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ABSTRACT
In group signature schemes, a signature is anonymous for
a verifier, while only a designated Privacy Manager (PM)
can identify the signer. This identification is used for tracing
a dishonest anonymous signer in case of an illegal act using
the signature. However, PM can violate signers’ anonymity.
Recently, Brickell and Li propose a novel countermeasure
for the anonymous dishonest signer without PM in the set-
ting of the direct anonymous attestation. Here, we call the
generalized group signature version anonymously revocable
group signature scheme. In this scheme, after an illegal act
using a group signature was found, the membership of the
dishonest signer can be anonymously revoked for excluding
the signer without the help of any PM . However, since
the Brickell-Li scheme is based on the RSA assumption and
the DDH assumption, the signature is long. In this paper,
we propose a short anonymously revocable group signature
scheme from supersingular curves, where we adopt the de-
cision linear (DLIN) assumption. Compared to the simple
adoption of the Brickell-Li DDH-based revoking approach to
supersingular curves, the length of our signature is reduced
to about from 30% to 60%.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Authentication

General Terms
Security, Algorithms
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1. INTRODUCTION
Group signature scheme [5] allows a group member to

anonymously sign a message on behalf of a group, where
the membership of the group is controlled by a group man-
ager (GM). The simple but important application is an
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anonymous authentication between anonymous users (group
members) and the servers (GM or verifiers). Consider a
network service available for only valid users. In advance,
a user registers with GM to join the group. In the authen-
tication for the use of the service, the user sends his group
signature to a server in order to convince the server that
the user is valid for the service as a group member. The
anonymity of the group signature can protect users’ pri-
vacy from servers. However, in case of complete anonymity,
dishonest users may make abuse of the services, since the
users are untraceable. For example, in an anonymous BBS
(Bulletin Board System), Weblog services, or SNS (Social
Network Services), an anonymous user may submit libelous
articles, while it is difficult to trace the user. For solving
this problem, the group signature schemes have introduced a
designated party who can identify the signer from the group
signature. We call this party a privacy manager (PM) here.
Then, after a user made abuse in an anonymous service, the
user can be traced by PM via the group signature.

However, PM can violate signers’ anonymity, whereas the
signers are unaware of the violation. Thus, PM can collect
users’ privacy secretly, and PM may be a big brother.

We can find a countermeasure against the anonymous
abuse without introducing PM , in a direct anonymous at-
testation (DAA) scheme [4]. The DAA scheme is a vari-
ant of group signature scheme without PM , which is de-
signed for the remote authentication of a Trusted Platform
Module (TPM) while keeping user’s privacy. The TPM can
anonymously prove to a remote server that it is a valid mod-
ule. This scheme has a novel anonymously revoking method;
The membership of a dishonest user can be anonymously re-
voked and the user is excluded without the help of any PM .
Namely, the dishonest user remains anonymous after the il-
legal acts, but the signatures that the dishonest user issues
after the revocation, can be detected. In this method, when
GM and/or verifiers want to exclude a dishonest user who
issued a signature σ̂, they add a tag included in σ̂ into RL.
Given RL, another honest signer computes his signature σ
ensuring that the signer of σ is different from the signer of σ̂
in RL. Thus, the verifiers can check whether a signer is the
dishonest signer or not, and can revoke the anonymous dis-
honest signer. Except for this check, the signature reveals no
information about the signer to all verifiers and even GM ,
and thus there is no big brother. In addition, even if a user
is illegally revoked via RL generated by dishonest verifiers,
the user can be aware of the revocation by checking the tags
in RL. To emphasize the anonymous revocation in the set-
ting of general group signatures instead of DAA, we call such
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a scheme anonymously revocable group signature scheme.
The disadvantage of the anonymously revocable group sig-

nature scheme is that the identity of the dishonest signer is
untraceable. Thus, it is not suitable for applications where
illegal acts cause very serious problems. On the other hand,
it can be suitable for the situation where illegal acts make
other users unpleasant, or the problems caused by dishonest
users can be compensated by insurance. An example of the
applications is the anonymous authentication in an anony-
mous BBS, Weblog, or SNS. By the scheme, the dishonest
user who sent a libelous article is anonymously excluded and
the following articles can be stopped by the server (i.e, ver-
ifier), while the anonymity of other users remains.

The previous scheme [4] is based on the strong RSA as-
sumption and the DDH assumption. However, since we need
the RSA modulus with the long key size (1024 bits or more),
signatures becomes long.

In this paper, we explore an anonymously revocable group
signature scheme from bilinear maps, since pairing-friendly
elliptic curves make signatures short. Let e : G×H → T be a
bilinear map (i.e., pairing) on groups G,H, T with the same
prime order. Then, since we can have the DDH assumption
on T , we can simply adapt the DDH-based anonymously
revoking method of [4] to T . However, elements of T must
be as long as the RSA modulus, and thus we cannot expect
short signatures. On the other hand, we can find the XDH
(eXternal DH) assumption [3], where the DDH assumption
holds on G with short elements. It can be expected that this
assumption is true in a subset of non-supersingular curves,
but this does not hold for supersingular curves (i.e., G = H).
In [6], we can find an alternative method for short signatures,
where, in addition to bilinear groups G,H, T , another DDH
group with the same order is utilized. Using these groups, we
achieve the DDH-based anonymously revoking method with
short signatures (Very recently, the solution is proposed in
[8]). However, in this case, implementations of two elliptic
curves are required, which is an overhead.

In this paper, we propose a short anonymously revocable
scheme that can be efficiently implemented by supersingular
curves with the embedding degree 6, in the random oracle
model. To achieve the anonymity, instead of using the DDH
assumption, we adopt the decision linear (DLIN) assumption
often used in pairing-based group signature schemes [2, 3].
The length of our signature is about from 30% to 60% of the
signature that is simply adapted the DDH-based method of
[4] on T , where the ratio varies according to the number of
revoked members. In almost all cases (more than 2 revoked
members), the ratio is from 30% to 40%.

2. MODEL AND SECURITY DEFINITIONS
The previous work [4] proves the security in a universally

composable framework. On the other hand, it is popu-
lar that literatures on recent group signatures (e.g, [2, 3,
6]) prove the security in the model formalizing attacking
games [1]. Thus, we adopt the latter model.

The participants in the model are group members (users),
verifiers, and GM .

A anonymously revocable group signature scheme consists
of the following algorithms and protocols. Non-negative in-
teger ` is a security parameter.

Setup: This probabilistic initial setup algorithm, on input
1`, outputs public parameters param.

KeyGen: This probabilistic key generation algorithm for
GM , on input param, outputs the group public key
gpk and GM ’s secret key msk. Assume that gpk in-
cludes param.

Join: This is an interactive protocol between a probabilistic
algorithm Join-U for the i-th user and a probabilis-
tic algorithm Join-GM for GM , where the user joins
the group managed by GM w.r.t. gpk. Join-U, on
input gpk, outputs usk[i] that is the user’s secret key.
On the other hand, Join-GM, on inputs gpk, msk,
outputs nothing.

Sign: This probabilistic algorithm, on inputs gpk, usk[i], a
revocation list RL of tags of revoked signatures, and
a message M to be signed, outputs the signature σ
including a tag part tag.

Verify: This is a deterministic algorithm for verification.
The input is gpk, a signature σ, a revocation list RL,
and the message M . Then the output is ’valid’ or ’in-
valid’. The validity means that the signature is issued
by a group member, and that the signer is different
from the signers computing tags in RL.

The security requirements, t-revocability, anonymity, non-
frameability are informally defined as follows. The formal
definitions will be shown in the full paper.

t-Revocability: This property captures the unforgeability
of the signature in the environment that signatures can
be anonymously revoked, which is derived from the
traceability in the conventional group signatures [1].
Consider the revocability game between an adversary
A and the challenger, where A corrupting t members
tries to forge t+1 valid signatures σ0, . . . , σt including
tag0, . . ., tagt respectively. The revocation list RL0

given to σ0 is empty, and RLi given to σi is (tag0, . . .,
tagi−1) for 1 ≤ i ≤ t. Namely, A tries to forge a valid
signature after t signatures are revoked. A can request
joining for honest users and corrupted users, honest
user’s signing, and corrupting honest users. The t-
revocability requires that for all PPT A, the probabil-
ity that A wins the revocability game is negligible.

Anonymity: This is defined as well as traceable signature
scheme [7]. Consider the anonymity game between an
adversary A and a challenger, where A tries to guess
the identity of the signer among two non-corrupted
candidates given a signature in the situation that even
GM is corrupted. The permitted queries are joining
for honest users, honest user’s signing, and corrupt-
ing honest users. The anonymity requires that for all
PPT A, the advantage of A on the anonymity game is
negligible.

Non-Frameability: This requires that a signature of an
honest member cannot be computed by other members
and even GM . In the conventional group signature
scheme, this property is required to protect the honest
member against being illegally traced from a signature
that was not issued by the member. In the anony-
mously revocable setting, the honest member cannot
be traced, but may be illegally revoked using the tag.
This is why this non-frameability is also required in
the anonymous revocation setting.
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Consider the non-frameability game between an ad-
versary A and a challenger, where A tries to forge a
signature of a honest member. In this game, A also
corrupts GM . Thus, the permitted queries are the
same as the anonymity game. The non-frameability
requires that for all PPT A, the probability that A
wins the non-frameability game is negligible.

3. PRELIMINARIES

3.1 Bilinear Groups
Our scheme utilizes bilinear groups as follows:

1. G and T are cyclic groups of prime order p,

2. e is an efficiently computable bilinear map: G × G →
T , i.e., (1) for all u, v ∈ G and a, b ∈ Z, e(ua, vb) =
e(u, v)ab, and (2) e(g, g) 6= 1.

This bilinear map can be efficiently implemented with the
Tate pairing on supersingular curves. To reduce the length
of G elements, we can adopt supersingular curves with the
embedding degree 6.

3.2 Assumptions
Our scheme is based on the q-SDH assumption [2, 3] and

decision linear (DLIN) assumption [2, 3].

Definition 1 (q-SDH assumption). For all PPT al-
gorithm A , the probability

Pr[A(u, ua, . . . , u(aq)) = (b, u(1/a+b)) ∧ b ∈ Zp]

is negligible, where u ∈R G and a ∈R Zp.

Definition 2 (DLIN assumption). For all PPT algo-
rithm A, the probability

|Pr[A(u, v, w, ua, vb, wa+b) = 1]

−Pr[A(u, v, h, ua, vb, wc) = 1]|
is negligible, where u, v, w ∈R G and a, b, c ∈R Zp.

3.3 Proving Relations on Representations
As well as [2, 3, 6], we adopt signatures converted by

Fiat-Shamir heuristic from zero-knowledge proofs of knowl-
edge (PK). We call the signatures SPKs. The SPKs we
adopt are the generalization of the Schnorr signature. We
introduce the following notation.

SPK{(x1, . . . , xt) : R(x1, . . . , xt)}(M),

which means a signature of message M by a signer who
knows secret values x1, . . . , xt satisfying a relation R(x1,
. . . , xt). This paper utilizes an SPK proving the knowledge
of a representation of C ∈ G to the bases g1, g2, . . . , gt ∈ G
on message M , which is denoted as

SPK{(x1, . . . , xt) : C = gx1
1 · · · gxt

t }(M).

This can be also constructed on group T . The SPK can
be extended to proving multiple representations with equal
parts.

4. PROPOSED SCHEME

4.1 Construction Idea
The recent conventional group signature schemes (e.g., [2,

6]) with PM basically consist of a component for a member-
ship authentication and a component for PM ’s tracing the
signer. Thus, we can easily extract an untraceable group sig-
nature scheme without PM . We borrow this basic compo-
nent from Furukawa-Imai group signature scheme [6], which
is the one improved on the efficiency from [2] and is the most
efficient pairing-based scheme. To this component, we add
an anonymously revoking method using the pairing.

For the comparison, we first show the DDH-based method
of [4]. In the method, a tag appended to every signature
is computed as a pair of a random base S and T = Sxi∗

for signer’s secret xi∗ . When a signature with tag (Ŝ, T̂ )
is revoked, any signer with secret xi shows that he did not
produce tag (Ŝ, T̂ ) by the denying proof (D = Ŝγ , E = T̂ γ ,
F = Dxi) for γ ∈R Zp. The verifier checks it by E 6= F .
Since the DDH assumption holds on T , we can simply adapt
this method to the pairing-based scheme. However, due to
long T elements, the signature becomes long.

In our method, the tag is computed as f ∈R G (via a hash
function), S = gxi∗+β and T = fβ for a public common

base g ∈ G and β ∈R Zp. Given tag (f̂ , Ŝ, T̂ ), the denying

proof is computed as D = gγ(xi+ε), E = f̂ ε, F = gγ and
G = f̂γ for ε, γ ∈R Zp. Then, if and only if i = i∗, the

relation e(f̂ , D)/e(E, F ) = e(G, Ŝ)/e(T̂ , F ) holds. Thus, the
verifier can check the denying proof. On the other hand,
(f, S, T ) and (E, D, F, G) reveal no information on i or i∗

except for the check, under the DLIN assumption. Note
that all elements in the tag and the denying proof are from
G, and thus it is expected that the signature is shorter.

4.2 Proposed Algorithms and Protocols
Setup: The input of this algorithm is security parameter
1`, and the output is param.

1. Select bilinear groups G, T with the same prime order
p of length `, and the bilinear map e. Select hash
functions HG : {0, 1}∗ → G, and H : {0, 1}∗ → Zp.

2. Select g, g1, g2 ∈R G.

3. Output param = (p,G, T , e, HG , H, g, g1, g2).

KeyGen: The input of this algorithm is param, and the
output consists of gpk and msk.

1. Select X ∈R Zp and compute Y = gX .

2. Output gpk = (p,G, T , e, HG , H, g, g1, g2, Y ), msk =
X.

Join: This is an interactive protocol between the i-th joining
user Ui and GM . The common input is gpk = (p,G, T , e, HG ,
H, g, g1, g2, Y ), and the input of GM is msk = X. The out-
put of Ui is usk[i].

1. Ui selects xi, y
′
i ∈ Zp, computes

A′i = gxi
1 g

y′i
2 ,

and sends A′i to GM .

2. In addition, Ui proves the validity of A′i using an SPK
for representations.
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3. GM computes Ai = (A′ig
y′′i
2 g)1/(X+zi) for y′′i , zi ∈R

Zp, and return (Ai, y
′′
i , zi) to Ui.

4. Ui computes yi = y′i +y′′i mod p, verifies e(Ai, Y gzi) =
e(gxi

1 gyi
2 g, g), and obtains usk[i] = (Ai, xi, yi, zi) s.t.

AX+zi
i = gxi

1 gyi
2 g.

Sign: The input of this algorithm consists of gpk = (p,G, T ,
e, HG , H, g, g1, g2, Y ), usk[i] = (Ai, xi, yi, zi), RL = (tag1,

. . . , tagk), and M ∈ {0, 1}∗, where tagj = (f̂j , Ŝj , T̂j) ∈ G3

for all 1 ≤ j ≤ k. The output is σ.

1. Select a random nonce r ∈R Zp, and compute f =
HG(gpk‖M‖r).

2. Select a random α ∈R Zp, and compute a commitment
C = Aig

α
2 .

3. Select a random β ∈R Zp, and compute S = gxi+β and
T = fβ .

Define tag = (f, S, T ), which means the tag part of
this signature.

4. For all 1 ≤ j ≤ k, select a random εj , γj ∈R Zp, and

compute Dj = gγj(xi+εj), Ej = f̂j
εj

, Fj = gγj and

Gj = f̂j
γj

.

Define DPj = (Dj , Ej , Fj , Gj), which means the deny-
ing proof for tagj .

5. Compute an SPK V on message M proving knowledge
of xi, δ, α, zi, β, γ1,. . . , γk, ε1, . . . , εk s.t.

e(C, Y )/e(g, g) = e(g1, g)xie(g2, g)δe(g2, Y )α/e(C, g)zi ,

S = gxi+β , T = fβ ,

Dj = F
xi+εj

j , Ej = f̂j
εj

, Fj = gγj , Gj = f̂j
γj

,

for all 1 ≤ j ≤ k. The firstly proved equation ensures
the membership, which is derived from the underlying
group signature [6]. The other equations ensure the
validity of tag, and DP1, . . . , DPk.

6. Output σ = (r, C, tag, DP1, . . . , DPk, V ).

Verify: The inputs are gpk = (p,G, T , e, HG , H, g, g1, g2, Y ),
RL = (tag1, . . . , tagk), σ = (r, C, tag, DP1, . . . , DPk, V ),

and M ∈ {0, 1}∗, where tagj = (f̂j , Ŝj , T̂j) and DPj =
(Dj , Ej , Fj , Gj) for all 1 ≤ j ≤ k. The output is ’valid’
or ’invalid’.

1. Check V .

2. Check e(f̂j , Dj)/e(Ej , Fj) 6= e(Gj , Ŝj)/e(T̂j , Fj) for all
1 ≤ j ≤ k. This inequation can be efficiently computed
by e(f̂j , Dj) 6= e(Gj , Ŝj)e(Ej/T̂j , Fj).

3. If all checks are successful, output ’valid’. Otherwise,
output ’invalid’.

5. EFFICIENCY
To reduce the signature length on supersingular curves, we

can adopt the embedding degree 6. Then, to achieve 1024bit
DL difficulty, the sizes of G (also p) and T elements need 171
and 1026 bits, respectively. Let R be the number of revoked
members. In this case, our signature needs 171(11 + 6R)

bits. On the other hand, in the DDH-based scheme, the
length is 171(7 + R) + 1026(2 + 3R) = 171(18 + 19R) bits.
As R varies from 0, the ratio of the length of our signature
to that of the DDH-based signature varies from about 60%
to about 30%, and the ratio is less than 40% in almost all
cases (R > 2). For example, if R = 10, our signature needs
12,141 bits and the DDH-based signature needs 35,568 bits,
and the ratio is about 34%.

In the same setting, the lengths of RL are 171 · 3R bits
and 1024·2R bits in our scheme and the DDH-based scheme,
respectively. Thus, the length of RL is 25%.

As for the performance, we first evaluate the number of
pairings depending R in the verification, which are domi-
nant costs. Our verifying algorithm needs 3R pairings, al-
though the DDH-based algorithm needs no pairing. This is
a disadvantage. However, since the verification is executed
by authentication servers in the anonymous authentication,
the pairings can be treated by powerful servers.

Finally we compare the performance on signing. Our sign-
ing needs 1 multi-exponentiation on T and 5+8R exponen-
tiations on G (Pairings can be pre-computed). The DDH-
based one needs 3 + 6R (multi-)exponentiations on T and 1
exponentiation on G. Since the exponentiation on T is much
heavier than that on G, our scheme is more efficient.

6. CONCLUSION
We have proposed a shorter anonymously revocable group

signature scheme. A future work is to implement the scheme
and to apply to the authentication in WEB servers.
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