the designers to better
understand the design choices involved in the development of
secure agent based applications.

The paper is organized as follows. After discussing some security
issues for mobile agents in section 2, in section 3 we describe a
basic security model. The model defines the notion of a security-
enhanced agent, outlines security management components in
agent platform bases and considers how authentication, integrity
and confidentiality, and access control are achieved. Section 4
first discusses the application of the model in roaming mobile
agents and then considers the access control policies that can be
specified using the security enhanced agents and the policy base.
We also describe a simple scenario involving security auditing in
networks. Finally section 5 concludes the paper by making some
observations on trust in the outlined security model.

2. MOBILE AGENTS AND SECURITY
A number of models are being developed for describing agent
systems. However for discussing security issues, to begin with, it
is perhaps sufficient to use a simple model comprising two main
components, namely an agent and an agent base. The agent
consists of the code and state information needed to perform some
computation. The agent is mobile in the sense that the agent can
migrate from one agent base to another and the computation is
mobile. We will refer to the agent base in which an agent is
created and from where it originates as the home agent base or
just home base. In general, an agent base can consist of one or
more hosts and may support multiple computational
environments. However we will assume in this paper that an agent
base is supported on a single host and will use the terms agent
base and hosts interchangeably. When an agent moves to another
agent base, it may be referred to as the foreign base or the visiting
base. Agent interpreters execute the agents at the agent base. The
agent migration involves both the transfer of program code as well
as data. The agent is considered to be autonomous as it has its
own thread of execution after arriving at an agent base. The
migration of an agent from one base to another is treated as a
move operation and not as a copy operation.

There are a variety of ways of classifying security threats in such a
mobile computation environment. We consider these in terms of
agents attacking the agent base, agent base attacking the agents,
agents attacking each other in an agent base and attacks against
the agents when they are transferred over the network. In each of
these categories, a variety of common security threats such as
masquerading, unauthorized access, unauthorized disclosure,
unauthorized modification and non-repudiation can arise. Let us
briefly highlight some of these attack scenarios that are relevant
for the development of the security model.

In terms of masquerading, the threat is one of “an agent claiming
to be of a different identity”. Often in security, when a program
attempts a certain action, its identity is related to the principal
(e.g. a user) who is requesting that action to be performed. In the
case of mobile agents, this may be the principal who is sending
the agent. Knowing that an agent comes from a particular sender
is not often adequate when it comes to determining the level of

trust that can be placed by the agent base on the agent. What may
be required is that the principal that one trusts is the one who has
created that particular agent. So it may be required to authenticate
both the sender and the creator principals of the agent.
Furthermore, often in mobile agent systems, many programs are
obtained from unknown or untrusted sources. For instance, when
a user clicks on a hypertext link and a program is downloaded, it
may not be clear as to what level of trust that can be placed on the
source from where the program comes from. Looking at the other
side of the coin, the sender of the mobile agent may also wish to
authenticate the visiting agent base host where the agent is to be
executed prior to sending the agent. Hence mutual authentication
is required in peer-to-peer transactions.

Having authenticated the mobile agent, the agent base needs to
determine what actions the mobile agent is allowed to perform and
does it have the necessary privileges to carry them out? In general,
the authorization decision for a mobile agent to perform certain
action can be based on a combination of privileges such as the
privileges of the creator of the mobile agent, the sender of the
mobile agent as well as the function of the program code and the
state of the agent. The authorization mechanisms control the
behaviour of the agent within the agent base thereby allowing
protection of local resources. However as we mentioned above
given that it may be difficult to identify the principal to whom the
action can be attributed, it poses difficulties in determining
whether or not the action should be permitted. Even more difficult
issue is that of protecting the agent from a malicious agent base.
This is because the agent base provides and controls the
computational environment in which the agent operates. A
malicious agent base can modify the agent’s code and state and
hence can affect the running of the agent. It can introduce
unacceptable delays or simply not execute the code or even
terminate the agent.

The migration of a mobile agent from one base to another over the
network needs to be protected against unauthorized disclosure and
unauthorized modification. Similarly any message that is sent by
the mobile agent over an untrusted network needs to be protected.
In principle, this can be achieved using cryptographic techniques
such as encryption and cryptographic checksums. In practice, the
main issues here are concerned with key management and key
storage and the use of different cryptographic mechanisms. It is
important to note that often it is not possible to hide anything
within the agent without the use of cryptography. This in turn
implies that an agent cannot transport its key in a form that can be
used on untrusted hosts.

In a distributed environment, often the need for an entity to act on
behalf of another arises. This is particularly true in the case of
mobile agents, which by definition perform their actions on behalf
of its sender and/or creator. A delegation is a temporary permit
issued by a delegator to a delegate that authorizes the delegate to
act on its behalf in performing certain actions. In this case, the
target needs to verify whether the delegator has actually
transferred the privileges to the delegate agent and whether it is
the delegated agent, which is making the request. Revocation
involves the removal of privileges and there are not easy solutions
when it comes to distribution of revocation state to agent bases in
a large network environment.

The ability to prove that an agent did a particular action can be
important in many situations. For instance, when an action such as

201

the purchase of an item is done by an agent at the remote host’s
agent server in an electronic commerce situation, it may be
necessary for the agent base to prove that “this agent did this
action at this time” in case of any disputes at a later point in time.
The agent may also wish to record that “such and such an action
was done at this agent base” for later use by the sender of the
agent. For instance, an agent may wish to record that it purchased
a video abc and paid $x for it on such and such a day.

Mobile agents can launch denial of service attacks to consume a
large amount of agent base’s resources. An agent can also launch
denial of service attacks against other agents in the agent base. In
general, this is a difficult problem to solve. However some of the
security and availability techniques can be used to detect and
curtail these attacks to a certain degree. In this paper, we will not
be considering these attacks in our model. The main aim of this
paper is to consider the design of a security model that contributes
to the development of an overall security framework for mobile
agents; in particular, we consider a security model that allows
authentication of agents by agent bases, privilege based
authorization of agents, privacy and integrity of agents in
communications. We have also extended the model to address
delegation and cloning issues. However, due to lack of space,
these are described separately in another paper.

3. A Security Model for Agents
We assume that each agent base has a trusted security
management component, which we refer to as SMC. We assume
that each agent has an identifier that is unique over its lifetime and
is independent of the agent base it is executing in. The identity of
the execution environment in the agent base is same as the
identity of the agent base (e.g. the URL)1. Agents communicate
via messages. The group of agent bases that obey the same
security policies are grouped together in a domain. Each domain
has a security authority referred to as the Security Management
Authority (SMA). The SMA interacts with the SMCs in the
domain in the establishment and maintenance of security policies
within the domain; it interacts with SMAs of other domains in
inter-domain situations. In practice, we envisage that a SMA’s
role to include some of the functions of a Certification Authority.

Consider the situation where an agent arrives at an agent base and
runs within the execution environment of the agent base. The
SMC acts as a reference monitor and determines whether a certain
requested action is allowed or not. The security policy within the
SMC specifies the conditions under which a request is to be
granted. The security policy can have varying degrees of
granularity. It can be based on the identity of the principal that
created the agent in the first place, the principal that sent the
agent, on the characteristics of the agent such as the level of trust
associated with it as well as the state of the target application. Let
us now consider the situation whereby the agent carries with it
certain security credentials. We refer to these agents as “security-
enhanced agents” (SeA), which encapsulate not only the actions
but also the privileges and other security attributes to perform
these actions. That is, the agent carries part of the security
information needed to make the authorization decision. In some

1 An appropriate qualifier if there are more than one execution
environments within the agent base.

sense, such a security enhanced agent based authorization model
has characteristics of both access control lists and capabilities.
The agent carries security information such as its privileges and
the agent base’s SMC contains security policy information such as
what actions that an agent with certain privileges can perform and
under what conditions; both these information are needed to
determine whether an access request is granted or not.
Furthermore, these security-enhanced agents are active structures
in that they contain code that can be executed to make dynamic
decisions. For instance, consider Cagent sent by Customer-C to
agent base of Bank-A to withdraw some money from account of
Customer-C. Cagent carries with it the identity and privileges of
its sender Customer-C. The SMC has a policy base which has
rules that specify under what conditions a customer is able to
withdraw. If these conditions are satisfied then the money is
transferred to Cagent (which is acting on behalf of Customer-C).

Hence so far, conceptually, our model has the following elements:
Security Management Authority (SMA), Security Management
Component (SMC) and Security enhanced Agents (SeA). Each
agent-enabled resource has a SMC and each domain has an SMA.
SMCs and SMA are trusted entities. The SMC provides
mechanisms needed for the generation and validation of SeAs.
The SMC maintains security policy information as well as other
security information such as public and private keys and a list of
some of the commonly used certificates and name servers. In an
inter-domain situation, the SMA in one domain will be involved
in negotiating with the SMA in another domain concerning the
validation of SeAs that have originated from the other domain.
We assume that each SMC has a public key and private key pair
and so does each SMA. We also assume that the principals in this
system have public key – private key pairs.

It is essential that a SeA should be unforgeable. Furthermore, the
SeA should only have the capability to make those decisions for
which it has been allowed to do so and it should not make any
unauthorized decisions and requests. The SeA may need to prove
to the target the identity of the sender or creator principal and that
it has not been compromised in any way. The trust on a SeA is
based on the guarantees provided by the creator principal’s SMC
and the sender principal’s SMC. The guarantees provided by the
SMCs should relate to both the code and data part of SeA. We
will see how this is achieved below. In general, different SMCs
can be trusted at different levels. This in turn implies that different
SeAs signed by different SMCs will be trusted at different levels.
Similar arguments apply to SMA as well. In fact, chain of trust on
certificates starts with the SMA to SMC to SeA. A related issue is
where should the agent be when it is making its decisions. In
general, the agent should move to a host that is trusted (by its
creator or sender) so that the execution environment does not
affect the decisions illegally. This is necessary in many practical
situations, as participating hosts often compete with each other
and hence may be mutually suspicious of each other. For instance,
one host may try to change the state of the agent in an
unauthorized manner thereby causing different agent behaviour.
This relates to the more general problem of how to protect the
agent from its execution environment for which there is no easy
answer at this stage.

202

3.1 Security Enhanced Agent Structure
The structure of SeA has several elements containing information
on the identities and privileges of the principals such as the creator
and the sender, validity of the privilege information and other
information gathered during its propagation. The security
enhanced agent can be thought of as an original mobile agent plus
a “passport” where the passport specifies the security
characteristics of the agent. The passport is used by the agent base
to determine the types of actions that an agent can perform in its
environment as well as what actions it can perform on the agent.

The basic structure of the security-enhanced agent is as follows:
• Identifier: (SeA Identifier, Creator-Principal Certificate,

Creator-SMC Certificate, Timestamp, Lifetime)
• Privilege_Token: {<Identifier No, Privilege, Timestamp,

Lifetime>}
• Agent_Code : (Security Code, Application Code)
• Data_Store : (Data, Propagation Path)
• Security_Tags : (Security-Tag-C, Security-Tag-S)

Identifier: Each agent has a unique SeA identifier is (e.g. a
number) assigned at the time of creation. The Creator- Principal
Certificate refers to the identity of the principal who created the
agent. The principal certificate contains the usual elements such as
the identity of the principal and its public key and the validity
periods, all signed by the SMC using its private key. As there is a

single SMC per host, the SMC also identifies the host (agent base)
where the agent is created. The Creator-SMC certificate is signed
by the SMA. The timestamp identifies the time at which the agent
is created and the lifetime indicates the intended lifetime of the
agent.

Privilege_Token : This token specifies the set of privileges of the
agent. These are described in terms of operations or methods that
are applicable to a set of objects in a particular class. These
privileges are given by the creator principal to the agent. So if an
agent has a privilege Pr given to it by the creator principal, then
the interpretation is that, during execution, the agent is able to
request an operation that requires the use of the privilege Pr. These
privileges will be used in conjunction with the policy at the target
agent base (host) in determining whether a request by an agent is
to be allowed or not. This implies that even though the agent has
the privilege Pr, it may not be able to perform an operation that
requires this privilege due to other conditions that need to be
satisfied in the policy base. Each privilege in the token has a
number that acts as an identifier, a timestamp, which indicates the
time at which this privilege was created along with a lifetime. The
token is protected via appropriate cryptographic sealing, which is
described below.

Data_Store : The SeA has a data store that contains the state of
the agent in terms of the data variables and the initial values
Subsequently, as the agent is executed, it also stores any results of
operations carried out by the SeA. These results may need to be

Host B

SMC

Agent Base

SeA

SMA

Host A

 Policy Base

SMC

Agent + Passport
Agent Base

SeA

Policy Base

Figure 1. Security Enhanced Agent Environment.

Domain

203

protected for confidentiality, integrity and origin authentication.
The data store also contains a propagation list that consists of a list
of identity of hosts visited by the SeA. The propagation list is
created by the default method Propagation Path method described
below. Encapsulation of results using cryptographic techniques is
described below in section 4.

Agent_Code : The agent code is the core part of the SeA. It
consists of a set of executable methods or code. There are two
types of code: the Application Code and the Security Code. The
Application Code is the normal application code of the agent and
is specified by the creator principal. This is the code that does the
useful work. The Security Code is a default set of methods
automatically added when a SeA is created. The security code is
concerned with the generation and maintenance of security
parameters.The Security Code contains the following methods:

Propagation Path method allows the agent to create a list of
identities of agent bases, as the agent moves from one agent base
to another. Before the agent leaves an agent base, the identity of
the target agent base is included in the propagation path. So when
an agent leaves an agent base X for Y, its propagation path will
have (X,Y).

Checksum method is used to calculate the cryptographic
checksums needed in the generation of the various security tags
(see below).

The Application Code contains the code to perform the required
tasks. For instance, consider an agent whose task is to determine
the travel itinerary, which involves booking of flights and hotels.
In this case, the agent contains application code to search for
suitable flights and hotels that can include the preferences of the
travelling principal. Consider another example where a customer
creates an agent to perform financial transactions. In this case, the
application code will contain methods to perform operations such
as withdraw from and deposit to accounts.

Security-Tag-C : This security tag is created by the creator
principal and it contains the hash value hash-c of the original SeA
signed using the private key of the creator principal. hash-c is
calculated on the following: Identifier, Privilege_Token,
Agent_Code (Application and Security Codes), and the initial
fixed values in the Data Store. The Security-Tag-C provides an
integrity check for the initial code and data contents of the agent
along with the authentication of the creator agent. (Security-Tag-
C|X refers to the security tag signed by X).

Security-Tag-S: Each sending client principal generates this
security tag and hence there is one such security tag per sending
principal. It contains the hash value hash-s signed using the
private key of the sending principal. hash-s is calculated on hash-c
and Data_Store as well as the contents of the request. The request
contains sender principal identity, the operation along with a
timestamp (see below). The Security-Tag-S provides an integrity
check on the request and authentication of the sender principal,
that is, where the SeA is coming from at present. (Security-Tag-
S|X refers to security tag signed by X).

3.2 System Operation
At the time of creation of an agent, the creator principal defines the
application code of the agent and the initial data values. A unique
SeA identifier is generated and the certificate of the principal
(signed by the SMC) that created the agent along with the

certificate of the SMC (signed by the SMA) are added. The
privileges that the agent is to have are defined, the default security
code is added and the security tags generated. Hence in addition
to the security methods mentioned earlier, the secure agent
infrastructure should have methods to generate the identifier,
collect the certificates, specify the privileges and generate
timestamps and lifetimes. We will assume that such functions are
available in security enabled agent host. E.g. Identifier method is
used to generate the identifiers required for the SeA. It will
generate a unique identifier number for the SeA, gather the
certificates of the principal which is creating the agent and the
SMC certificate and generate the timestamp and the lifetime
needed for the SeA.

The migration of an agent to another host is achieved using an agent
transfer protocol. The protocol request specifies the identity of the
sending principal and its SMC certificate, the target agent base (host)
to which it is being sent, the operation that is being requested, the
time at which this request is made and the time period for which this
request is valid. Some common examples of operations include
transfer, execute, delete and retrieve. For transfer and execute
operations, the SeA is included in the body of the request; for
retrieve and delete operations, only the identifiers of the SeA are
needed. Once again we will assume that the secure agent
infrastructure has methods to generate the parameters needed in the
request.

Let us consider an agent A created by principal X in an agent base
XB which migrates to agent base YB to perform certain task. The
agent has two privileges Pr1 and Pr2 granted by the creator
principal. Its application code contains Program and has some
Initial Data. It has security tags C and S signed by X.

{SeA

 Identifier
 <Name : A; Identifier : Id-A; Creator-Principal-Certificate

: Cert-X; Creator-SMC-Certificate : Cert-XB;
 Timestamp : T-a; Lifetime : Period-a>
 Privilege Token:

{ <Identifier : N1; Privilege : Pr1; Timestamp : T-1;
 Lifetime : L-1>

 <Identifier : N2; Privilege : Pr2; Timestamp : T-2;
 Lifetime : L-2> }
 Agent Code :
 Security Code
 {Propagation Path, Checksum}
 Application Code
 {Program}
 Data Store
 (Initial Data)
 (Propagation Path : {(XB,YB)}
 Security Tags
 (Security-Tag-C|X), Security-Tag-S|X)

Let us now consider the security characteristics. The agent
consists of two parts: a “static” part, which has been produced at
the creation time and is intended to remain the same and a
“dynamic” part that changes as the agent moves from one host to
another. The static part includes the application code and the

204

creator granted privileges and these are integrity protected and
signed using the private key of the creator principal. The
dynamic part is integrity protected and signed using the private
key of the sender principal. The latter also includes the contents
of the request, which includes the operation and a timestamp.
Hence the receiving agent base YB can verify the authenticity of
the sender of the message and the timeliness of the request to
perform the operation. YB can also check the integrity of the
application code and satisfy itself that the code of the SeA is as
sent by the creator originally. In order to do these verifications,
the SMC of YB needs the public key of the principal that
originally signed it. The SMC uses the Identifier in the SeA to
get the identity and the public key certificate of the principal and
uses the source SMC certificate to validate it. At this stage, we
assume that the principal that originally created the SeA (and
hence the source SMC) reside in the same domain as the target.
Hence the target SMC can easily obtain the public key of the
source SMC where the SeA was created. If this is not the case,
then SMA is used to get the public key certificate of the required
SMC in another domain. In any case, an implementation of this
model will require one or more certification authorities, but their
role is perfectly standard. If confidentiality of the agent is
required, then this can be done via encryption either using the
public key of the receiving principal or using a combined
symmetric key and public key method. For instance, the agent
can be encrypted using a symmetric key and the symmetric key
protected using the public key of the receiving principal. In
terms of access control, whether an agent is able to perform a
certain operation when it is executing its program is determined
using the privileges the agent carries along with the policy
specified in the Policy Base of the SMC. YB is also able to read
the privileges of the agent; in this case, granted by the creator. In
general, the access decision is made using both the privileges
granted by the creator principal and the privileges acquired by
the agent as it moves from one host to another (proxy
privileges). We will discuss access control and the policy base in
section 4.2.

If all checks are successful, then the SeA code is run and the
request is granted and the results returned to the SeA. A copy of
the results is stored in the Data_Store in the SeA. The SMC of
YB produces a signed hash digest of the results along with a
timestamp using its private key and this is also stored. This
signed hashed digest provides integrity and origin authentication
of the results. In this case, the SeA, the creator principal as well
as other principals will be able to read the contents of the store
containing the results. If confidentiality protection of the results
is also required, then the SMC of YB generates a secret data key
and uses it to encrypt the results. The secret data key is
encrypted using the public key of the client (the principal that
requested the operation). A pure public key based approach can
also be used where the data is encrypted using the public of the
requesting client principal. In either case, with such
confidentiality protection, once the results are stored in the
Data_Store in the SeA, the SeA and other principals are unable
to read the results. The SeA returns to the client principal, which
can verify the signature of the YB’s SMC on the results. This
will provide the necessary guarantee to the client that it was YB
that has generated these results. If confidentiality of results has

been provided, then the results can be retrieved by first
obtaining the secret data key and then using it to decrypt the
results. Alternatively, the SeA might decide to reside within the
remote host but pass back the results to the sending client. If this
were to occur, once again protection of the results for
confidentiality, integrity and origin authentication can be
achieved in a manner similar to the above.

4. DISCUSSION : SECURITY MODEL
4.1 Roaming Mobile Agents
There are different scenarios when it comes to how mobile agents
can be used to produce useful work. In one scenario, the agent
moves from one host to another and performs some tasks in the
foreign host. After performing the computations, the agent sends
back the results to the originator in the form of messages or returns
to the originator. An alternative scenario is that an agent moves
from host to host performing certain tasks and either returning
results time to time or storing all the results until it returns to the
originator in the end. The latter roaming agents model introduces
additional security issues. In this section, we consider how the
security model described above deals with roaming mobile agents.

We will assume that when an agent moves from one host to
another, it performs certain computations and generates results and
these results are stored in the data store in the agent. We will also
assume that the hosts visited by the agent are in a competitive
environment and are mutually suspicious of each other. That is,
the intermediary results produced by one host should be protected
in some form against other hosts. We will consider later whether it
involves integrity, confidentiality or both. The main objective is
that the intermediary results gathered by the agent are not modified
without detection and that the originator believes this to be the
case. We will also assume that the path taken by an agent is not
predetermined in advance. For instance, it may be that the
originator can specify the set of hosts that the agent can visit but
the agent might decide to visit only some of them and also the
order in which these hosts are visited is not known in advance.

Consider a simple travel scenario where a customer (originator)
wishes to book the air tickets for her trip. The customer creates
and dispatches an agent which moves from one airline host to
another collecting information on the prices offered for the client
specified itinerary. Let us assume that the agents visits hosts A1 to
An in some order and in each host, the agent uses its program to
query the price for the tickets as specified by the customer. Hence
the application code of the SeA contains the code for the itinerary
and the query and the results of the query are stored in the data
store.

Let us consider some of the security properties that are required in
this scenario.

1. When the agent arrives at an airline host:

(a) The agent base of the host should be able to verify that
the code of the agent has not been tampered with (Code
Integrity and Authentication).
(b) The agent base should be able to check the privileges of
the agent in determining whether the operation requested by
the agent is to be allowed or not (Access Control)

205

2. When the agent returns to the originator:

(a) The originator should be able to identify which price
belongs to which airline and that the prices have not been
tampered with. That is, both integrity of data and data origin
authentication are required (Data Integrity and Origin
Authentication).
(b) Only the originator should be able to read the quoted
prices. That is, prices quoted by an airline need to be kept
confidential (Data Confidentiality)
(c) No illegal data can be inserted into the data store unless
the agent has visited the corresponding host and that the
appending of the data to the store has been explicitly done
by that host (Insertion Protection).
(d) No legally appended data can be deleted from the store
without detection (Deletion Protection).
(e) No host can repudiate that the data that has been
appended to the agent (Non-repudiation)

The first set of requirements is similar to those considered earlier.
There is no addition of privileges (proxy privileges) as the agent
moves from one airline to another in terms of proxy tokens. We
will also assume that there is no cloning of the agent and the same
agent actually moves from one host to another. When the SeA
arrives at a host, the SMC in the agent base is able verify the
Security Tags C and S using the public key certificates in the usual
manner. The successful verification of Security-Tag-C leads to
checking the integrity of the agent’s code and the identity of the
creator of the code. The verification of Security-Tag-S leads to
checking of the identity of the sender of the agent and the integrity
and timeliness of the request. The checking of the Security-Tag-C
also ensures that the Privilege_Token has not been illegally
modified and that the agent has the given privileges. These can in
turn be used in making the access decisions when running the
agent program.

Let us now consider the second set of requirements in detail.
Assume Pi is the price offered by the airline Ai. Let the initial data
in the data store D(o) consists of some random number Ro chosen
by the customer and the next host to be visited A1. In fact, let D(o)
be Offer(o) = ([Ro, A1]PK-C, {hash(Ro,A1)}SK-C). That is, Ro
and A1 are encrypted using the public key of the customer and a
hashed version of Ro and A1 are signed using the private key of
the customer. When the agent arrives at the airline A1, the airline’s
agent base adds its price to the data store. It adds Offer(1) = ([A1,
P1, R1, A2]PK-C, {hash(A1, P1,R1,A2,Offer(o)}SK-A1) to the
data store. Now D(1) has (Offer(o), Offer(1)). Hence D(i) has
(Offer(o), …., Offer(i-1), Offer(i)) where Offer(i)=([Ai, Pi, Ri,
Ai+1]PK-C, {hash(Ai, Pi, Ri, Ai+1, Offer(i-1)}SK-Ai). At the
end, the agent returns to the originator C. This idea of chaining the
results is similar to that used which have been used in nested and
chained delegations in [9] and in [11] using secret hash chains.
Now let us see whether the security properties in (2) above are
satisfied.

(a) Data Integrity: First let us suppose that an attacker wishes to
change the price offered by Ai-1. Recall that Offer(i-1) =
([Ai-1, Pi-1,Ri-1,Ai]PK-C, {hash(Ai-1,Pi-1,Ri-1,Ai,Offer(i-
2)}SK-Ai-1). Let the modified offer be Offer’(i-1). But D(i)
will still have Offer(i) within its hash function. Hence it is not
possible to modify Offer(i-1) without modifying Offer(i).

Hence by induction, we can see that none of the offers can be
modified without detection. Let us now suppose that the
airline Ai wishes to change the price Pi-1 offered by Ai-1. If
it changes Offer(i-1) then the because Offer(i-1) has been
signed by Ai-1, changes cannot be done without detection.
Note also that the price and the identity of the airline offering
that price are included within the signature and protected
using the public key of the customer. Hence the customer can
identify which price belongs to which airline and verify that
the prices have not been tampered with.

(b) Data Confidentiality: This is achieved if the public key based
encryption method used to secure the price in the offer is
secure. The price Pi is encrypted along with a random
number using the public key of the customer and hence only
the customer will be able to read the price.

(c) Insertion Protection: Let us assume that a new price is
inserted in between Offer(i) and Offer(i+1). Given that the
offers are chained by including them in the calculation of the
next hash function, this is not possible. The argument is
similar to that used in the data integrity case. However,
successful insertion can be achieved at the end of the chain.
The attacker can append at the end of a chain n his own offer
by calculating

 Offer(n+1) = ([An+1,Pn+1,Rn+1,C]PK-C,
 {hash(An+1,Pn+1,Rn+1,C,Offer(n)}SK-n+1.
 So it is possible to add a fake offer before sending the agent

back to the originator.
(d) Deletion Protection: Given a chain of prices from a list of

airlines, it is not possible to delete a price offer in between
without detection. The argument is similar to that given for
data integrity. However it is possible to delete all the offers
after i and then add a final one at the end (as in insertion)

(e) Non-Repudiation: If an airline has provide a price offer then
it cannot repudiate that offer at a later time because that offer
has been signed by the airline as part of the hash function
calculation.

Remark
This example illustrates the situation where it is necessary to chain
the data added to the data store as the agent moves from one agent
base to another. In the model described in the previous section,
each agent base that the agent visited (where certain computation
was performed and results produced) protected the results for
integrity and confidentiality depending on the requirements. In this
example, the results of the previous agent base are included in the
checksum calculation at the current agent base. This chaining of
results gave additional security properties involving insertion and
deletion protection, though insertion at the end of the path can still
occur.

4.2 Access Control: Privileges and Policy Base
The ability of an agent to perform a certain action in the visiting
agent base is determined by the privileges given to the agent as
well as the policy statements stored in the policy base in the
visiting base. Let us now consider some of the access polices that
can be specified using this approach.

206

An agent’s request to perform an operation is of the form
access(s,o,m,p) where s identifies the agent session, o is the object
which is being accessed, m identifies the operation or method
being invoked and p is the set of parameters for the invocation.
The identifier and the privilege token are available within the
agent session. The policy base contains rules as to which
operations are allowed for which principals. These rules are of the
form : If <condition expressions>, then <action>. The condition
expression tests the identifiers and privileges of the agent, its
creator and sender principals and their agent bases along with the
conditions associated with the parameters and values of the object
being invoked. We adopt a language-based approach to specify the
rules in the policy base. For a detailed description of such a
language, refer to [10]. Here we only briefly describe some of
features of the language using some common policy examples.

The principals in our system include the agent, the applications
that create and send the agents, the users, the agent bases (with the
SMCs) where the agent is created and executed as well as the
SMA. As agent bases (and their SMCs) can belong to certain
domains, we use the notion of domain to group together some
principals. For instance, we can have DOM1 : Agent Base Domain
= {SMC1, SMC2}. The language also provides a number of
operations such as set intersection (and), set difference (or),
equality (=) and test for inclusion (€). We will use the notation
such as agent.creator to denote the creator principal of the agent.
Using these constructs, we can have variety of policy
specifications. Here are some examples of the policy rules based
on agents and their passport attributes:

• Agent Identity based Rule
- If <agent.name = Name> and <agent.id = Id> , then

grant access to operation m

• Agent and Agent Base Identities based Rule
− If <agent.name = Name> and <agent.id = Id> and

<agent.base = SMC-X> then grant access to operation
m

• Creator and Agent Base Rule
− If <agent.creator = XYZ> and <agent.base = SMC-X>

then grant access to operation m. For any agent
created by XYZ in agent base SMC-X, grant access to
operation m.

• Creator and Sender based Rule
− If <agent.creator = XYZ> and <agent.sender = ABC>

then grant access to operation m. For any agent
created by XYZ and sent by ABC, grant access to
operation m.

• Domain based Rule
− If <agent.base € DOM1> where DOM1 = {SMC-X,

SMC-Y}, then grant access to operation m.

• Role based Rule
− If <agent.creator.role = {Role}> then grant access to

operation Op.
− If <agent.creator.role = {Role1}> and

 <agent.sender.role = {Role2}> then
 grant access to operation m.

− If <agent.creator.role € ROLES> and
 <agent.sender.role € ROLES> then grant access to
 operation m.

• Privilege based Rule

− If <agent.creator = XYZ> and <agent.privileges =
{Priv}> and <is-current(Priv) = true> then grant
access to m. That is, if the agent has a privilege Priv
given by the creator agent XYZ and if the privilege is
not expired, then grant access to operation m.

Policy base might also contain rules that are dependent on
certain conditions on attributes of the request as well as of the
object being invoked. The attributes that are part of the request
are referred to as the transaction attributes. The attributes that
are part of the rules in the policy base are referred to as rights
attributes. The conditions are expressions that compare the
transaction attributes with the rights attributes. Cond(op, trans-
attr,rights-attr) is a logical expression that specifies how
transaction attributes are compared with the rights attributes for
the operation op. In general, a Cond expression is composed of
Cond Elements and Cond Elements can be combined using
and/or logical operators and nested parenthesised expressions.
The and operator has higher precedence than the or operator
when no parentheses are used. Consider a simple condition
expression for a request operation done by an agent in a
financial application. Assume that the request operation is a
Withdraw operation where an agent wishes to withdraw $1000
from a bank account object Bank-Account-A. The transaction
attributes associated with this operation are say Account-Type,
Amount and Balance. The rights attributes specified in the
policy base are Cheque-Limit and Credit-Limit. Cond
expression is (Account-Type: Savings) and ((Amount <=
Cheque-Limit) or (Balance <= Credit-Limit)). If this evaluates
to true, then the condition is satisfied. Here are some examples
of policy rules based on such conditions on transaction and
rights attributes and combined with the agent attributes.

Privilege and Constraint based Rules

• If <agent.creator = xyz> and <agent.privileges = {Priv}>
and <is-current(Priv) = true> and <Cond(trans-attr, rights-
attr) = true>, then grant access to operation m.

• If <agent.creator = xyz> and <agent.base = SMC-X> and
<agent.privileges = {Priv}> and <is-current(Priv) = true>
and <Cond(m,trans-attr, rights-attr) = true>, then grant
access to operation m.

• If <agent.creator = xyz> and <agent.sender = abc> and
<agent.privileges = {Priv}> and <is-current(Priv) = true>
and <Cond(m, trans-attr, rights-attr) = true>, then grant
access to operation m.

• If <agent.base € DOM1> where DOM1 = {SMC-X, SMC-
Y} and and <agent.privileges = {Priv}> and <is-
current(Priv) = true> and <Cond(m, trans-attr, rights-attr) =
true>, then grant access to operation m.

Hence it can be seen that a variety of access control policies such
as identity based, role based and privilege based access policies can
be specified using the passport capabilities of the agent and the rules
in the policy base.

207

4.3 Security Auditing in Networks Scenario
Consider a network environment with a number of hosts and a
central management station (CM) responsible for administration
of these hosts. As part of the administration, the central station
performs security auditing of these hosts. The auditing checks
are specified in an agent auditagent and the agent is dispatched
by the central station to the remote hosts. The auditagent arrives
at a host and executes certain operations such as reading the
status of certain files and objects and their permissions, and
checks whether they conform to the rules specified in its audit
checks. Each of the hosts has its own policy base that
determines what agents can do in its environment. Let us assume
that an auditagent wishes to perform certain tasks such as (read-
file, filename), (read-permissions, filename) and (read-
permissions, directory). These are part of the application code.
A secure auditagent is generated by the system administration
principal sys-adm. The principal sys-adm grants the agent a
privilege called Audit which is specified as part of the Privilege
Token of the secure auditagent.

{SeA auditagent
 Identifier
 <Name : Sherlock; Identifier : Id; Creator-Principal-
 Certificate
 : Cert-sys-adm; Creator-SMC-Certificate : Cert-CM;
 Timestamp : T; Lifetime : Period>
 Privilege Token
 { <Identifier : N1; Privilege : Audit ; Timestamp : T1;
 Lifetime : L1>}
 Agent Code
 Security Code
 {Propagation Path, Checksum}
 Application Code
 {read-file, read-permissions}
 Data Store
 (Initial Data)
 (Propagation Path : {(CM, H)}
 Security Tags
 (Security-Tag-C(sys-adm), Security-Tag-S(sys-adm)) }

When the agent arrives at the host H, the host checks the
certificates and the security tags to authenticate the identity of
the agent, the integrity of the application and security codes, the
integrity and the validity of the privileges as well as the
propagation path of the agent. When the agent is executed in
the host and when it performs operations such as read-file or
read-permissions, the privilege specified in the token is used in
conjunction with the policy rules in the host’s policy base to
determine whether access is to be granted.

In this case, the policy base may have the following simple rule:

If <agent.creator = sys-adm> and <agent.sender = sys-adm> and
<agent.privileges = {Audit}> and <is-current(Audit) = true>
then grant access to op where op = {read-file, read-permissions}

Alternatively, there could be additional conditions based on the
transaction and rights attributes of the operation. For instance,
there could be a condition Cond(read-file, filename, allowed-
directories) which constrains which files can be read by the
agent. E.g. Cond(read-file, filename, /users) = true if and only if
filename € /users directory.

In general, different hosts can have different sets of policy rules.
Even within a single organization, it is conceivable that different
rules might arise depending upon the function of the
organization unit being audited and the trust to be placed on the
agent generated by the sys-adm principal.

6. CONCLUDING REMARKS
We conclude this paper by making some observations on trust in
the outlined security model. A fundamental assumption in this
model has been the existence of a trusted component SMC in
each agent-enabled host. This component has been trusted by
system principals to perform security related operations such as
signing and encryption, and to generate integrity checksums and
timestamps. There is no reason why each of the SMCs should be
trusted to the same level. In fact, it is not difficult to have
different levels of trust associated with different SMCs. For
instance, we had earlier examples of policy rules based on
groups of trusted hosts. This trust concept was further refined in
the case of proxy tokens which led to different levels of trust
associated with the privileges granted by different principals in
different hosts. Finally, the trust on the code and the data of the
agent are based on the cryptographic checksums generated using
the private keys of different principals (the creator and the
senders). All this, in some sense, helps to extend the trusted
environment of an agent’s home base to other agent bases. For
instance, when an agent arrives at a foreign agent base, trust on
its code is determined from the security checksum generated and
signed by the creator principal. The creator principal’s signature
is verified using its certificate, whose trust is in turn dependent
on the SMC certificate. The level of trust on the SMC itself is
based on the trusted group that it belongs to. Similarly, trust on
the privileges carried by an agent is dependent on the signature
of the principal that signed it, which is in turn dependent on the
SMC signature and the trusted group it belongs to. The agent’s
passport, which contains the privileges and other security
credentials, is used in conjunction with the policy base in the
SMC of the host to determine whether an agent should be
accepted by an agent base and what actions it should be allowed
to perform. As the agent moves from one host to another
accumulating results, the partial results are protected for
confidentiality and integrity in such a way that an intermediary
host cannot read or modify or insert data without detection.
Signing has been used to ensure that a host cannot later dispute
the information that it has previously entered into the data store
of the agent. These techniques provide some measures for
detecting tampering of agent code and data as it moves from one
host to another. However they do not offer protection against
untrusted malicious hosts where there is no trusted component.
This is because an agent is completely susceptible to the agent
base (and host), which controls the computational environment
where the agent operates. The usual approach is to try and
reduce the size and functionality of the trusted component to a
minimum. The problem of protection of agents against untrusted
malicious hosts still remains a challenging issue.

208

Acknowledgements
I would like to thank Microsoft Research Cambridge, UK for
hosting me at Cambridge when this paper was written. In
particular, I would like to thank Roger Needham and Luca
Cardelli for their valuable comments on the paper as well as the
anonymous referees.

REFERENCES
(1) D. Chess et al.,``Itinerant Agents for Mobile

Computing'',IBM Research Report RC20010 1995.
(2) D. Lange, M. Oshima, Programming and Deploying Java

Mobile Agents with Aglets, Addison-Wesley, 1998
(3) J. Tardo and L. Valente, “Mobile Agent Security and

Telescript”, Proc. IEEE CompCon, 1996.
(4) D. Dean, E. Felten and D. Wallach, ``Java Security : From

HotJava to Netscape and Beyond", Proceedings of the
1996 IEEE Symposium on Security and Privacy, , USA.

(5) R. S. Gray, “A Flexible and Secure Mobile Agent System
”, 4th Annual Tcl/Tk Workshop Proc, 1996.

(6) S. Berkovits, J. Guttman, V. Swarup, “Authentication for
Mobile Agents”, in Mobile Agents and Security, Editor
Vigna, LNCS 1419, 1998

(7) G. Karjoth, D. Lange, M. Oshima, “A Security Model for
Aglets”, Internet Computing, July 1997.

(8) T. Sander and C. F. Tschudin, “Towards Mobile
Cryptography”, Proc. of the 1998 IEEE Symposium on
Research in Security and Privacy, USA.

(9) V. Varadharajan, P. Allen, S. Black, ``An Analysis of the
Proxy Problem in Distributed Systems'', Proc. of the 1991
IEEE Symposium on Research in Security and Privacy.

(10) M. Hitchens, V. Varadharajan, “Tower: A Language for
Role based Access Control”, Accepted for Publication,
IFIP SEC2000.

(11) G. Karjoth, N. Asokan, C. Gulcu, “Protecting the
Computation Results of Free Roaming Agents”, Second
International Workshop on Mobile Agents, MA’98, LNCS-
1477, 1998.

209

