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ABSTRACT
Commodity monolithic operating systems are abundant with vul-
nerabilities that lead to rootkit attacks. Once an operating sys-
tem is subverted, the data and execution of user applications are
fully exposed to the adversary, regardless whether they are de-
signed and implemented with security considerations. Existing ap-
plication protection schemes have various drawbacks, such as high
performance overhead, large Trusted Computing Base (TCB), or
hardware modification. In this paper, we present the design and
implementation of AppShield, a hypervisor-based approach that
reliably safeguards code, data and execution integrity of a critical
application, in a more efficient way than existing systems. The
protection overhead is localized to the protected application only,
so that unprotected applications and the operating system run with-
out any performance loss. In addition to the performance advan-
tage, AppShield tackles several newly identified threats in this pa-
per which are not systematically addressed previously. We build a
prototype of AppShield with a tiny hypervisor, and experiment with
AppShield by running several off-the-shelf applications on a Linux
platform. The results testify to AppShield’s low performance costs
in terms of CPU computation, disk I/O and network I/O.
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General Terms
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1. INTRODUCTION
With a superior privilege than user applications, the commod-

ity monolithic operating systems are often regarded as the security
basis of systems. A conundrum facing the end users is that the com-
modity OSes are not always trustworthy as expected. Their enor-
mous code size and broad attack surfaces make them vulnerable to
attacks. Once an OS is subverted, all applications and sensitive data
are at the mercy of the attacker. Moreover, some high-profile end
users and organizations are even concerned about whether the com-
modity operating systems in their use are purposely implemented
with trapdoors to invade their privacy or data secrecy.

To cope with OS level attacks, various mechanisms [23, 22, 28,
3, 6, 34, 31, 5, 29] have been proposed to protect critical applica-
tions without trusting the operating system. self-contained code
Among them, the approaches like Flicker [23], TrustVisor [22]
and Fides [28] are only applicable to self-contained code with pre-
defined inputs and outputs (e.g., inputs are the initial parameters
and outputs are the final returns). Those code cannot even make
the basic system calls for dynamic memory allocation or deallo-
cation. Although MiniBox [20] extends the functionality by sup-
porting system calls of the self-contained code, it still has several
limitations, such as lack of multi-thread support and limiting to
sandbox-capable modules.

To protect a full-fledged application, several systems [29, 21, 2,
9, 6, 34, 31, 5, 14, 17] are proposed. Among them, AEGIS [29],
XOM OS [21], Bastion [2] and SecureME [9] require hardware
modifications, which is apparently impractical for current com-
modity platforms. Intel’s upcoming Software Guard Extensions
(SGX) [10] technology provides a suite of hardware extension for
software protection which requires significant changes on the soft-
ware level, and therefore is not compatible with legacy applica-
tions. Proxos [31] and Terra [14] introduce a dedicated trusted
virtual machine for the protected applications, an approach with
a dramatically expanded TCB size and therefore a weaker security
assurance.

The systems like OverShadow [6], CHAOS [5], SP3 [34], Ink-
Tag [17] aim to protect the whole process without requiring hard-
ware modifications or a trusted VM. However, they all rely on
the costly encryption/decryption operations and are subject to the
newly identified attacks (as described in Section 3.2.1) whereby
the kernel manipulates the address mapping, e.g., the malicious OS
could swap two address translation mappings to break the data/code
integrity without directly modifying the data/code of the protected
application. Virtual Ghost [12] prevents the kernel from illicitly ac-
cessing application memory by instrumenting memory access in-
structions and enforcing a complete control flow integrity in the
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kernel, which are usually not applicable for commodity OSes (e.g.,
Windows) in practice.

In this paper, we propose AppShield, a novel system which re-
liably, efficiently and transparently protects data secrecy and in-
tegrity of a critical application, as well as its execution integrity,
against OS-level malware attacks (Figure 1). AppShield leverages
the virtualization techniques [19] to isolate the application’s ad-
dress space such that all accesses from the kernel are blocked ex-
cept those explicitly authorized by the application through system
calls. The protected application utilizes the main memory in the
same fashion as in a normal setting, since it can request the ker-
nel to (de)allocate memory buffers. Its memory accesses are in the
native speed without computation-heavy encryption/decryption or
being intercepted. Furthermore, AppShield also achieves perfor-
mance isolation which isolates the performance loss only to the
protected application, keeping those unprotected applications not
affected. Our scheme is complementary to secure I/O (e.g., Driver-
Guard [8] and Trusted Path [35]) and encrypted I/O (e.g., SSL for
network data) schemes such that they can jointly provide a holistic
protection on the application and its I/O data.

We have implemented a prototype of AppShield which consists
of a bare-metal hypervisor with roughly 29K SLOC and a tiny
kernel module of around 2K SLOC. We have experimented the
prototype with several applications (e.g., Apache) and run a suite
of benchmark tests. The experiment results demonstrate that App-
Shield incurs insignificant performance costs in CPU computation,
disk I/O and network I/O.
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Figure 1: Protections for application and its data. Our scheme
is complementary to secure I/O and encrypted I/O schemes.

To summarize, our contributions of this paper are listed below.

• We discover several address mapping attacks which are not
addressed by existing application protection schemes. Through
these attacks, the malicious kernel can tamper with the pro-
tected application’s data secrecy and execution integrity.

• We design AppShield to protect execution integrity, data se-
crecy and integrity of an off-the-shelf application which is
allowed to issue system calls.

• Compared with existing work in the literature, our AppShield
design achieves better performance by avoiding computation-
heavy cryptographic operations and enforcing performance
isolation in the sense that the performance loss is incurred to
the protected application only.

• We build a prototype of AppShield and evaluate it with sev-
eral commonly used applications and benchmark tools. The
experiments show that AppShield does not introduce high
overhead to the system.

ORGANIZATION. In the next section, we define the problem
by specifying the threat model, our objectives and an overview of
AppShield. In Section 3, we describe the dynamic address space
isolation together with newly identified threats. The secure ad-
dress space switch and the support of data exchanges are presented
in Section 4 and Section 5, respectively. The implementation and
evaluation of AppShield are reported in Section 6. We discuss the
related work in Section 7 and conclude this paper in Section 8.

2. SYNOPSIS

2.1 The Model
In this work, we defend against kernel-level malware attacks on

a critical application by tampering with the latter’s data and/or ex-
ecution. The adversary can run arbitrary code and launch DMA
operations in the victim platform. Nonetheless the adversary does
not have physical control over the platform. All hardware and pe-
ripheral devices, together with their firmware, are considered as
trusted. In other words, the platform’s chipset and all peripheral
devices operate as expected, namely, following their specifications
and not containing Trojan-Horse circuits or microcode that respond
to commands of the adversary. In our model, we trust the a bare-
metal hypervisor in use, which has a tiny code size and limited
number of interfaces. Moreover, we assume our hypervisor inter-
cepts and emulates the System Management Mode (SMM) oper-
ations in order to tackle SMM-based attacks by leveraging SMM
containerization. In fact, Intel has supported such mechanism [19].

Neither side channel attacks nor application availability is in the
scope of our study. We also suppose that no ill-formed inputs can
subvert the control flow of the critical application which can be
achieved by input sanitation and proper code development. It is
orthogonal to our work to enhance code security (e.g., fixing bugs)
of the protected applications.

Our goal is to protect a critical application execution integrity
and data security within the application memory space. The critical
application may use cryptographic techniques to protect its derived
data for disk and network I/O, and may leverage existing secure I/O
path schemes like [8, 35] to protect the raw I/O data for peripheral
devices such as a keyboard and a fingerprint reader.

2.2 Design Principles
In the design of AppShield, we follow the four principles de-

scribed below. Firstly, it should support and protect the applica-
tion’s system calls. The critical application can safely issue system
calls to request the services (e.g., memory allocation) from the op-
erating systems even though the latter is not trusted.

Secondly, no significant performance impact should be inflicted
by AppShield on the protected application and on the platform
as a whole. Ideally, the protected application accesses the main
memory in the native speed without being interposed on or going
through an encryption/decryption procedure. Moreover, the mech-
anism should take a limited performance toll on the protection ap-
plication, whereas other unprotected applications and the OS are
not affected. We term this property as performance localization in
this paper.

Thirdly, out of the practicality consideration, we intend to de-
sign AppShield to be compatible and even transparent to legacy
off-the-shelf applications. The requirement of significant source

2

346



code or binary code modifications hinders the adoption of App-
Shield in practice. Note that the compiling and installation of the
kernel module do not rely on the source code of the operating sys-
tem.

Lastly, as a widely accepted design principle, the TCB of the se-
curity mechanism should be kept small and simple, which ensures
that the risk of subverting the TCB is minimal. Therefore, it ex-
cludes the approach of using a trusted virtual machine where an
operating system is part of the TCB.

2.3 AppShield Overview
The high level idea of AppShield is to dynamically isolate the

target application’s context (registers) and address space from the
rest of the platform (including the kernel) in an exclusive fashion,
while its system calls are securely mediated by the hypervisor to
fend off attacks. For the easiness of presentation, we use CAP in
the rest of the paper to denote the critical application under App-
Shield’s protection.

Apps 

Commodity 
OS 

Hypervisor 

Transit Module 

CAP 
Shared  
Buffer 

Trusted Trusted Shim 

Data Flow 

Untrusted 

Control Flow 

Figure 2: The architecture of AppShield. The data flows (dot-
ted lines) between the protected Critical APplication (CAP) al-
ways go through the shared buffer and mediated by the shim
code. The control flows (solid lines) between CAP and the OS
are mediated by the Transit Module. The executions of transit
module and the trust shim are protected by the hypervisor.

Figure 2 depicts the architecture of AppShield. It consists of a
bare-metal hypervisor, a transit module in the guest kernel1 space
mediating control flow transitions between CAP and the kernel,
and a shim code in the user space assisting inbound and outbound
data flows. Both the transit module and the shim code are self-
contained and safeguarded by the hypervisor to defend against at-
tacks from the kernel and malicious DMA requests as in [8, 22].
The AppShield hypervisor as the root of trust in our system could
boot up using SRTM [32] (Static Root of Trust for Measurements)
and DRTM [18] (Dynamic Root of Trust for Measurements) tech-
niques. Thus, we could install AppShield during runtime, even if
the guest operating system is already infected before installing the
hypervisor, because any integrity violation could be verified.

CAP runs in an address space isolated from the rest of the guest
domain, while the guest OS and other unprotected applications on
the platform run as usual without being affected. The page table of
CAP is managed by the guest OS, but its updates are intercepted

1Guest kernel refers to the kernel running in the guest VM.

and verified by the hypervisor to defend against various attacks in-
cluding the new ones introduced in Section 3.2.1. Data flows in
system calls are mediated by the shim code which is essentially a
wrapper of libc libraries. Thus, it does not require source code of
libc and any modification on the protected application. The main
task of the shim is to marshal the system call parameters by export-
ing the data needed by the system call routine into the shared buffer
accessible to the kernel.

The transit module regulates the control flow transitions between
CAP and the guest kernel. The transitions are triggered by the
events including system calls, exceptions and interrupts. In order
to respond to those events before the guest kernel, the new handlers
within the transit module are invoked before the handlers in the
kernel so as to prevent the context switch from being manipulated.

3. DYNAMIC ADDRESS SPACE ISOLATION
AND VERIFICATION

Dynamic address space isolation is the bedrock of AppShield.
In this section, we first elaborate how the hypervisor isolates a pre-
defined address space of CAP. Then, we explain how the isolation
is dynamically adapted to the changes of the memory boundary at
run-time. While our description follows Intel virtualization tech-
nology, the approach is applicable with AMD’s as well.

3.1 Dynamic Address Space Isolation
In a nutshell, the physical memory assigned to the guest is di-

vided into two separated regions by the hypervisor. One (trusted)
region is used for CAP while another (untrusted) region is for the
guest OS and other applications. The hypervisor configures IOMMU
to prevent malicious DMA requests to access the trusted region.
To prevent illicit software access, the memory dichotomy as de-
picted in Figure 3 is realized by two suites of Extended Page Ta-
bles (EPTs) maintained by the hypervisor, respectively. The EPT
enforced address space isolation ensures that the guest OS and
other untrusted applications can never access the memory regions
assigned to CAP; on the other hand, CAP cannot access memory
regions belonging to the guest system either. For the sake of clar-
ification, we use AppShield EPT to refer to the ones dedicated for
CAP. In the following, we only focus on the EPT configuration.
The details of applying the proper EPT are described in Section 4
which elaborates the context switches between CAP and the guest
OS.

Accessible Inaccessible 

AppShield EPT Untrusted EPT 

Mappings 

Memory Regions 
of CAP 

Other Memory 
Regions 

Shared Buffer 

Figure 3: Address Space Isolation. With the AppShield EPT,
only the memory regions of CAP and the shared buffer are ac-
cessible and other memory regions are inaccessible. In con-
trast, with the original EPT, CAP’s regions except the shared
buffer are inaccessible.
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3.1.1 Activation and Deactivation
The hypervisor exports two hypercalls for CAP to activate and

deactivate the protection. The activation hypercall is issued before
CAP’s main function is entered. In response, the hypervisor ob-
tains the page table base address from CR3 register and traverses
the page table entries (PTEs) belonging to the application, so that it
locates all pages within the address space, including the shared li-
braries. Note that the transit module copies the shared libraries into
the isolated space region, and keeps all original shared libraries
to be used by the untrusted applications. Both the traversed guest
PTEs and the pages pointed by them constitute the physical mem-
ory region that needs to be separated from the guest. The hypervi-
sor creates the AppShield EPT for this region and marks the cor-
responding entries in the original EPT as inaccessible, so that the
guest cannot visit the isolated region. Once the application’s code
and data are isolated, the hypervisor can validate its launch-time
integrity, supposing that the integrity of the protected application
has been priorly authenticated by a signature or an HMAC tag. In
addition, the hypervisor measures its integrity and ensures that its
memory region does not overlap with existing ones.

With the deactivation hypercall, CAP notifies the hypervisor to
disable the protection. In response, the hypervisor first ensures that
it is issued by CAP, and then destroys the AppShield EPT and re-
stores the entries in the original EPTs.

3.1.2 Tracking Address Space Updates
One of the main tasks of isolating a full-fledged application is

that its memory region evolves over time, due to dynamic mem-
ory allocation and deallocation as a result of relevant system calls
(e.g., brk) which are invoked by the corresponding memory usage
functions in the libc library, such as malloc and free.

The details of how AppShield mediates system calls are described
in the next section. Here we focus on explaining how the hypervi-
sor dynamically maintains address space isolation, which demands
the hypervisor to track memory space updates at runtime.

To track page table updates, one design option is to let the hy-
pervisor directly manages a dedicated guest page table for the CAP.
Obviously, it significantly increases the hypervisor complexity which
weakens the security strength. The paraverfication technique ap-
proach used by InkTag [17] is another alternative. However it re-
quires massive modifications of the OS. To follow the design prin-
ciples we put forth in Section 2.2, our design utilizes paravirtu-
alization as Xen [1] whereby the guest page tables, being set as
read-only, are managed by the kernel and any updates are trapped
into the hypervisor and conducted by the hypervisor.

3.2 Address Space Verification
Although the malicious kernel does not have a direct write ac-

cess to CAP’s guest page table, it may manipulate the virtual and/or
physical address of the newly allocated memory regions to compro-
mise CAP’s security without accessing the latter’s memory space.
One such example is the Iago attack [4] which relies on a vulnera-
bility in libc libraries. In the following, we first show several newly
discovered attacks in the same vein, but in a more generalized set-
ting, and then we show how the hypervisor in AppShield verifies an
address space update (before isolating it) to counter these attacks.

3.2.1 Address Mapping Manipulation
In general, address mapping manipulation attacks can be launched

by the kernel in response to any system calls that result in page ta-
ble updates. Without loss of generality, we use buffer allocation as
an example to illustrate the attacks.

VA VB VC VD VE VF 

PB PC PA PF PD PE 

VA VB VC VD VE VF 

PB PC PA PF PD PE 

VA VB VC VD VE VF 

PB PC PA PF PD PE 

VA VB VC(Vd) VE VF 

PB PC PA PD PE PF 

(a) Legal Mappings 

(d) Mapping Reorder (c) Double Mapping 

(b)  Mapping Overlap 

Legitimate Mapping Manipulated Mapping 

Existing Buffer Page New Buffer Page Lapped Page 

Figure 4: Address mapping manipulation attacks. VA, · · · , VF

are regions in the virtual addresses and PA, · · · , PF are their
guest physical pages respectively.

Suppose a CAP’s buffer contains three consecutive pages at vir-
tual address VA, VB and VC respectively and CAP requests a new
buffer. When there is no attack, the newly allocated buffer’s virtual
address and physical addresses do not overlap with any existing
regions, as illustrated in Figure 4-(a), where they are at virtual ad-
dress VD, VE and VF . In the following, we show four types of
manipulation attacks.
Mapping Overlap Attack. The malicious kernel may overlap
two memory regions in both virtual and physical address space. As
illustrated in Figure 4-(b), the new buffer is set to the pages located
at VD to VE . The overlapping of VC and VD leads to undesired
modifications of data inPC when the application attempts to update
the first page of the allocated buffer (through the mapping from VD

to PC ). Obviously this attack breaches data integrity. It can also
subvert the control flow of CAP when the overlapping memory is in
the application stack and the modifications change the stored return
address(es).
Double Mapping Attack. This attack maps two or more virtual
pages to one physical page in the user space. In double mapping
attack, there are only overlaps in the physical address space but
no overlap in the virtual address space, which is the main differ-
ence with the mapping overlap attack. As shown in Figure 4-(c), a
write to VA affects the result of a read operation at VF . This attack
is more stealthy than the mapping-overlap attack, as the physical
addresses are transparent to the code running in the virtual space
which is not tampered with at all.
Mapping Re-order Attack. The mapping re-order attack is to re-
order the existing address mappings between the virtual addresses
and the physical addresses. As shown in Figure 4-(d), CAP re-
trieves wrong data when it reads from VF . As a result, CAP’s data
or control flow can be manipulated by the malicious kernel.
Mapping Release Attack. In this attack, the malicious kernel
release one or more existing mappings without any system call re-
quests from the protected application. The mapping-release could
induce the hypervisor to give up the protection on those pages since
they are not considered in CAP’s addresses space. By doing so, the
guest OS can freely access the data on those released pages.

4

348



Essentially, these attacks can be neutralized by the hypervisor
via monitoring and verifying changes to the guest page tables. To
the best of our knowledge, no existing work precisely describe the
verification procedures and many of them [6, 34] suffer from one or
more aforementioned attacks. Moreover, it is not easy to efficiently
verify them due to frequent page table updates.

3.2.2 Context Information Collection
In order to determine whether an address space change is legiti-

mate, the hypervisor needs to be aware of the present memory lay-
out, the application’s intent to memory updates and the resulting
page table updates following the system calls.

The existing memory layout (the mapping relationship between
guest virtual addresses to guest physical addresses) is collected by
traversing CAP’s guest page table. The collected information is
trustworthy since it is collected by the hypervisor and the guest
page table is set as read-only so that the kernel cannot directly up-
date it.

To determine the intent of the application relevant to memory
updates, one possible way is to allow the hypervisor to intercept all
system calls that are potentially used by the CAP to allocate or deal-
locate memory. In order to correctly interpret the memory updates
information (i.e., the based address and the size), the hypervisor has
to know the exact semantic meaning of all parameters and return
values. It inevitably increases the complexity of the hypervisor and
thereby dampens its security. In our paper, the trusted shim running
in the user space closely works with the CAP. Thus, it knows the
system calls used by the CAP and their semantic meanings, e.g.,
the parameter of the malloc is the memory size and the return value
is the based address of the new allocated buffer. Through several
hypercalls, the trusted shim securely pass such information to the
hypervisor.

3.2.3 Verification Details
In page table update verification, the hypervisor and the shim

code jointly enforce the following policies for protecting the ad-
dress space of a CAP.

1. The page table of CAP should be non-writable for the un-
trusted guest OS. Any update should be intercepted by the
hypervisor.

2. The newly added memory region should not overlap with any
existing memory region, in both the virtual address space and
the guest physical address space.

3. Once the mappings between the virtual addresses and the
guest physical addresses are fixed, they are not allowed to
be re-mapped.

4. The memory regions can be only released upon CAP’s re-
quests, and the page data should be cleaned before allowing
the guest OS to manage/access it.

The shim code checks the overlap in the virtual address space
after system calls, because it wraps all libc functions related to sys-
tem calls and therefore has the entire virtual address layout. Tak-
ing mmap as an example, the trusted shim stores the size of the
memory-mapped region through the second parameter of mmap
and the base address through the return value. Such information
are securely deposited in an ordered list which is inaccessible from
the kernel since the address space of the CAP is isolated by the hy-
pervisor. For each new allocated memory region, the trusted shim
verifies it with existing ones. If there is no overlap, it then updates

the maintained list and passes the execution flow to the CAP; other-
wise it will issue a hypercall to the hypervisor to inform the policy
violation.

To defend against double mapping and mapping reorder attacks
in the page table updates, the hypervisor interprets the present map-
ping (denoted as M ) and the resulting mapping M ′, and analyzes
the intent of this update. If the guest kernel is to build a new map-
ping (i.e., M is empty and M ′ points to a guest physical page), the
hypervisor verifies if the new pointed physical page is occupied be-
fore. If it is already occupied, it is a double mapping attack and the
request is denied; otherwise the update is approved. If the guest OS
aims to remap/reorder the mappings (i.e., both M and M ′ point to
the guest physical pages), the hypervisor directly rejects it.

If the guest kernel aims to free an existing mapping (i.e., M
points to a guest physical page while M ′ is empty), the hypervi-
sor verifies whether it has been priorly informed with CAP’s such
requests via the shim code’s hypercall. The addresses and sizes of
those memory pages to be freed are stored in a list in the hypervisor
space. By searching the list, the hypervisor decides if the current
page is the one that CAP aims to release. If it is not, the hypervi-
sor rejects the update; otherwise it approves it and updates the list
by deleting the corresponding record. Note that the data on the re-
leases memory page is zeroed by the trusted shim once it gets the
release requests from the CAP.

Note that all mapping updates should be driven by the requests
from the application itself. Thus, the above verification algorithm
does not prevent normal memory sharing within user space, e.g.,
a JIT compiler may request two virtual address for its code, one
read/execute only, the other for writing.

4. SECURE ADDRESS SPACE SWITCH
Events like system calls, interrupts and exceptions lead to con-

text switches between CAP and the kernel. Different from the con-
ventional user-kernel context switch, the switch between CAP and
the kernel involves address space switches, since they run in two
exclusively separated address spaces.

When CAP is in execution, the transit module in AppShield han-
dles all interrupts and prevents the kernel from exploiting the con-
text switch to attack CAP. Its main tasks are to facilitate the context
switch and to safeguard CAP’s context information. It also notifies
the hypervisor to perform address space switch. As shown in Fig-
ure 5, when an interrupt is raised, the control flow leaves from CAP
to the kernel. Once the event is processed by the kernel, the flow
goes back to CAP. We proceed to elaborate the details of context
switch.

Entry Gates 

Commodity OS 

Exit Gates 

CAP 

Transit Module 

Address Space Boundary 

Figure 5: Control flow between the CAP and the guest kernel.
Each control flow of CAP starts from an entry gate and ends
with an exit gate.

4.1 Components of Transit Module
The transit module is a self-contained kernel module with its ex-

ecution being protected by the hypervisor using the mechanism de-
scribed in [27]. Specifically, the memory regions occupied by the
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transit module is isolated by the hypervisor, such that the untrusted
commodity OS can not modify the data and the code. The control
flows of the transit module execution always start from the pre-
defined addresses called entry/exit gates as in Figure 5.

Public 
Section 

Private 
Section 

Page Aligned 

Entry Gates 

…
 

…
 

Exit Gates 

Figure 6: The format of transit module

The transit module has two sections (Figure 6), which are page
aligned for facilitating memory protection. The first section is the
public section which contains information that is read-only for the
transit module and the commodity OS. The second section is the
private section which contains private data. Accesses to the pri-
vate section are only allowed if they are from the transit module;
other accesses originated from outside of the transit module are
blocked by the hypervisor. The transit module comprise an App-
Shield Interrupt Descriptor Table (IDT) which points to a set of its
own interrupt handlers called AppShield interrupt handlers. Note
that the interrupts are still handled by the guest kernel as in the nor-
mal setting, not by the transit module. As explained in subsequent
sections, the transit module is for AppShield to capture events and
protect the context switch without having performance effect on the
kernel or other applications.

An AppShield interrupt handler is composed of two code stubs
(Figure 7): the entry gate in the public section and the exit gate in
the private section. The control flow of the transit module always
starts from one of the entry/exit gates. The exit gate handles the
context switch from CAP in protection to the guest kernel while
the entry gate handles the switch back to CAP. More details of
their working mechanisms are presented in Section 4.3.

Exit  
Gate 

Entry  
Gate 

Original Interrupt Handler 

Address Space Boundary 

AppShield Interrupt Handler 

Figure 7: An AppShield interrupt handler consists of one pair
of gates, which invokes the original interrupt handler to re-
sponse the corresponding interrupt and mediates the return
from the kernel to CAP.

4.2 Event Capture
The hypervisor in AppShield does not intercept interrupt events

since it will significantly affect the platform performance. When
AppShield is activated, the hypervisor loads and protects the tran-

sit module which captures events within CAP, so that unrelated
applications are not involved.

The AppShield IDT contains the pointers pointing to the App-
Shield interrupt handlers. The hypervisor installs the AppShield
IDT to the CPU occupied by CAP by setting its IDTR register in
the VMCS structure. Consequently, the AppShield interrupt han-
dlers become the first responders to interrupts on the CPU occupied
by CAP. They use hypercalls to notify the hypervisor when neces-
sary. When the guest OS is running, it still uses the original IDT
and interrupt handlers. The switch of the two IDTs follows the
switch of the address space. As illustrated in Figure 8, the origi-
nal IDT is uninstalled and the secure IDT is installed for the CAP
execution.

…
 

AppShield Interrupt Handler 

AppShield Interrupt Handler 

AppShield Interrupt Handler 
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Figure 8: Performance Overhead Localization. When the con-
text switches to CAP, the normal IDT is uninstalled and the
secure IDT is installed.

By using two sets of interrupt handlers, our design achieves per-
formance overhead localization, because the transit module is only
invoked when CAP is interrupted. AppShield is not involved with
the executions of other applications or the guest OS.

4.3 Context and Address Space Switch
Figure 9 depicts the control flow of event handling with two con-

text switches at the exit gate and the entry gate. When an interrupt
is raised during CAP’s execution, the exit gate of the AppShield
interrupt handler sets out to the context. Under the protection of
the hypervisor, the exit gate first prepares a buffer and saves CAP’s
context in the transit module’s private section. It then creates a
dummy context for the kernel to execute within. Note that the
dummy context should not be randomly generated since some con-
text information is used by the kernel to serve for the application.
For instance, the EIP should point to the corresponding interrupt
handler so that the original handler can serve the interrupt. Specif-
ically, we only need to hide the information in the general registers
(i.e., EAX, EBX, ECX, EDX, ESI, EDI, EBP) since they may con-
tain sensitive CAP data. In the case of system call context switch,
we also need to keep the parameters in the corresponding registers.

To allow the execution flow to securely come back to the transit
module, the return address of the dummy context is set to point to
the corresponding entry gate. In the end, the exit gate then issues
a hypercall to inform the hypervisor to restore the original page
tables so that the interrupt handler in the guest kernel can properly
execute.

Once the guest interrupt handler finishes its process, the control
is returned to the entry gate. The entry gate issues a hypercall to
request the hypervisor to restore the AppShield EPT and guest page
tables. After ensuring that the request is indeed from the legitimate
entry gate, the hypervisor restores the AppShield EPT and installs
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the AppShield IDT, so that the entry gate can properly restore the
saved context and resume the interrupted CAP execution.

Exit Gate 

1. Save the context 
2. Prepare dummy 

context 
3. Issue hypercall to 

switch address space 

Entry Gate 

OS 
Execution 

1. Issue hypercall to 
switch address space 

2. Restore the original 
context 

3. Continue the previous 
execution 

Figure 9: A typical address space switch always starts with an
exit gate and ends with an entry gate. The commodity OS han-
dles the events that trigger the address space switch.

4.4 Special Considerations

4.4.1 Fast-System-Call Cost Localization
Platforms with modern processor and chipset support fast system

call mechanisms by introducing new instructions. The SYSEN-
TRER(SYSCALL) instruction traps the CPU to the kernel mode
while the SYSEXIT(SYSRET) instruction transfers the CPU back
to the user mode. In this paper we use SYSENTER and SYSEXIT
instruction pair to illustrate the localization mechanism.

The SYSENTER instruction sets the registers (i.e., CS, EIP,
SS and ESP) according to values specified by the operating system
in certain Model-Specific Registers (MSR), and triggers the CPU
to trap into the kernel mode. To localize the performance over-
head to CAP, the hypervisor uses an additional set of MSR dedi-
cated for CAP, where EIP value in the corresponding MSR (i.e.,
SYSENTER_EIP_MSR) is set to point to the corresponding exit
gate within the transit module. By doing so, all fast system calls
will be intercepted the transit module. The guest kernel uses its
own MSRs. The two sets of registers are switched following ad-
dress space switches. Note that the context backup and restoration
are still handled by the pairs of the exit and entry gates. ItâĂŹs
a well known fact that when multiple processors are present in a
system, every processor has its own set of MSRs. Thus, the modi-
fications of MSRs for the protected application do not affect other
applications running on other processors.

4.4.2 Multi-Thread Execution
AppShield supports multi-thread execution of CAP. The child

threads could be user threads, which are completely maintained by
CAP in user space, or light weight processes which share the same
address space with their parent and are scheduled by the guest OS.

The user threads do not have their own contexts since they do not
have the kernel structure for scheduling. Therefore, they are trans-
parent to AppShield. In contrast, light weight process threads may
have multiple user contexts for CAP, since each of them has its
own corresponding structures (e.g., the kernel stack) for schedul-
ing. These threads may run in parallel and trap into the guest OS
simultaneously. Therefore, by using the base addresses of their ker-
nel stacks as the identifiers, the transit module can distinguish each
of them, and save/restore the respective contexts.

5. SYSTEM CALL MEDIATION
The system call from CAP to the guest kernel reveals some ap-

plication data when they are passed to the kernel as parameters.
AppShield provides a spatial-temporal protection [9] for the data
involved in the system call. It ensures that the guest OS can only ac-
cess the authorized data (spatial protection) during the execution of
the system call (temporal protection). The previous sections have

explained that temporal protection is achieved by address space iso-
lation and secure context switch. In this section, we describe how
AppShield enforces spatial protection through system call adap-
tion. According to the security risks, we adapt those low risk sys-
tem calls and emulate those high risk ones.

5.1 System Call Adaption
In the majority of system calls, the application information needed

by the kernel, if any, is passed as parameters and there is no need
for the kernel to access the application address space. These calls
are not adapted in AppShield.

Nonetheless, system calls with parameters of the pointer type
(e.g., a pointer pointing to the file name in open), requires the kernel
to access the application’s space to acquire needed information. In
order to prevent the kernel misuse such accesses, it is desirable to
adapt those system calls with parameter marshaling.

To ensure spatial protection, two approaches of parameter mar-
shaling have been proposed in the literature. One approach as used
in [6] is to interact with the hypervisor eight times to safely move
the decrypted data into a newly allocated shared/public buffer. Ob-
viously, the multiple round interaction with the hypervisor is detri-
mental to the system performance. The other approach as in [9]
incurs less context switches as it decrypts the data and overwrites
the cipher text using the same buffer. Nonetheless, both approaches
use encryption algorithms which consume an order of magnitude
more CPU cycles than conventional system calls. Therefore, the
performance deteriorates significantly when CAP frequently issues
system calls. We summarize the performance cost of the parameter
marshaling in a system call in these two approaches (i.e., Over-
shadow and SecureME) together with our scheme in Table 1.

Crypto.
Opera-
tions

Data
Move-
ment

Context
Switch
(#)

OverShadow [6] yes yes 8
SecureME[9], InkTag[17] yes yes 2
AppShield no yes 2

Table 1: The time cost of the parameter marshaling in a system
call. Our scheme is relatively efficient because we give up the
costly cryptographic operations and reduce the switch times.

In our scheme, the trusted shim creates a shared region in its
user space, and issues a hypercall to inform the hypervisor that the
shared region is accessible for the guest OS. In this way, the guest
OS can only access the data within the shared region, but cannot
access any other regions within the user space of the CAP.

To adapt system calls, we develop the shim code with the seman-
tics of each system call, i.e. the parameter semantics and the return
values. In addition, the semantics also includes the data flow direc-
tion, i.e. whether the memory buffer referred to by the parameter
is to receive data from the guest kernel, or store the data to be sent
out to the kernel.

Specifically, for the data that the CAP attempts to send out, the
shim simply copies the data into a buffer allocated in the shared
region, and updates the corresponding parameter to refer to the new
buffer. To receive data from the guest OS, the shim should reserve
a buffer in the shared region. The shim then saves the base address
of the original buffer, and updates the corresponding parameter to
refer to the reserved one. When the system call returns, the shim
copies the received data into the original buffer and continues the
execution.
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Configurations Descriptions
CPU Intel i7-2600 with 3.40GHZ
Memory 3GB DDR3 1333MHZ
Network Card Intel Device 1502 with 1Gbps
Disk ATA 7200RPM
OS Ubuntu 10.04 with Kernel 2.6.32.59

Table 2: The configurations of the experiment machine.

5.2 System Call Emulation
There are several system calls whereby the system call adaption

technique is not applicable to resolve the conflict between the sys-
tem call service and the security requirement. Specifically, such
system calls are not designed for exchanging data. Instead, they
are used to introspect or manipulate the application by accessing
or modifying its internal state. For such system calls, we have to
emulate them in the transit module.

The fast user mutex system call (futex) allows an application to
wait for a value at a given address, and to wake up other applica-
tions waiting on a particular address. The handler of futex not only
directly accesses the process’s space, but also binds some informa-
tion (e.g., a hash bucket) with the address. Therefore, the system
call adaption technique described previous leads to the failure of
futex as the information is bound to an incorrect address.

Other system calls requiring emulation are for signal handling,
where the guest kernel needs to prepare a temporary execution con-
text for the application and transfers the execution control to a pre-
registered handler to handle the corresponding signal. The critical
security issue here is that the guest kernel needs to be authorized to
manipulate the application context. Such authorization may be ex-
ploited to reveal and tamper with the application data, e.g., involve
a function to send plain text outside.

CAVEAT Note that the ptrace system call is not allowed in App-
Shield since its working mechanism requires the guest OS to di-
rectly read the content of the user space, or to modify the data or
even code of the specific addresses, which cannot be reconciled
with the security requirements. We do not emulate this system call.

6. IMPLEMENTATION AND EVALUATION
We have implemented a prototype of AppShield on a PC with In-

tel i7-2600 (3.4GHZ), 3GB memory and Ubuntu 10.04 with kernel
2.6.32.59 (Table 2). The prototype consists of a dedicated hypervi-
sor [7] running on the bare-metal hardware, and a Linux loadable
module as the transit module. The code base of the hypervisor is
around 29K SLOC with 218KB binary size. The transit module
consists of around 2K SLOC, and the trusted shim is around 1K
SLOC.
Trusted Shim. We do not modify the source code of the ap-
plication or the shared libraries. Instead, we create the shim as a
wrapper of libc, and allow it to intercept the function calls that are
supposed to call the libc functions. Specifically, on the Linux sys-
tem, an application usually needs shared libraries at run-time, and
the dynamic linker loads those shared libraries in whatever order
it needs them. However, when LD_PRELOAD is set for a shared
library, it will be loaded before any other libraries, including the
libc library. Pre-loading a library means that its functions will be
used before others of the same name. We use this feature in our
implementation, saving the cost of the source code modification.

The trusted shim needs to do some initialization and prepara-
tion for the protection and the interception, such as allocating the
shared buffer and informing the hypervisor to protected the appli-
cation. However, those functions for intercepting system calls are

System Calls

Files
open, close, read, write, chdir

writev, access, fstat64, uname, poll, fcntl
statfs64, fstatfs64, getdents64, getdents

stat64, lseek, _llseek, getcwd, fchdir, ioctl

Network bind, listen, accept,
sendto, recvfrom, accept4, select

connect, send, recv, getsockname, socketcall
Memory mmap2, munmap, mremap, brk, mprotect

Process getpid, gettid, getgroups32, set_thread_area
getuid, geteuid, getgid, getegid
exit_groud, tgkill, getrlimit, exit

Time time, clock_gettime, gettimeofday
Others futex, rt_sigaction, rt_sigprocmask, sigaltstack

Table 3: Supported system calls.

passively invoked, meaning that they do not execute until the ap-
plication explicitly calls them. To solve this problem, we resort
to another feature - constructor function. A constructor function
marked with .init will be called by the dynamic linker when the li-
brary is loaded. The trusted shim in our implementation supports
56 most commonly used system calls as listed in Table 3 below.
Implementation Challenges. The techniques used in the sys-
tem call interception and parameter marshaling are not as trivial as
they seem. The operations of each system call and the related data
structures are rather complex. For example, socketcall supports
many possible operations on the selected file. The operation is de-
termined by a command parameter. There are up to 20 command
options, and the commands could impact the meanings of other pa-
rameters and invoke different data structures. Handling all these
variations requires both deep understanding and careful implemen-
tation. The challenges of implementing performance isolation are
related to the installation of interrupt handlers which involve spe-
cial steps (e.g., saving context) in the assembly code before invok-
ing the corresponding native C-code handler. The assembly code
needs to prepare the stack and registers (e.g., as parameters) for the
native handler. Since this piece of code usually breaks the stack
layout and alters the register values, those information have to be
stored properly right before executing the code and are restored by
the code right before invoking the C-code handler. All these oper-
ations are further complicated by the requirement that they should
be finished in an atomic way. Any interrupt during the operations
overwrites the saved context and/or breaks the stack layout.

6.1 Micro Benchmark
In the micro benchmark, we evaluate the cost of the address

space switch (Table 4). An address space switch event can be
divided into three parts: protection mode switch, context backup
and restoration. The protection mode switch includes a hypercall,
IDTR and EPT switching. The context backup consists of saving
registers (including general, flag, control registers, and MMX/SSE/AVX
registers) and creating a dummy context. The context restoration is
to load all the saved registers. The cost of address space switch is
relatively high, because it contains the costly memory access from
hypervisor space to guest space, i.e., inserting the return address
to the kernel stack. All three costs constitute the latency for the
system to handle a particular interrupt or exception.

The cost for a system call is composed of the address-space
switch cost and the parameter marshaling cost. The latter varies
with different system calls. For instance, there is no such cost for
getpid, while write involves a data copy. Thus, we do not pro-
vide individual evaluation. However, they are reflected in macro
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Operation Time (µs)
Out of Protected Address Space 1.72
Back to Protected Address Space 1.33

Context Backup 0.11
Context Restoration 0.08

Table 4: The micro-benchmark results for address space
switch.

benchmarking which evaluate the whole application performance
overhead.

6.2 Macro Benchmark
In macro benchmarking, we apply AppShield on several appli-

cations (including Apache, and ls, vim on Linux) as well as bench-
mark tools, and measure their performance effects on computation,
disk and network I/O.

6.2.1 AppShield Impacts on Performance
SPEC CINT2006 [11] is an industry-standard benchmark intended

for measuring the performance of the CPU and memory. We exe-
cuted SPEC CINT2006 in two setups: with and without AppShield
protection. Without AppShield protection, the performance over-
head is due to the virtualization itself. The full evaluation has been
reported in [7]. Generally, it only introduces 0.2% to 10.3% perfor-
mance overhead. In addition to the virtualization cost, AppShield
has 0.01% slowdown on average. The primary source of virtualiza-
tion overhead is VM exits due to interrupts and privileged instruc-
tions [15]. Figure 10 shows the results.

6.2.2 Computation centric programs
We measure the AppShield’s protection on computation-intensive

programs. In our experiment, we measure three encryption algo-
rithms (i.e., AES, RC4 and RSA) from OpenSSL 0.9.8k package.
We run these algorithms to encrypt/decrypt messages with differ-
ent lengths, from 32bytes to 2048 bytes. The measurement results
in Figure 11 shows that the protection effects on the computation
programs is quite small.
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Figure 11: The effects of AppShield protection on computation

6.2.3 Disk I/O centric programs
The disk I/O benchmark includes three sub-benchmarks to eval-

uate the overhead in disk reading, writing and copying. Disk I/O
benchmark reads/writes data from/to files with different sizes. In
our experiments, the file size is 64MB, and the read/write gran-
ularity is from 512B to 4MB. Experiments with a larger file and
a smaller buffer result in more system calls, and consequently in-
troduce more context switches. However, with the increasing of

the buffer size, the performance is better, which is also proved by
the experiment results in Figure 12. For example, the performance
overheads with 4KB-granularity are quite high, and have (81.91%,
71.84%, 74.57%) for (read, write, copy) respectively, while the per-
formance overhead with 256KB-granularity are very small, only
has (0.68%, 4.52%, 0.00%) for (read, write and copy) respectively.
Note that the overhead is mainly introduced by data copy and con-
text backup/restoration.
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Figure 12: The disk I/O Benchmark

6.2.4 Network I/O Benchmark
We measured the network performance with the Apache web

server. The server is configured in worker mode with one main pro-
cess and 20 threads. We run the standard ApacheBench included in
the Apache utility tools. We execute 10,000 web requests, at the
concurrency level of 100 to fetch the default index page. The web
client and the Apache server are in the same LAN. With AppShield,
the Apache web server serves requests with 1.20% overhead in
throughput, and about 3.05% overhead in waiting time and 1.86%
overhead in processing time. We also compare AppShield against
Overshadow[6] and InkTag [17] in Table 6. Note that Apache may
cache the frequently requested pages, without issuing disk I/O for
each request, which helps to reduce the overhead. We also compare
the network performances under Overshadow, InkTag and App-
Shield protections, The results that are listed in Table 6 also in-
dicate that our scheme have the lowest performance overhead and
latency on network I/O.

Linux AppShield Overhead
Throughput (req/s) 321 317 1%
Conn. Processing (ms) 160 163 2%
Conn. Waiting (ms) 131 135 3%

Table 5: The benchmark results of Apache performance

Overhead
OverShadow InkTag AppShield

Req. Throughput 100% 2% 1%
Conn. Latency − 13% 3%

Table 6: Network performance comparisons with Overshadow
and InkTag.
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Figure 10: SPECint 2006 Result. AppShield introduces insignificant slowdown.

7. RELATED WORK
There are several approaches proposed to protect application code

and data, and all of them attempted to remove the OS out of TCB
to provide a higher-assurance execution environment.

7.1 Self-contained Code Protection
Flicker [23] system built on the TPM-based Dynamic Root Of

Trust (DROT) technology can create an isolation environment to
protect a piece of code and data. Due to the limitation of the TPM,
the latency of the Flicker system is quite high. To minimize the
latency, TrustVisor [22] scheme are proposed. By leveraging virtu-
alization technology, TrustVisor virtualizes the physical TPM into
Virtual TPMs (VTPMs) and migrate them into hypervisor space.
Note that both schemes focus on the protection of a small piece of
code and data. Both schemes only protect self-contained code with
pre-defined inputs and outputs (e.g., inputs are the initial parame-
ters and outputs are the final returns), and they do not support the
protection with dynamic memory allocation and system calls. The
increasing of the protection scope, such as protecting the whole ap-
plication, may lead both schemes to failure. MiniBox [20] attempts
to extend the functionality of the self-contained code by combin-
ing virtualization-based memory isolation and user-space sandbox
(e.g., Google Native Client) techniques. But it still have several
limitations to support a whole legacy application, such as lack of
multi-thread support and limiting to sandbox-capable applications.

7.2 Whole Application Protection
Secure-Processor-Based Protection. AEGIS [29] and XOM
OS [21] are secure-processor based approaches that provide com-
partments to isolate one application from others. Both of them in-
cur poor computability since they require substantial modifications
on the OSes and applications. AEGIS [29] also provide an alterna-
tive implementation, which requires to build security into the OS.

Bastion [2] and SecureME [9] aim to deal with untrusted OS and
untrusted hardware attacks simultaneously with the assistance of a
secure processor. Bastion focuses on the protection of a security
module, while SecureME attempts to provide privacy and integrity
for data and code of the application. SecureME requires modifica-
tions on both OSes and applications.

In addition, a Processor-Measured Application Protection Ser-
vice P-MAPS [25] is announced by Intel, which is built upon Intel
TXT [18] and Intel VT [19] hardware capabilities. P-MAPS pro-
vides runtime isolation to protect standard applications with small
TCB. P-MAPS is quite similar to our scheme at a high level. How-
ever, the details of P-MAPS are unavailable for public to conduct
an in-depth comparison.

Intel Software Guard Extensions (SGX) technology [10] is able
to to protect an application by extending hardware processors. It
introduces Enclave - isolated memory of code and data within an
application’s address space. It enforces that only code executing
within the enclave can access data within the same enclave. Any
accesses even they are from privileged software or SMM will be
rejected. The exchanged data between processor cache and main
memory are encrypted. Thus, bus sniffing attack does not work.
Comparing with AppShield, Intel SGX could achieve stronger se-
curity (e.g., it is able to defend against the bus sniffing attack which
would work in AppShield). However, its performance would be
slower as it requires lots of encryptions and decryptions on data ex-
change between processor cache and main memory. Note that all
memory accesses in AppShield setting is native speed, without any
encryption or decryption.
Microkernel-Based Protection. EROS[26], Perseus[24], Mi-
crosoft’s NGSCB [13] and Nizza [16] are microkernel(or small ker-
nel) based solutions. They attempt to run commodity OS and un-
trusted applications in the low-assurance partitions, and run the ap-
plications with higher security requirements in the high-assurance
partitions, which are isolated and protected by the microkernel it-
self. However, all of them incur compatibility issue since they may
require splitting or even redesigning on the applications.
Virtualization-Based Protection. The approaches like TERRA
[14] and Proxos [31] are hypervisor-based trust partitioning sys-
tems. They protect applications by isolating them into trusted do-
mains with application-specific OSes. These systems incurs large
TCB since they include all secure domains inside. In addition, they
are still vulnerable once the application-specific OSes are compro-
mised.

OverShadow [6], CHAOS [5] and SP3 [34] aim to protect the
whole application execution against malicious application and OSes.
However, all of them need complex encryption and decryption op-
erations on the application data. Obviously, these additional costly
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cryptographic operations may reduce the performance and increase
the latency of the whole system, especially for the protected appli-
cation. In addition, none of them claims that they protect appli-
cations from the mapping reorder attack. Thus, the data and code
integrity may still be broken by potentially compromised OS. Ink-
Tag [17] is an approach that protects the whole application and ver-
ifies the OS behaviors through paraverfication technique. The par-
averfication technique needs to modify the source code of the ker-
nel, which is not always available. Thus, it may lead to the failure
of the protection on the close-source OSes, e.g., Windows. Virtual
Ghost [12] provides application security by providing ghost mem-
ory. However, it requires compiler instrumentation on kernel code
that is not always available for commodity platforms. In addition, it
requires complete control-flow integrity checking at runtime, which
is extremely hard to achieve in reality.
BIOS-Based Protection. Lockdown [33] system relies on a BIOS-
assisted lightweight hypervisor and an ACPI-based mechanism to
provide two switchable worlds - green world for trusted applica-
tions and red world for untrusted applications. Lockdown uses a
trusted path built upon LEDs to provide a verifiable protection. The
main drawback of the Lockdown system is the switch latency is too
high, roughly 40 seconds. SecureSwitch [30] system that is quite
similar to Lockdown also leverages a BIOS-assisted mechanism for
secure instantiation and management of trusted execution environ-
ments. The switch latency is relatively smaller, roughly 6 seconds.
Essentially, both approaches needs to shut down one world to run
another one, meaning that they can not simultaneously execute two
worlds. However, our AppShield allows the coexistence, meaning
the protected applications can simultaneously executed with the un-
trusted/unprotected applications in a system.

8. CONCLUSIONS
In this paper, we have presented the designed and implemen-

tation of AppShield, which reliably and flexibly protects critical
applications with complete isolation, rich functionalities and high
efficiency. The design of AppShield has taken into consideration
several newly identified threats where the kernel manipulates the
address mapping. We have implemented the prototype of App-
Shield with a small bare-metal hypervisor. We have evaluated the
performance impacts on CPU computation, disk I/O and network
I/O using micro and macro benchmarks. The experiments show
that AppShield is lightweight and efficient.
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