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Abstract 

We present. and implement a ,ciphertext-only algo- 
rithm to break Gifford’s cipher, a stream cipher de- 
signed in 1984 by David Gifford of MIT and used 
to encrypt New York Times and Associated Press 
wire reports. Applying linear algebra over finite 
fields, we exploit a time-space tradeoff to separately 
determine key segments derived from a decomposi- 
tion of the feedback function. This work, the first 
proposed attack on Gifford’s cipher, illustrates a 
powerful attack on stream ciphers and shows that 
Gifford’s cipher is ill-suited for encrypting broad- 
cast data in the MIT-based Boston Community In-, 
formation System (BCIS). 

Gifford’s cipher is a filter generator-a linear 
feedback shift register with nonlinear output. Our 
cryptanalytic problem is to determine the secret 
64-bit initial fill, which is changed for each news 
article. Representing the feedback function as a bi- 
nary matrix F, we decompose the vector space of 
register states into a direct sum of four F-invariant 
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subspaces determined from the primary rational 
canonical form of F. The attack separately com- 
putes segments of the key corresponding to these 
invariant subspaces, which have dimensions 24, 5, 
6, and 29, respectively. Because the dimension-24 
subspace corresponds to a nilpotent transforma- 
tion, Gifford’s cipher effectively uses only 40 bits 
of key. With a novel hashing technique, we search 
these 40 bits in only 227 steps. From the decompo- 
sition of F, we also compute the exact probability 
distribution of the leader and cycle lengths of all 
state sequences generated by Gifford’s cipher. 

Our attack runs in 227 steps and 218 bytes of 
memory, which is a significant shortcut over the 
264 steps required for a straightforward exhaustive 
search of all initial fills. Given ciphertext only from 
one encrypted article, our prototype implementa- 
tion running on a loosely-coupled network of eight 
Sparcstations finds the article key within approx- 
imately four hours on average. Exploiting a key- 
management flaw of the BCIS, we also compute at 
no additional cost the corresponding master key, 
used for one month to encrypt all article keys in 
the same news section. 

Keywords. Algorithms over finite fields, Boston 
Community Information System (BCIS), correla- 
tion attack, cryptanalysis, cryptography, cryptol- 
ogy, filter generators, Gifford’s cipher, linear al- 
gebra over GF( 2), li near feedback shift registers 
(LFSRs), matrix decompositions, primary rational 
canonical form, similar matrices, similarity trans- 
formations, stream ciphers. 
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1 Introduction 

In 1982-84, David K. Gifford [la, 13, 141 and 
his research group at MIT designed and imple- 
mented a prototype system for transmitting up- 
to-the-minute New York Times and Associated 
Press wire reports to test subscribers in the Boston 
metropolitan area. Known as the Boston Commu- 
nity Information System (BCIS), Gifford’s system 
broadcast information streams on a subcarrier of 
MIT’s FM radio station WMBR.’ Each subscriber 
received and processed the streams using an IBM 
personal computer equipped with special-purpose 
receiver hardware. To protect against unautho- 
rized access to the streams, and to be able to deny 
service to nonpaying customers, Gifford encrypted 
each stream. For this application, he devised and 
used a new stream cipher, which we shall call Gif- 
ford’s cipher. The BCIS operated on an experimen- 
tal basis from April 1984 through January 1988, 
providing a model for future community informa- 
tion systems. In this paper we analyze the security 
of Gifford’s cipher, which had remained unbroken 
for almost a decade. 

Gifford’s cipher is a filter generator. As shown in 
Figure 1, this commonly-used type of cipher com- 
prises a shift register, a linear feedback function, 
and a nonlinear output function. At each itera- 
tion, the feedback function is applied to the con- 
tents of the shift register to compute a feedback 
byte, which is shifted into the register. The output 
function is applied to four bytes of the shift register 
to produce a keystream byte. To encrypt a stream 
of plaintext bytes, each plaintext byte is exclusive- 
ORed (XORed) with a corresponding keystream 
byte to yield a ciphertext byte. The secret key is 
the 64-bit initial fill of the register. We present a 
new algorithm for computing the initial fill from 
ciphertext alone. 

Several factors motivate us to study Gifford’s ci- 
pher. First, since Gifford proposed his cipher for 
use in broadcast communications, it is important 
to know if this cipher might compromise valuable 
data. Second, we would like to further the under- 
standing of filter generators so that system engi- 
neers can make prudent decisions regarding their 

‘BCIS information was represented as an FM signal, su- 
perimposed over the primary WMBR signal. Receiver hard- 
ware separated the signals. 

implementation and appropriate use. Filter gener- 
ators are interesting in part because they provide 
fast bulk encryption and because they can be easily 
implemented with limited resources. Third, Gif- 
ford’s cipher provides a practical context in which 
to explore the general theme of exploiting algebraic 
decompositions in cryptanalysis. 

Our goal is to evaluate the overall effectiveness 
of Gifford’s cipher in protecting broadcast data in 
the BCIS, and more generally, to study the security 
of filter generators. Exploiting a decomposition of 
the feedback matrix F, we point out several ways 
to break Gifford’s cipher. Our main result is the 
design and implementation of one of these meth- 
ods, which computes the initial fill given cipher- 
text alone from one encrypted news article. This 
method applies a time-space tradeoff and runs in 
227 steps using 2r8 bytes of memory; it does not re- 
quire any statistical weaknesses of the output func- 
tion. By contrast, our related statistical attack [6] 
on filter generators uses less space but assumes a 
slight statistical weakness in the output function; 
this alternate attack generalizes Siegenthaler’s [35] 
correlation attack and runs in 22g steps, or more 
generally 2d steps, where d is the dimension of the 
largest subspace in any decomposition of the space 
of register states into a direct sum of F-invariant 
subspaces. Combining these two ideas achieves 
even faster attacks. 

This paper explains in detail how to break a real 
cipher. The ingenuity and novelty of this work lies 
in its effective application of algorithmic and math- 
ematical concepts-especially linear algebra over 
the finite field GF(2)-in a practical cryptanalytic 
context. Although we focus on Gifford’s cipher, our 
methods are general in nature. 

Previous Work 

Although much is known about shift registers, we 
are aware of only five references to filter genera- 
tors: Rueppel [34, pp. 83-931 outlines an applica- 
tion of Siegenthaler’s [35] correlation attack to fil- 
ter generators. Siegenthaler’s attack is useful, but 
Rueppel’s application of it appears not to be useful 
against Gifford’s cipher. Rueppel [33, Ch. 51 also 
presents a framework in which to reason about fil- 
ter generators using the algebraic normal form of 
the nonlinear output function. In their introduc- 
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Plaintext -T-e Ciphertext 

Discard 

Figure 1: Gifford’s stream cipher comprises an 8-byte shift register, a linear feedback function f : Zi” -+ Z:“, and 
a nonlinear output function h. At each iteration, f computes a new register state as follows: A feedback byte is 
computed and shifted into the register from the left. Byte Br is discarded, and bytes Bs through Be are shifted one 
byte to the right. The output function h computes an 8-bit keybyte from register bytes Bc, Bz, B4, and B7. The 
secret key is the initial fill of the register. Gifford’s cipher generates a keybyte stream, which is XORed with the 
plaintext stream to produce a ciphertext stream. In this figure, + denotes XOR. 

tory survey on stream ciphers, Zeng, Yang, Wei, 
and Rao [37] briefly review how the linear syn- 
drome attack can be applied to filter generators; 
and Dawson [7] states a few basic properties of fil- 
ter generators. In addition, Key [23] sketches by 
example a method for analyzing the periodic prop- 
erties of the keystream of certain filter generators. 

For the classical theory of shift register cryp- 
tosystems, there are expositions by Beker and 
Piper [l, Ch. 51, Gill [15], Golomb [18], Rhee [31, 
Ch. 41, Ronse [32], and Rueppel [33]. A vari- 
ety of attacks on stream ciphers have been pub- 
lished, including statistical attacks by Dawson and 
Clark [8], GoliC and MihaljeviC [16], Gollmann and 
Chambers [17], Klapper [24], Meier and Stafel- 
bath [29], and Siegenthaler [35]. Many classical 
results are proven in Peterson and Weldon [30] and 
Berlekamp [2]. For a general survey of cryptana- 
lytic techniques, see Brickell and Odlyzko [3]. 

These references, however, do not adequately ad- 
dress the algorithmic aspects of efficiently applying 
linear algebra (including matrix decompositions) 
to cryptanalysis. Moreover, we found no previ- 
ous work that describes in complete practical detail 
how to break any stream cipher. 

2 Gifford’s Cipher 

Gifford’s cipher encrypts each news article under a 
separately chosen 64-bit article key SO. Each arti- 
cle is a sequence of 8-bit bytes PO, PI,. . . , PN-~; 
typically, N Z 10,000. As shown in Figure 1, 
Gifford’s cipher encrypts each article byte-by-byte, 
XORing each byte of plaintext with a correspond- 
ing keystream byte. Our first two steps in analyz- 
ing the cipher were to determine its exact opera- 
tion and to choose a suitable mathematical model 
in which to reason about its properties. Since Gif- 
ford’s [13, pp. 464-4651 published description of his 
cipher is incomplete, we started with source code 
from the BCIS. 

The keystream bytes are computed by applying 
a nonlinear output function h to the contents of 
a 64-bit shift register, which for efficiency is im- 
plemented as a sequence of eight bytes. Specifi- 
cally, for each 0 < t < N, the t th byte of cipher- 
text is Ct = Pt $ Icl, where st = ft(su) is the 
t th state of the shift register; Kt = h(st) is the 
t th keystream byte; and $ denotes XOR. Here, 
2s = {O,l}; f : Z$4 + Zy is the feedback function 
which is linear over the two-element Galois field 
GF(2); and h : Zi4 -* Zi is the output function 
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which is nonlinear over GF(2). 
Each article key was encrypted by XOR with 

the master key. Therefore, compromise of any arti- 
cle key also compromised the corresponding master 
key, which remained valid for one month. 

2.1 The Linear Feedback Function f 

For any register state st = (Bu, Br,. . ., Br), the 
function f computes the next state of the regis- 

ter as f(%) = (fnew(BO, Bl, B7), BOY &, . . . , B6), 

where the new feedback byte is computed by the 
function fnew : I&j4 -, Z;. The feedback byte is 
the XOR of bytes Bu, Br, and B7, with byte Br 
“sticky’‘-shifted one bit to the right, and with byte 
B7 zero-fill-shifted one bit to the left. Thus, 

fnew(~o~ Bl, B7) = Bo @ e; u%)) CB Wl (B7)), 

(1) 
where >>T and <<I denote, respectively, the 
sticky right-shift and zero-fill left-shift operations. 
Specifically, for any byte B = (x0,x1,. . .,x7), 
>T (B) = (x0,x0,x1,x2,. . .,x6) and <<I (B) = 
(G,22r..., 26,27,0). Concerning Gifford’s deci- 
sion to tap bytes Bu, BI, and B7, see Section 6.2. 

The bit-shifting of bytes B1 and B7 complicates 
the feedback function in two respects: First, this 
bit-shifting causes the function fnew to be non- 
linear over bytes--i.e. over GF(2’). Second, the 
bit-shifting causes f to be (slightly) noninvertible. 
Specifically, f loses one bit-the high-order (left- 
most) bit of byte B7. 

2.2 The Nonlinear Output Function h 

The nonlinear output function h extracts an 8-bit 
byte from the product of two 16-bit integers derived 
from shift register bytes Bo, B2, B4, and B7. For 
any register state s = (Bo, B1, . . ., B7), 

h(s) = ExtractByte((BullBz) * (B411B,)) 

= (B~B~+BoB~+ [B~B7/256J) mod 256, (2) 

where II denotes concatenation; * denotes integer 
multiplication; and the function Extract-Byte : 
Zi2 + Z; extracts the third byte from the left of 
any 32-bit number. It is easy to verify that h is 
nonlinear, both over GF(2) and over GF(28).2 

2Gifford’s inspiration for h came from a well-known 1946 

3 Decomposition of the 
Feedback Function 

Our attack exploits a decomposition of the feed- 
back function f to search segments of the key sep- 
arately. To begin, we view the state space S = Zp 
as a vector space over GF(2), and we view f as a 
linear transformation of S. We represent the feed- 
back function f as a binary matrix F and work with 
its primary rational canonical form R. The binary 
matrix R is a block diagonal matrix, similar to F. 
This decomposition of F induces a decomposition 
of the state space into a direct sum of F-invariant 
subspaces. In a one-time precomputation, we find 
the primary rational canonical form R of F and 
an invertible binary similarity matrix P such that 
F = P-IRP. 

3.1 The Feedback Matrix F 

From Equation 1, we represent the feedback func- 
tion f as a 64 x 64 binary matrix 

I Fo FI 0 F7 
\ 

F= 
I56,56 

(3) 

where Fo, Fl, F7 are certain 8 x 8 blocks and Iss,ss 
is a 56 x 56 identity matrix. The blocks Fo, Fl, 
F7 calculate the feedback byte; 46,~s describes the 
shifting of bytes Bo through Bs. Because byte B1 
is sticky-shifted, the upper-left bit of block Fl is 
one (see Section 6.1). 

3.2 The Characteristic and Minimal 
Polynomials of F and Their Factors 

To compute R, it is helpful to know the character- 
istic and minimal polynomials of F and their irre- 
ducible factors. The characteristic polynomial of F 
is the degree 64 polynomial pi = det(F - x1), 
where I is the 64 x 64 identity matrix. The min- 
imal polynomial of F, denoted by mF(x), is the 
polynomial of smallest degree over 22 such that 
mF(F) = 0.3 

idea of John von Neumann (see Knuth [25, pp. 3-41). 
3For a review of linear algebra, see Hoffman and 

Kunze [20], Hungerford [21], and Jacob [22]. 
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Using the numerical math package M&lab, we 
computed 

pF(X) = X64+ i??2+ x6’+ x6’+ x5’+ x5’+ .57+ X55 

+xs4+ x52+ x50+ x48+ x44+ x40+ x24 (4) 

by working over Iw and accepting the modulo 2 
values of the coefficients.4 Intuitively, P=(X) en- 
codes all of the information of F in a convenient 
algebraic form. Using Mucsyma [27], we factored 
pi into a product of irreducible polynomials 

PF(X) = P~~(x)P~(x)P~(x)P~(x), where 

PO(Z) = 5, (5) 

PI(X) = x5 f x3 t x2 t 2 + 1, (6) 
pz(x) = x6 + x5 t x4 + x2 + 1, (7) 
p3(2)= x2g+x28tx26tx22+x2o+x1gtx18+x16+x14 

+x13tz10+xg+x71+x5+~4tx3t~2+x+1. (8) 

For Gifford’s cipher, mu = pi, which 
fact simplifies some of the theory. Let mu = 
ma(x) ml(x) n-42) m3(xj = pi, where m;(z) = 
p:'(x), for 0 5 i 5 3, and to = 24 and tl = t2 = 
t3 = 1. The prime-power polynomials m;(z) are 
called the elementary divisors of F. 

3.3 An Invariant Decomposition 
of the State Space 

The elementary divisors of F decompose the state 
space into a direct sum of four F-invariant sub- 
spaces S = VO $ VI $ V2 $ Vs. By the Invari- 
ant Subspace Decomposition Theorem [22, p. 3901, 
m;(z) is the minimal polynomial of FIVi, and Vi = 

ker(m;(F)), for 0 < i 5 3. Furthermore, since 
mF(X) = pi, the Cyclic Subspace Decomposi- 
tion Theorem [21, p. 3561 implies that each Vi is 
F-cycli~.~ 

4We also tried using the symbolic math packages Mathe- 
matica and Macsyma. We found Mathematics poorly suited 
for doing arithmetic over &, and Macsyma ran too slowly. 

‘We say that v E V is a T-cyclic vector for V if and only 
if the set {v, T(v), . . . ,T”-l(v)) forms a basis of V. We say 
that V is a T-cyclic uector space if and only if V has a cyclic 
vector. 

3.4 The Primary Rational Canonical 
Form R of F 

The primury rational canonical form (RCF) for F, 
denoted RCF(F), is a block-diagonal matrix corre- 
sponding to the F-cyclic decomposition of the state 
space given in Section 3.3. 

For each 0 5 i < 3, let m;(z) = p:‘(z) = 
Pi + CyLi’ a;jxj be the minimal polynomial of 
FIV;, as defined in Section 3.2, where n; is the de- 
gree of mi(x), and aij is the jth (binary) coefficient 
of m;(x). Thus, no = 24, n1 = 5, n2 = 6, and 
723 = 29. 

By definition, the RCF for F is the 64 x 64 block- 
diagonal matrix 

/ Ro \ 

where for each 0 < i 5 3, block R; is the companion 
matrix [20, p. 2301 

0 0 . . . 0 a;rJ 

1 0 . . . 0 (Y;1 
. 

(10) 

. . . . . 

Each companion matrix Ri is a lower-diagonal ma- 
trix, whose last column consists of the coefficients 
in the associated minimal polynomial mi(x). The 
matrix R is a canonical representation of the equiv- 
alence class of all matrices similar to F; it is unique 
up to the order of the blocks. 

Block R,-J plays a special role because it repre- 
sents a nilpotent transformation with Ri4 = 0. To 
see that Ro is nilpotent, observe that the only ones 
in Ro are along the lower diagonal, which happens 
whenever the corresponding elementary divisor is 
a power of x. Since the nilpotent block determines 
the leader length of any state sequence, the maxi- 
mum leader length of any state sequence generated 
by Gifford’s cipher is 24 states. 

3.5 A Similarity Transformation P 
from F to R 

A similarity matrix from F to R is any invertible 
binary matrix P such that F = P-l RP. Our at- 
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tack uses such a matrix to move between the orig- 
inal and decomposed state spaces, as needed to 
check any candidate key segments. We computed 
a similarity matrix using our own 5g3-step algo- 
rithm 15, 61, which runs faster than the 646-step 
algorithm suggested by Gill [15]. Our algorithm 
constructs the columns of P-r as powers of cyclic 
vectors for each of the blocks. 

4 The Probability Distribution 
of Leader and Cycle Lengths 

For each initial fill se E S, Gifford’s cipher com- 
putes an eventually periodic sequence of keybytes 
{lit}Eo. Each sequence consists of a leader and 
a cycle, where the leader is the initial nonperiodic 
part, and the cycle is the periodic part. Although 
long periods do not guarantee high security, short 
periods create serious weaknesses. Therefore, it is 
important to know the probability distribution of 
the leader and cycle lengths of the keystream. Sim- 
ilarly, it is important to understand the related pe- 
riodic properties of the underlying sequence of reg- 
ister states {st}zo. 

From the exponents of the elementary divisors 
of F, we compute the exact probability distribution 
of the leader and cycle lengths of the state stream. 
Excluding the degenerate se = 0, leader lengths 
range from 0 to 24 states, and cycle lengths range 
from 21 to 349,502,963,061 M 3.5 x 1011 states. 

The leader and cycle lengths of the state stream 
are upper bounds on the leader and cycle lengths 
of the keystream. It is possible, however, that 
the keystream repeats before the state stream 
repeats-though if this happens, the length of the 
keystream cycle must properly divide the length 
of the corresponding state stream cycle. A one- 
day computer search found no initial fill whose 
keystream repeats before the state stream repeats. 

4.1 Leaders, Cycles, and 
Maximum Periods 

For any initial fill SO E S, let Xj(su) and nj(se) 
denote, respectively, the leader length and cy- 
cle length of the eventually periodic sequence 
{st}zo. Thus, rj(se) = min{p E N : st+p = 
st for all sufficiently large t E N}. If Xj(se) = 0, 
then we say that the sequence is strictly periodic. 

Also, let Xi and R; denote, respectively, the 
maximum leader and cycle lengths over all initial 
fills. Thus, r]ri = max{xj(s) : s E S} and 
Xi = max{Xj(s) : s E S}. Note that ~rj(O) = 1 
and I$ 5 264 - 1. 

4.2 Periodic Properties of F 

For any su E S, rj(su) can be computed in terms of 
the exponents of the elementary divisors of F that 
generate the subspace to which se belongs. Let 
f(z) E Z,[zc]. The exponent of f, denoted exp(f), 
is the least positive integer T such that f(z) ] zr - 1. 
If there is no such integer T, we say that the expo- 
nent is 0. Theorem 1 states a relationship between 
exponents and periods. 

Theorem 1. Let S = VO @I VI $ Vz $ V3 be the 
direct sum decomposition of the state space of Gif- 
ford’s cipher given in Section 3.3. For 0 5 i 5 

3, let m;(x) = pii (x) be the elementary divisors 
of F given in Section 3.2, and let e; = exp(mi). 
Also, for each 1 5 i 5 3, define p; = min(2j : 
j E W and 2j 2 ti}, and let p = max{/3r,/32,Ps}. 
Let v = (~0, VI, 712, ~3) E S. For each 1 5 i < 3, it 
is true that: (1) If vi # 0, then Tf(vi) = Piei = ei. 

(2) Tj(V) = /YlCItl{e; : vi # 0 and 1 2 i 5 3}, 
where p’ = max{P; : vi # 0 and 1 5 i 5 3) = 
1. (3)7r?= Plcm(el,e2,e3) = lcm(el,e2,e3). 

L~‘_“:;“‘v) = F24(v) E V, $ V, $ I$, and (5) Xi = 
0 - 

Proof. First, observe that to = 24, tl = t2 = t3 = 
1, and p = /3r = p, = p3 = 1. The theorem follows 
from Section 3.3 and from Berlekamp [2, pp. 150- 
1511. H 

4.3 Exponents of 
Divisors of F 

To interpret Theorem 

the Elementary 

1 numerically, we need to 
compute the exponents of the elementary divisors 
of F. Any irreducible polynomial f(z) of degree n 
is said to be a primitive polynomial if and only if 
exp( f) = 2n - 1. Any n-stage shift register achieves 
the maximum period of 2” - 1 states if and only if 
its characteristic polynomial is primitive [l, Ch. 51. 

Proposition 1. For each 0 5 i 5 3, let e; = 
exp(mi) be the exponent of the elementary divisor 
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mi(x) of F defined in Section 3.2. It a’s true that 
eo = 0, el = 31, e2 = 21, and e3 = 22g - 1. Conse- 
quently, ml(x) and m3(x) are primitive polynomi- 

als, but ma(x) and ms(x) are not primitive. 

Proof. See Appendix A. This calculation requires 
some work. n 

4.4 An Exact Characterization of 
Leaders and Cycles 

We apply Theorem 1 and Proposition 1 to charac- 
terize exactly the set of eventually periodic state 
sequences that can be generated by Gifford’s ci- 
pher. Corollary 1 computes the maximum period, 
which depends only on subspaces VI, V-2, and Vs. 
Subspace Vi affects only the leader. The maximum 
leader length is Xi = 24 states (see Section 3.4). 

@orollary 1. rri = 349,502,963,061. 

Proof. By Theorem 1 and Proposition 1, 
7rj = lcm(31,21,22g - 1) = 31 . 21(22g - 1) = 
349,502,963,061, since the exponents 31, 21, 22g - 
1 are relatively prime. n 

Each initial fill SO determines four subfills Psn = 
(do, dl, d,, ds) in our invariant decomposition of S. 
These subfills belong to the invariant subspaces Vo, 
VI, V2, V3 of dimensions 24, 5, 6, 29, respectively. 
There are eight possible periods 0,21,31, 22g- 1,21. 
31, 21.22g-1, 31.22g-1, 21.31.22g-1, corresponding 
to the eight possible ways in which up to three of 
the subfills di, d2, and ds can be zero. In addition, 
cycles achieving these periods can occur with or 
without a leader, depending on whether subfill do 
is zero. Thus, there are 16 equivalence classes of 
initial fills. For example, a 31-state cycle is created 
whenever dr # 0 and d2 = d3 = 0. Similarly, a 
maximum-length cycle occurs whenever dld2d3 # 
0. 

The probability of generating any one of these 
16 possible equivalence classes of sequence lengths 
can be computed from the dimension of the sub- 
space U that generates the given sequence length: 
the probability that a randomly chosen initial fill 
lands in U is ]U] /IS]. For example, the probabil- 
ity of generating a length 31 cycle (with nonzero 
leader) is IV: $ V;‘I/lSl = (224 - l)(a5 - 1)/264 M 
z-(64-29) = 2-35 , where Vo’ and VI+ denote the set 
of nonzero elements in VO and VI, respectively. 

The shortest cycle, however, comprises 21 and 
not 31 states. For dimension-6 subspace Vg, ele- 
mentary divisor mz(x) is not primitive and gen- 
erates one of three submaximal-length cycles of 
length 21. By contrast, because elementary divi- 
sors ml(x) and m3(x) are primitive, they always 
generate maximal-length cycles of lengths 25 - 1 = 
31 and 22g - 1, respectively. 

With very high probability (> 0.9998) the cycle 
will contain at least 22g - 1 M 5.4. lo8 states, and 
the maximum period 7ri M 3.5 . 1Or1 occurs with 
probability approximately 0.9536. Yet with non- 
negligible probability of 2-r1 M 0.0005 = 0.05%, 
the cycle length is only 22g - 1 < 10’. This fact 
partially contradicts Gifford’s [13, p. 4651 exper- 
imental finding that “the period has consistently 
been found to exceed 1Og.“6 

5 Attacks 

The decomposition of the state space into a direct 
sum of invariant subspaces makes possible a va- 
riety of cryptanalytic attacks on filter generators 
that search segments of the key corresponding to 
this decomposition. In this section, we outline four 
such ciphertext-only attacks applied to Gifford’s ci- 
pher: (1) a simple 240 -step attack based on exhaus- 
tive search, (2) our novel time-space tradeoff at- 
tack, which uses 227 steps and 2” bytes of memory, 
(3) a 22g-step correlation attack that adapts a cor- 
relation procedure of Siegenthaler [35], and (4) an 
application of Hellman’s [19] time-space tradeoff, 
which requires a short chosen-plaintext and a 240- 
step precomputation. 

These attacks have differing advantages and re- 
quirements. Attack (3) requires a slight statistical 
weakness in the output function; the other attacks 
require no such weakness. Attacks (2) and (3) re- 
quire ciphertext from one news article (a few thou- 
sand bytes); attack (1) requires only seven bytes of 
ciphertext from ASCII-encoded English; and at- 
tack (4) requires only approximately one dozen 
such bytes of ciphertext. We implement our time- 
space tradeoff to demonstrate one effective method 
for breaking Gifford’s cipher. 

‘Gifford [13, p. 4651 did not specify whether his exper- 
iments looked for cycles in the keystream or in the state 
stream. 

204 



Keybyte 

Figure 2: A decomposition of Gifford’s cipher. Our attacks search subfills corresponding to the invariant subspaces 
of dimensions 24, 5, 6, and 29 induced by the primary rational canonical decomposition R of the feedback matrix F. 
A similarity transformation P satisfying F = P-‘RP maps each register fill s from the original world into four 
subfills Ps = (do, dl, dz, da) in the decomposed world. 

Combining attacks (2) and (3) yields an even 
faster attack: for example, the cryptanalyst could 
first search subspaces VI and V2 with attack (3), 
and then search subspace V3 with attack (2). This 
combined attack would require only approximately 
216 steps on average. For our implementation, we 
estimate this attack would run in less than one 
minute using eight Sparcstations. 

5.1 Overview of Attacks 

As shown in Figure 2, the matrix R decomposes 
the 64-bit shift register into four subregisters Ru, 
RI, R2, Ra, of lengths 24,5,6, and 29 bits, respec- 
tively. The similarity transformation P maps each 
register state into a corresponding sequence of four 
subregister states; thus, the key SO can be attacked 
in the four segments PSO = (do, dl, dz,ds). Once 
any segment is known at any time, it is known for 
all future time: for each 0 5 t < N, it is true that 
Pst = Pft(so) = (Rkdo, RidI, Ridz, Rids), where 
Ro, RI, R2, R3 are the four blocks of R. Fur- 

thermore, because Ro is nilpotent, for all t 2 24, 

Rbdo = 0. Therefore, for all practical purposes, 
Gifford’s cipher uses only 5 + 6 + 29 = 40 bits of 
key. Moreover, since RI, R2, and R3 are nonsin- 
gular, knowing the state of R; for any 1 5 i 2 3 
determines all previous states of R;. 

Our attacks check candidate subfills in different 
ways. The exhaustive search attack maps an entire 
vector of candidate subfills back to.the main regis- 
ter and checks if the resulting candidate plaintext 
appears valid [9, lo]; our time-space tradeoff op- 
timizes this idea by hashing into a table derived 
from tbe ciphertext. Our adaptation of Siegen- 
thaler’s correlation attack separately checks each 
subfill by correlating its state sequence with the 
ciphertext stream. Finally, our application of Hell- 
man’s time-space tradeoff checks candidate sub- 
fills using precomputed tables based on a sequence 
of chosen-plaintext (we suggest using the seven- 
character string “.UUTheU”, which appeared in ev- 
ery news report that we examined). For more de- 
tails, see [5, 61. 
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5.2 Our Time-Space Tradeoff 

Given N = 2” bytes of ciphertext from one news 
article, we determine the key su by searching over 
the initial fills of subregisters RI, R2, and Rs. Our 
attack exploits two tricks to carry out this search in 
only 227 steps. First, we recover the high-order bit 
of each keystream byte because Gifford represented 
each plaintext byte in extended 8-bit ASCII, with 
the leading bit 0. We check each candidate key 
against these bits. Second, instead of searching 
over all 22g initial states of Rs? we search over only 
22g-N states of Rs by checking every Nth state of 
Rs. Using a hashing technique, we check each can- 
didate fill in expected constant time against all pos- 
sible N positions of the ciphertext. This method 
works because every nondegenerate state sequence 
for Tcg traverses the same cycle of 22g - 1 states, 
from different initial states. As an optimization, we 
precompute a table T3 of every Nth state in this 
cycle. With N = 213 = 8192, the total expected 
time for this search is 25+622g-13 = 227 steps. 

The space usage is controlled by a parameter 1, 
which also affects the collision and false-alarm 
rates. The hash table has 2’ slots (each of ap- 
proximately [2”-‘1 items), and the precomputed 
table T3 requires 22g-n entries (each of four bytes). 
Each address u of the hash table points to a list of 
all positions in the ciphertext whose 1 consecutive. 
high-order bits match the bit string u. We select 
n = 13 and 1 = 16, for which our ciphertext-only 
attack runs in 240--n = 227 steps on average and 
uses 1 .2’ + 4 . 22g-n z 2” bytes of memory. 

If the initial subfills for Rr and R2 are already 
known (say, by using a correlation attack), then 
our algorithm would run 211 times faster. 

5.3 Experimental Results 

We implemented our time-space tradeoff attack on 
a loosely-coupled network of eight Sparcstations. 
On average, it takes approximately four hours to 
recover an initial fill from ciphertext alone. In- 
cluding our library of linear algebra operations over 
GF(2), our cryptanalytic engine comprises approx- 
imately 2,500 lines of C code. 

6 Discussion 

The feedback function bit-shifts bytes Br and B7, 
using a sticky right-shift and a zero-fill left-shift, 
as explained in Section 2.1. We now analyze the 
effect of these operations on the period of F. 

6.1 Sticky versus Non-Sticky 
Bit-Shifting 

If the sticky shift of byte Br were replaced by 
a zero-fill shift, the feedback matrix would differ 
from F in exactly one bit: the upper-left bit of 
block Fl would be zero rather than one (see Sec- 
tion 3.1). Let F’ denote this modified matrix. Us- 
ing methods described in Section 3.2, we computed 
the characteristic polynomial of F’ to be pit = 
264 + $6 + 254 + 252 + 250 + 548 + 244 + 240 + $4 = 

[x12(x2 + x + 1)(23 t z t l)(P t x3 t 1)(x9 t z8 t 
x7 + x5 $ x4 $ x3 + 1)]2. 

The maximum period of the state sequences gen- 
erated by this variation of Gifford’s cipher is the 
exponent of pFf, which we shall now compute. The 
only non-primitive irreducible factor in PF!(z) is 
x6 + x3 + 1, whose exponent is 9. As for the other 
polynomials, exp(x2t2+1) = 3,exp(x3tx+1) = 7 
and exp(x’ + x8 + x7 + x5 + x4 + x3 •t 1) = 511. 
By Theorem 1, eXp(ppl) = 2 . lcm(3,7,9,511) = 
9,198. Remarkably, changing one bit in the feed- 
back matrix reduces the maximum period of Gif- 
ford’s cipher from 349,502,963,061 states to only 
9,198 states. This calculation is instructive be- 
cause, originally, Gifford left to the compiler the 
decision whether to use a zero-fill right-shift versus 
a sticky right-shift. 

6.2 Byte-Shifting Only 

Regarding his choice for f to depend solely on bytes 
Bu, Br, and Br, Gifford [13, p. 4651 explained that 
“the tap positions were chosen to yield the longest 
period that could be obtained” if the new byte were 
computed as Be@.& $Br. We prove that Gifford’s 
choice of taps does not achieve this objective. 

Without any bit-shifting, the feedback function 
would be linear over GF(2’), and its characteristic 
polynomial (acting on bytes) would be g(x) = x8+ 
xr+xst1= (x+1)(xrtx~+x4+xs+xz+x+1). 
Since exp(x7 + x5 +x4 +x3 + z2 i-x + 1) = 127, the 
longest state sequence produced by this simplified 
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feedback function would be only 127 states (not 
28 - 1 = 255 states). 

7 Conclusion 

We have concretely demonstrated one effective 
method for breaking Gifford’s cipher: given cipher- 
text from one news article, within approximately 
four hours on average, our implementation recov- 
ers the secret article key and corresponding master 
key used for one month. Thus, Gifford’s cipher is 
not suitable for its intended use in broadcast en- 
cryption. Moreover, our work introduces a new 
powerful attack on filter generators, illustrates the 
power of algebraic decompositions, and provides an 
instructive detailed example of how to apply linear 
algebra over GF( 2) in cryptanalysis. 

To improve Gifford’s cipher, it would be desir- 

able to use a longer register and to use more care- 
fully chosen tap positions than did Gifford. In 
addition, it would be helpful to add more com- 
plexity to the encryption process. For example, 
some cryptographers incorporate nonlinear feed- 
back functions into their designs. But these sim- 

ple modifications do not guarantee security. As 
we show, what appears to be an intractable crypt- 
analytic problem can be computationally feasible 
when attacked with appropriate mathematical ma- 
chinery. 
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Appendix A: 
Proof of Proposition 1 

Proposition 1 computes the exponents of the ele- 
mentary divisors of F. To prove this proposition, it 
is useful to review some basic concepts from finite 
field theory, including the notion of a cyclotomic 
polynomial. 

Let n be any positive integer. The nth roots of 

unity are the roots of the polynomial zn - 1. These 
roots form a multiplicative cyclic group. If C is an 
nth root of unity that generates this group, then 6 
is said to be a primitive n th root of unity. The nth 

cyclotomic polynomial C,(z) is the manic polyno- 
mial C,(z) = I& (z - c;), where <r, &, . . . , <r are 
the distinct primitive n*’ roots of unity. 

Cyclotomic polynomials are useful in computing 
exponents. Let f(z) E &[z] be any irreducible 
polynomial. Since all roots of f(s) over 22 have 
the same order in any extension field of izz, it is 
true that exp(f) is the order of its roots in that 
extension field. Therefore, if f(z) divides Ck(z) 
for some cyclotomic polynomial Ck(z), it follows 
that exp(f) = k. 

To prove Proposition 1, we also apply the follow- 
ing two well-known lemmas. 
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Lemma 1. Let n be any positive integer. If 

s = U(x) : f(x) is an irreducible polynomial 
over 22 of degree dividing n}, then x2” + x = 

n,,s f(x)* 
Proof. See Berlekamp [2, p. 1031. n 

Lemma 2. Let n E iZ+ and let Cd(x) be the dth 
cyclotomic polynomial over Z2. If 2 j’ n, then 2” + 

1 = l-L+ Cd(X). 
Proof. See Berlekamp [2, p. 911. n 

Proposition 1. For each 0 5 i 5 3, let ei = 

exp(m;) be the exponent of the elementary divisor 
m;(x) of F defined in Section 3.2. It is true that 
eo = 0, el = 31, e2 = 21, and e3 = 22g - 1. Conse- 
quently, ml(x) and m3(x) are primitive polynomi- 
als, but ma(x) and m2(x) are not primitive. 

Proof. We compute the exponent of each elemen- 
tary divisor separately. 

mu(x) is the polynomial x24. Since x does not 
divide xn - 1 for any positive integer n, it follows 
that ee = 0 and ma(x) is not primitive. 

ml(x) is a degree 5 irreducible polynomial. We 
find the unique cyclotomic polynomial C,(x) such 
that ml divides Ck(x) to establish that er = k. 

By Lemma 1, ml divides x25 + x = x(x31 + 1); 
and by Lemma 2, x31 + 1 = C,(x) Csr(x). Because 
Cl(x) = x+ 1, it follows that ml(x) divides Csr(x). 
Therefore, el = 31 and ml(x) is primitive. 

74x) is a degree 6 irreducible polynomial; there- 
fore, e2 5 26 - 1 = 63. By Lemma 2, x63 + 1 = 

cl(X) c3(X) c,(X) c9(X) c21(x) c63w It is easy 

to verify that m2(x) divides Czr(x), but m(x) does 
not divide c63(5), C,(x), or CT(X). Hence, e2 = 21 
and m2(x) is not primitive. 

ma(x) is a degree d = 22g - 1 polynomial; there- 
fore, es]d. We will prove that es = d by show- 
ing that ma(x) is primitive. Let QI be any root of 
ma(x). To prove that ma(x) is primitive, it suffices 
to verify that or # 1 for all T < d such that rid. 
Since 22g - 1 = 233.1103 e2089 is the prime factor- 
ization of d, only six r must be checked. To carry 
out this verification, we implemented and ran an 
algorithm in Appendix C of Peterson [30]. Thus, 
ma(x) is irreducible and primitive and ea = 22g - 1. 
n 

As a partial check of our calculations, note that 
Marsh [28] also lists the exponents of ml(x) and 
mz(x) as 31 and 21, respectively. We could not 
find any table that lists 4x). 
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