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ABSTRACT

We propose a novel behavioral malware detection approach
based on a generic system-wide quantitative data flow model.
We base our data flow analysis on the incremental construc-
tion of aggregated quantitative data flow graphs. These
graphs represent communication between different system
entities such as processes, sockets, files or system registries.
We demonstrate the feasibility of our approach through a
prototypical instantiation and implementation for the Win-
dows operating system. Our experiments yield encourag-
ing results: in our data set of samples from common mal-
ware families and popular non-malicious applications, our
approach has a detection rate of 96 % and a false positive
rate of less than 1.6 %. In comparison with closely related
data flow based approaches, we achieve similar detection
effectiveness with considerably better performance: an av-
erage full system analysis takes less than one second.

Categories and Subject Descriptors

K.6.5 [Security and Protection]: Invasive software

Keywords

Malware detection; behavioral malware analysis; intrusion
detection; data flow tracking; quantitative data flows

1. INTRODUCTION
Our societies increasingly depend on the confidentiality of

important business information like intellectual property as
well as on the integrity of critical information systems and
infrastructures. At the same time, rising complexity and
rapidly increasing prevalence of malware threatens exactly
these important security demands. Highly sophisticated and
aggressive so-called advanced persistent threats like Stuxnet,
Duqu, or Flamer very clearly suggest that we more than ever
depend on sophisticated security measures to ensure a timely
detection of such malicious activities.

http://dx.doi.org/10.1145/2590296.2590319.

Malware detection is often done on the basis of signa-
tures. By a-priori hashing parts or complete binaries, or
extracting characteristic byte sequences of known malware
samples, vendors of anti-malware technology create exten-
sive collections of characteristic malware signatures that are
used to later detect and re-identify new samples found in
the wild by malware scanners. While this approach con-
tinues to be the main basis of most commercial anti-virus
products, it also suffers from several limitations. There al-
ways is an inevitable time interval between the release of a
new, unknown malware type and the specification and dis-
tribution of the corresponding detection signatures. Within
this time interval, the malware cannot be detected through
signatures. The rapidly increasing frequency of new mal-
ware types found in the wild, accompanied by comparably
slow signature update and distribution intervals [29], indi-
cate that this indeed is a conceptual and practical short-
coming of signature based approaches. Moreover, authors
of current malware proactively try to counteract attempts
to identify malware through signatures by packing or en-
crypting malware binaries or using other obfuscation tech-
niques [20].

To address this challenge, recent malware detection re-
search has focused on the detection of malware and mali-
cious activities through behavioral analysis [5, 15, 7, 30].
This research ranges from approaches that utilize machine-
learning, and in particular text-mining, to extract and later
detect malware specific behavior patterns [17, 30], to ap-
proaches that extract unique dependency graphs between
system calls that were executed by malware and match them
against unknown malware samples [22].

These approaches significantly raise the bar for malware
to prevent its detection. However, advanced static or be-
havioral obfuscation techniques [3, 27, 33] like reordering
system call sequences, injecting bogus sequences of calls,
or alternating between semantically equivalent ones, pose
a new challenge to the effectiveness of such approaches.

The ideas presented in this paper tackle this problem by
basing malware behavior detection on an abstraction of con-
crete system events to induced data flows between system
entities. This abstraction renders reordering, injection, and
replacement attacks ineffective, as they do not alter the re-
sulting data flow graphs, making this approach more re-
silient against behavioral obfuscation attacks than compa-
rable behavior-based detection approaches.

As a side effect, the used abstractions lead to smaller sets
of behavioral profiles and heuristics that are necessary to
detect a wide range of malware types. By aggregating se-
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mantically similar and related flows between system entities
during the construction of our data flow graphs, we can fur-
thermore keep the underlying data structures light-weight
and efficient. Considering the findings of Frederikson et
al. [11] that malware detection through behavioral matching
in general cannot be done efficiently, simplifications as used
in our approach are particularly helpful in keeping detection
efficiency within reasonable boundaries.

Problem: In sum, the main problem tackled by this pa-
per is to efficiently and effectively detect malware and ma-
licious activities while being resilient against behavioral ob-
fuscation techniques as used by current malware.

Solution: We tackle this problem with a generic behav-
ioral malware detection approach that is based on the analy-
sis of quantitative data flows at the OS level. By aggregating
and abstracting concrete system events into resulting data
flows between relevant system entities, we build graphs that
represent the data flow behavior of all entities of a system.
Based on these graphs we then specify and later on try to
detect data flow patterns that are characteristic for specific
types of malware. As a proof-of-concept we show an in-
stantiation of our generic approach for Microsoft Windows
operating systems.

Contributions: The original contributions of this paper
are thus as follows: a) To the best of our knowledge, we are
the first to make use of quantitative data flow analysis for de-
tecting malware. b) We introduce a generic model to specify
malware detection heuristics based on aggregated data flow
graphs. c) We present a proof of concept instantiation of
this model to detect malware in Microsoft Windows operat-
ing systems and d) We show that our approach is efficient
(because of comparably light-weight data structure due to
underlying abstractions and aggregations) and effective (a
proof-of-concept evaluation indicates a high detection rate
and precision).

Organization. In Section 2 we introduce the general
ideas and present the data flow model and graph construc-
tion as well as the corresponding malware detection concept.
In Section 3 we instantiate our approach for Microsoft Win-
dows operating systems and present representative data-flow
based malware detection heuristics. In Section 4 we analyze
the runtime and detection performance of our prototype. In
Section 5 we then give an overview of related work in the
area of behavioral malware detection and put our work into
context. Finally we conclude in Section 6.

2. PROPOSED APPROACH
In this section we present our aggregated quantitative data

flow approach for malware detection and analysis. We pro-
ceed in two steps. We start by presenting a generic model
that can be instantiated for various system types, and that
provides a data structure suitable for data flows analysis.
Then, we discuss how to use this data structure for the task
of malware detection.

The basic idea is to base malware detection on the analysis
of system-wide quantitative data flows. System-wide data
flows in this context mean all flows of data between different
system entities that happened within a specific time frame.
System entities denote here all conceptual sources and sinks
of data. In the case of operating systems, this includes re-
sources like processes, sockets, or files. Data flows between
system entities are caused by the execution of specific data
flow related events. For operating systems, an example is

(a) Accurate log

(b) Aggregated

Figure 1: Abstraction from single system events

file system events that, if called by a process, lead to a flow
of data between the calling process and the involved file.

We describe such system-wide data flows with data flow
graphs. Our data flow graphs contain nodes and edges:
nodes represent system resources that were at least once
involved in a data flow; and edges represent the actual data
flows between these entities.

Example Suppose process P reads 10 Bytes from file F1,
then writes them to file F2, and it repeats this process twice.
An accurate log of this events would keep track of each single
system event and their timestamp, as depicted in Figure
1a. As a built-in optimization, we aggregate these flows into
single weighted events as depicted in Figure 1b together with
a record of the first system event and the last one.

In Section 2.1 we formalize this notion and the graph up-
dating algorithm. In Section 2.2 we discuss how to analyze
such graphs with graph invariants.

2.1 Generic Data Flow Model
Our goal is to perform malware detection with quantita-

tive data flow graphs (QDFGs), denoted by G. They rep-
resent data flows (edges) in-between relevant resources of
a system (nodes). QDFGs are incrementally built by run-
time monitors that capture all relevant system-level events,
E , that move data from one resource to another, and there-
fore induce a change of the QDFG. QDFGs hence evolve
over time: events cause either the creation or the update of
nodes or edges in a data flow graph.

More precisely, QDFGs are elements of the set G = N ×

E×A× ((N ∪E)×A→ ValueA) for a set of nodes, N , a set
of edges, E ⊆ N ×N , a set of attribute names, A, and a set

of labeling functions drawn from ((N ∪ E) × A) → ValueA

that map an attribute a ∈ A of a node or an edge to a value

drawn from set ValueA.
In a QDFG G = (N,E,A,λ) ∈ G, nodes N represent data

flow related system entities and edges E data flows between
them. Attributes A are needed to keep our model flexi-
ble enough to be instantiated for various types of systems.
They represent characteristics of data flows and system en-
tities that are important for malware detection and analysis.
Edges, for instance, have an attribute size that represents
the amount of transferred data of the respective flow. The
labeling function λ retrieves the value of an attribute as-
signed to a node or an edge, in this example the size of the
flow that corresponds to an edge.

QDFGs are intuitively to be read as follows: If there
has been a flow of data in-between the system entities cor-
responding to two nodes, there is an edge between these
nodes. Data flows are caused by system events. Among
other things, this is the case if a process reads from a file;
writes to a registry; or writes to a socket. At the level of
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a QDFG, we are not interested precisely which event has
caused the flow. Instead, we model events (src, dst, size, t, λ) ∈
E as tuples where src ∈ N is the originating system en-
tity, dst ∈ N the destination system entity, size ∈ N is the
amount of transferred data, t ∈ V aluetime is a time-stamp
(defined below) and λ holds other attributes of the involved
entities. Examples will be provided in Section 3.1.2. As
mentioned above, a runtime monitor will then observe all
events at, say, the OS level, and use the characterization of
an event by set E as a data transfer to update a QDFG.

In order to define how exactly the execution of an event
modifies a QDFG, we need some notation for updating at-
tribute assignments. For any node/edge, attribute pair (x, a) ∈
(N ∪ E)× A, we define λ[(x, a) ← v] = λ′ with λ′ identical
to λ for all values but for (x, a) where λ′(x, a) = v.

For brevity’s sake, we agree on some syntactic sugar to
represent multiple synchronous updates:

λ[(x1, a1)← v1; . . . ; (xk, ak)← vk] =
(. . . (λ[(x1, a1)← v1]) . . . )[(xk , ak)← vn].

The composition of two labeling functions is defined as:

λ1 ◦ λ2 = λ1[(x1, a1)← v1; . . . ; (xk, ak)← vn]

where vi = λ2(xi, ai) and (xi, ai) ∈ dom(λ2).
We consider the aggregation of flows and system entities to

be one distinct feature of our approach. Such aggregations
are needed to keep the resulting graphs within reasonable
limits as illustrated in Fig. 1. This in particular means
that entities with the same name (e.g. multiple running
instances of the same program) are represented by the same
node. Furthermore, flows between the same pair of system
entities are represented by one edge where we simply sum
the resulting transferred amount of data rather than creating
two different edges.

In order to aggregate flows caused by similar events be-
tween the same entities edges get assigned a time interval
attribute time ∈ A such that V aluetime ⊆ N×N. This inter-
val represents the first and the last point in time where an
event was executed that either led to the creation or update
of one specific edge as illustrated in Fig. 1b.

Using the auxiliary functions min,max : V aluetime → N

with min((t1, t2)) = t1 and max((t1, t2)) = t2 we can finally
precisely define how an event updates a QDFG by function
update : G × E → G defined in Figure 2.

update(G, (src, dst, s, t, λ
′
)) =
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where e = (src, dst) and G = (N,E,A, λ)

Figure 2: Graph update function

In addition to the state update function we need a few
auxiliary functions as basis for the definition of malware de-
tection heuristics. Because their definition is standard, we

omit a formalization. Function pre : N ×G → 2N computes
all immediate predecessor nodes of a node of the graph. Con-

versely, suc : N × G → 2N computes the immediate succes-

sors of a node. Functions in, out : N × G → 2E compute
the set of incoming and outgoing edges of a node. If P de-
notes the set of all finite sequences, function pathsfrom :
N × G → 2P calculates all (temporally consistent) paths
without loops that originate from a given node n. The intu-
ition is that there is a data flow from n to each node in the
path. Conversely, and finally, function pathsto : N×G → 2P

computes all those paths without loops in the graph that
have the argument node as last element. For the accuracy
of our analysis it is important that paths satisfy a temporal
consistency property (for a discussion on soundness of this
approximation see Appendix A).

2.2 Malware Detection
We now have a basis for specifying malware-specific (quan-

titative) data flow heuristics. These heuristics will enable
us to discriminate between benign and potentially malicious
system entities. Typical examples for such heuristics include
restrictions on orders or specific sequences of flows that are
characteristic for certain malware types.

We express such malware data flow heuristics as first-order
logic predicates on properties of the introduced QDFGs.
The set Φmw := Φrep ∪ Φmpl ∪ Φqnt contains all specified
malware replication, manipulation, and quantitative heuris-
tics that model specific classes of malware behavior. We will
define these heuristics in Section 3.2 and formalize them in
Appendix B. The motivation for our separation of heuris-
tics is that we want to differentiate between heuristics that
detect replication and those that detect the system manipu-
lation behavior of a malware. This separation also allows us
to increase the detection specificity by combining different
types of heuristics. In addition we will also introduce quan-
titative heuristics to leverage quantitative data flow aspects
in order to increase detection rates. Note that the sets of
heuristics are not necessarily disjoint.

The detection of potentially malicious entities at runtime
is then done by (1) continuously updating the QDFG and
(2) by iterating over all system entities in the graph and
matching the specified detection heuristics against them.

More specifically, for an entity to be considered malicious
at least one replication and either a manipulation or quan-
titative heuristic must match.

To use our generic approach for platform–specific detec-
tion of malware one must provide platform–specific instan-
tiations of both, data flow model and detection heuristics.
This in particular means that (1) all interesting entity types
of the target platform must be mapped to nodes in our
model; and that (2) all system events must be mapped to
corresponding changes of QDFGs as defined by the update
function. Furthermore platform–specific instances of ab-
stract heuristics must be specified, based on the previously
defined system entities and events.

3. INSTANTIATION FOR WINDOWS
To demonstrate feasibility and effectiveness of our ap-

proach, we instantiated and implemented our generic model
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for the Microsoft Windows operating system family. We
identified relevant system entities as potential sources or
sinks of malware activities as well as system events that
lead to data flows between them. Based on these entity and
event definitions, we specify several Windows-specific data
flow based malware detection heuristics.

To gather the necessary runtime information, we made
use of a user-space monitor based on Windows API function
call interposition. It intercepts all process interactions with
respect to the identified set of relevant system events. More
details on the design and technical implementation of the
monitor can be found in [31].

3.1 Instantiated Model

3.1.1 System Entities

Based on a inductive study on process interactions and
resulting data flows within Windows operating systems we
identified a set of system resources that can be considered
as sources or sinks of data flows, and thus as entities in our
generic model. We use an attribute type ∈ A to describe
an entity’s type: Processes interact with the file system,
registry, and sockets and cause data flows from or to these
entities. Nodes that represent processes are assigned P as
value of the type attribute. Files persistently store data
and can be either read or written to by processes. Nodes
that represent files are always implicitly assigned F as value
of the type attribute. Sockets are connection points to re-
mote systems. Processes can either read or write data from
them, causing data flows from or to the respective remote
systems. Socket nodes are always assigned S as value of the
type attribute. Registry Keys persistently store settings
and other Windows configuration data and can be either
read or written to by processes. Nodes that represent reg-
istry keys are assigned R as value of the type attribute.

3.1.2 System Events

To model interactions that are relevant from a data flow
perspective, we model several Windows API functions by
abstract events. These will be used in the update function
of Section 2.1, and thus by the runtime monitor, to build
the QDFG. Due to the considerable complexity of the Win-
dows API we concentrate on a subset of the Windows API
that is commonly used by malware to interact with system
resources. For brevity’s sake we sometimes simplify some
aspects of these functions like parameter types (e.g. use file
names instead of file handlers) or enriched them with addi-
tional information that is usually not directly given by the
function’s parameters.

In the following we only describe one representative of
each type of events which model all semantically (in terms
of induced data flows) equivalent events; e.g. the WriteFile
function that represents all Windows API functions that in-
duce a data flow from a process to a file. In the prototypical
implementation of our approach we considered and inter-
cepted a wide range of semantically equivalent events for
each class.
File System Operations

• ReadFile(Ex) Using this function a process reads a spec-
ified amount of bytes from a file to its memory.
Relevant Parameters: Calling Process (PC), Source File
(FS), ToReadBytes (SR), File Size (SF )
Mapping: (FS , PC , SR, t, ∅[(FS , size)← SF ]) ∈ E

• WriteFile(Ex) Using this function a process can write a
specific number of bytes to a file.
Relevant Parameters: Calling Process (PC), Destina-
tion File (FD), ToWriteBytes (SW ), File Size (SF )
Mapping: (PC , FS , SW , t, ∅[(FD, size)← SF ]) ∈ E

Registry Operations

• RegQueryValue(Ex) Using this function a process reads
the value of a specific registry key.
Relevant Parameters: Calling Process (PC), Source Key
(KS), ToReadBytes (SR)
Mapping: (KS , PC , SR, t, ∅) ∈ E

• RegSetValue(Ex) Using this function a process can write
data to a specific registry key.
Relevant Parameters: Calling Process (PC), Destina-
tion Key (KD), ToWriteBytes (SW )
Mapping: (PC ,KS , SW , t, ∅) ∈ E

Socket Operations

• Recv Using this function a process can read a specific num-
ber of bytes from a network socket.
Relevant Parameters: Calling Process (PC), Source Ad-
dress (IP Port) (AS), ToReadBytes (SR)
Mapping: (AS , PC , SR, t, ∅) ∈ E

• Send Using this function a process can send a specific num-
ber of bytes to a network socket.
Relevant Parameters: Calling Process (PC), Destina-
tion Address (IP Port) (AD), ToWriteBytes (SW )
Mapping: (PC , AD , SW , t, ∅) ∈ E

Process Operations

• CreateProcess(Ex) Through this function a process can
trigger the creation of another process, using a specific ex-
ecutable file as binary image.
Relevant Parameters: Caller Process (PC), Callee Pro-
cess (PD), Binary Name (FB), Binary Size (SB)
Mapping: (PC , PD , SB , t, ∅[(PD, size)← SB ]) ∈ E

• ReadProcessMemory Using this function a process can
read a specific number of bytes from the memory of another
process.
Relevant Parameters: Calling Process (PC), Source Pro-
cess (PS), ToReadBytes (SR)
Mapping: (PD , PC , SR, t, ∅) ∈ E

• WriteProcessMemory By this function one process can
write a specific number of bytes to the memory of another
one.
Relevant Parameters: Calling Process (PC), Destina-
tion Process (PD), ToWriteBytes (SW )
Mapping: (PC , PD , SW , t, ∅) ∈ E

3.2 Heuristics
Based on the generic data flow model, Windows system

entities and the mapping of Windows API calls to events, we
can now present specific malware detection heuristics that
make use of (quantitative) data flows and data flow prop-
erties. We used these for our prototype to detect poten-
tially malicious processes and for the experiments in Sec-
tion 4. These heuristics were deductively defined on the
basis of malware behavior databases [28] and academic mal-
ware analysis reports [2]. In the following, we will say that
a “heuristic triggers” if according to this heuristic, malware
is present.

The basic idea of constructing such heuristics is to iden-
tify characteristic data flows and flow properties that corre-
spond to typical high-level behavior of malware such as “a
malicious process tries to replicate itself by infecting other
benign binaries”, like e.g. seen for the Parite worm, or “a
malicious process tries to replicate itself via email”, as e.g.
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(a) Local Replication (b) Network Replication

(c) Binary Infection (d) Reload Payload

Figure 3: Replication Heuristics

common for email worms like MyDoom. These character-
istic data flows or properties than represent a set of poten-
tially malicious activities that can later be re-identified in
data flow graphs generated at runtime.

Not all of these heuristics in themselves are sufficiently
specific and expressive to always discriminate between mal-
ware and goodware. An example for this is a heuristic that
triggers if a process downloads payload from the internet and
starts it as a new process. Although such behavior is typical
for so-called dropper malware that install additional mal-
ware (so-called eggs) using this technique, it also matches
the behavior of benign web installers. Yet, by combining
several heuristics, we can achieve a sufficient specificity and
precision do correctly discriminate between good- and mal-
ware in most cases.

As we focus on the detection of Windows malware in
this paper, the following heuristics are specifically designed
for Windows operating systems and make use of Windows-
specific flow properties. Nevertheless many of these heuris-
tics can be generalized to other operating systems as they
e.g. resemble generic high-level worm replication behavior
that is also typical for Linux-based malware.

Each of the following heuristic specification consists of a
natural language description of the corresponding flow pat-
tern, and a brief description of the rationales behind the
heuristic. In addition we visually illustrated some basic flow
patterns that correspond to these heuristics (see Figure 3),
where boxes represent file nodes, circles represent process
nodes, and clouds represent socket nodes. Due to space lim-
itations we restricted the visual descriptions to the category
of replication heuristics.

Formalizations of all heuristics are provided in Appendix B.

3.2.1 Replication Heuristics

The heuristics in this class capture activities targeting in-
fection of a local or remote system with malware. That can
e.g. be achieved by appending malicious binaries to a set of
benign system programs, injecting malicious code into other
processes, or sending binaries to remote network nodes.

Local Replication (φrep1) Triggers if a process node has
at least one flow from a file node that has the same name as
the process, followed by at least one flow to another process.
To increase the precision of the pattern the amount of flown
data from file to process must be the same as the amount of
data that flows between the two processes (as e.g. observed
for Trojans like Agent). Rationale: This heuristic covers

characteristic data flows caused by a malicious process try-
ing to replicate itself by spawning clone processes from the
own binary image.

Network Replication (φrep2) Similar to the local repli-
cation pattern, this heuristic triggers if there exists at least
one flow between a process and a file of similar name and
a flow from this process to a network socket. To increase
specificity the amount of data sent to the socket must be at
least as big as the amount of data read from the file (as e.g.
observed for Email Worms like MyDoom). Rationale: This
heuristic covers data flows that are typical for a malware
that tries to replicate itself by sending its binary image over
the network to infect remote systems.

Binary Infection (φrep3) This heuristic triggers if there
exist multiple flows (at least two) from a process to exe-
cutable binary files. To reduce false positives an additional
quantitative constraint is as follows. The amount of trans-
ferred data to the benign executables must be at least as high
as the amount of data from the binary image of the process
to the process; and the size of the target binary files must be
greater than 0. This to some extent ensures that at least the
size of the malware image is appended to already existing
binaries. Rationale: These data flows resemble malware ac-
tivities that are targeted at replication through infection of
other program’s executables. This usually happens through
malware appending its own code to benign binaries (as e.g.
observed for Viruses like Parite).

Download and Start Payload (φrep4) This heuristic
trigers if there is a flow from a socket node to a process
node, a flow from this process to a executable binary file
node, a flow from this file node back to the process node,
and then a flow from this process node to a new process node
with a similar name as the file node. To increase detection
specificity we increase the additional quantitative constraint
that all flows of this pattern must have the same quantities,
except for the first flow from the socket node that may also
be bigger due to additional meta- and network control data.
This to some extent ensures that at least the downloaded
size of payload is propagated to a binary file and then to a
new malicious process. Rationale: This data flow pattern
subsumes malware behavior that targets reloading and ex-
ecuting additional malicious payload from the internet (ob-
served for Droppers as e.g. used by the Conficker virus).

3.2.2 Manipulation Heuristics

This class of heuristics contains certain flow patterns that
correlate with specific high-level semantics for activities that
fall under the broad category of manipulation of system in-
tegrity or data confidentiality. Such heuristics for example
include activities that target leaking sensitive data to un-
trusted locations like the internet, modifications of the reg-
istry to e.g. add autostart entries, or opening backdoors for
further malicious activities.

Leak Cached Internet Data (φmpl1) Whenever we de-
tect a flow of data from a dedicated internet cache file (in
our prototype identified by the absolute file path contain-
ing either “Cookies” or “Temporary Internet Files” as sub-
string) to a process that afterwards sends data to a socket,
this heuristic triggers. The specificity of this heuristic is in-
creased by demanding that the flow from the leaking process
to the remote socket node must be as least as big as the flow
from the cache file to the process. Rationale: This heuristic
captures the data flow behavior of a malicious process trying
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to steal potentially sensitive data like cookies from dedicated
internet cache folders by sending them to a remote network
location (as e.g. observed for various samples of the generic
Infostealer malware family).

Spawn Shell (φmpl2) This heuristic triggers if a com-
mand line shell process node (in Windows identified by the
name of the process node containing the sub-string“cmd.exe”)
has an incoming or outgoing data flow connection to at least
one socket. For simplicity’s sake we currently only consider
processes with an indirect connection with a maximum dis-
tance of at maximum two hops to a socket. Rationale: This
heuristic describes data flows caused by malware trying to
glue a command shell to a listening socket to open a back-
door (as e.g. observed for Backdoors like Autorun).

Deploy System Driver (φmpl3) This heuristic triggers
if we detect a flow between a process and a system driver
binary, identified by its name containing the system driver
extension “.sys”, followed by a flow from this system driver
file to one of Window’s driver loading utilities (in our cur-
rent implementation we consider “wdreg.exe” and “sc.exe”).
To increase the specificity of this heuristic we also demand
that the flow from the potentially malicious processes to the
system driver file and from the file to the driver loading util-
ity node must be of the same size. Rationale: Today, many
sophisticated malware types make use of root kit technology
to take over full control of a compromised system and hide
their behavior from anti malware software. This heuristic
thus describes the data flows that correlate with malware
attempts to deploy and load malicious system drivers to the
Windows kernel to inject its root kit functionality (as e.g.
seen for the ZeroAccess root kit).

3.2.3 Quantitative Heuristics

The heuristics of this class capture typical quantitative
data flow properties of malware to discriminate malicious
processes from benign ones. Examples for such properties
are characteristics of distributions or quantitative relation-
ships between edge or node types. The thresholds for these
heuristics were inductively derived through analyzing a set
of eleven malware samples, distinct from the ones used for
the evaluation.

Single-hop Data Amount Entropy (φqnt1)This heuris-
tic calculates the normalized entropy of the data amount
distributions of all outgoing edges of a potentially malicious
process and triggers if the corresponding distribution is too
uniform. More precisely, for this heuristic to trigger, the
normalized entropy (actual entropy divided by hypothetical
entropy under uniform distribution) of the measured distri-
bution must be higher than 0.8, indicating an almost uni-
form outgoing data flow distribution. Rationale: A lot of
malware types replicate themselves by infecting other bina-
ries or injecting code into other system processes. This often
results in almost uniform data amount distributions of the
outgoing edges of the corresponding graph nodes.

Registry Call Ratio (φqnt2) This quantitative heuris-
tic calculates the relative ratio of flows from the Windows
registry with respect to the overall communication of a pro-
cess. A high percentage of registry-related edges within all
in-edges of a node is considered indicator for malicious ac-
tivities. A threshold for this that turned out to work well
in practice was a registry edge ratio of 0.8. Rationale: Mal-
ware often performs a lot of registry queries to probe the
state of the infected system before starting its actual ma-

Malware
Family

All Act. Det.
(N/Q)

Det.Rt.(all)
(N/Q)

Det.Rt.(act.)
(N/Q)

Agent 2 2 2/2 100% / 100% 100% / 100%

Agobot 6 4 4/4 67% / 67% 100% / 100%

Autorun 7 4 4/4 57% / 57% 100% / 100%

Bagle 5 1 0/1 0% / 20% 0% / 100%

Bancos 5 2 2/2 40% / 40% 100% / 100%

Infostealer 2 2 2/2 100% / 100% 100% / 100%

MyDoom 4 2 0/1 0% / 25% 0% / 50%

Parite 7 3 2/3 29% / 43% 67% / 100%

SpyEye 6 3 3/3 50% / 50% 100% / 100%

Total 44 23 19/22 43.18% / 50% 82.61% / 95.65%

Table 1: Detection Rate

licious activities. This results in a comparably high ratio
of registry-related flows in the first moments after process
startup.

4. EVALUATION
In general, it is difficult to objectively assess the effective-

ness and precision of any behavior-based malware detection
technique. This is because experiment outcomes heavily
depend on chosen goodware and malware evaluation sets,
malware activity during behavior recording, and counter-
analysis measures employed by the malware.

To shed light on the general feasibility of our concepts
and to evaluate our prototype we thus conducted a proof-
of-concept study based on a representative set of goodware
and malware. Within this study we investigated the effec-
tiveness and efficiency of our detection approach. In terms of
effectiveness we mainly focused on detection and false posi-
tive rates, where detection rate is defined as the fraction of
correctly detected malware samples in all analyzed malware
samples, and false positive rate by the ratio of goodware
samples, wrongly classified as malware, within the entire set
of analyzed goodware samples. In terms of efficiency we
analyzed average detection time and space consumption.

We conducted two types of tests. In both we installed
malware or goodware samples within our monitored envi-
ronment and recorded their behavior in terms of calls to the
Windows API to dedicated log files. These log files then
built the basis for our actual graph generation and heuristic
matching approach that in the end lead to the classification
of processes into malicious and benign processes.

Malware Tests: For this type of tests we manually in-
stalled various samples from a representative set of mal-
ware families and recorded their behavior. In addition, we
launched a small set of benign applications to increase the
interaction diversity, introduce some non-determinism of the
overall system behavior, and thus limit the detection bias for
the further processing steps. The main goal of these test was
to get a sufficiently large data base of malicious processes
to reason about detection precision, in particular to derive
an average false negative rate. To analyze a representative
set of malware types, we picked samples from a public mal-
ware database1 according to the prominent malware types
as mentioned on the website of an anti-malware vendor2.

1http://openmalware.org/
2http://www.symantec.com/security_response/
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Goodware Tests: The intention of this type of tests
was to get a data basis for reasoning about false positives.
For this purpose we installed and executed a set of know-
ingly benign programs into our monitored environment. To
increase the diversity of the behavior logs we furthermore
performed simple tasks like opening or saving files using
these programs. To get a representative set of analyzed
goodwares, we installed the 20 most popular programs from
http://download.com. In addition, we used multiple stan-
dard Windows programs that were already pre-installed on
the evaluation machine.

All tests were conducted on a Windows 7 Service Pack
1 installation, running within a Oracle VirtualBox instance
that was assigned two 2.7 Ghz cores and 4GByte of RAM.
The host system itself was running a Windows 8 installation
powered by a Intel i7 Quadcore 2.7 Ghz CPU and 8 GByte
of RAM. The data collection part was done within the Win-
dows 7 VirtualBox instance, whereas the actual behavioral
analysis was conducted offline on the host system.

Note that our detection approach does not require an ini-
tial learning phase as it entirely depends on deductively de-
fined set of static data flow heuristics. As basis for the sub-
sequent analysis we performed 44 malware and 21 goodware
tests, resulting in 65 activity logs, each containing a trace of
process behavior monitored over a period of 5 minutes.

4.1 Effectiveness
For each of the collected malware and goodware logs we

generated a quantitative data flow graph, as described in
Section 2.1. The corresponding malware test graphs thus
represented the behavior of 44 unique samples of the 10
malware families: Agent, Agobot, Autorun, Bagle, Bancos,
Infostealer, MyDoom, Parite, and SpyEye.

One of the reasons for the comparably limited evaluation
set of 10 different malware families is in the fact that we
conducted our tests in a realistic state-of-the-art execution
environment and thus picked Windows 7 SP1 as evaluation
platform. This choice made it particularly hard to install
many malware types like Nimda, Ramnit, or NetSky, be-
cause of their incompatibility with the used OS.

Moreover, some of the analyzed malware types had built-
in anti-analysis measures that for example detected the pres-
ence of certain virtual machine files and settings and due to
that stopped all further activities [24]. One example for this
were the various samples of the Sality worm that we failed
to analyze due to their awareness of being executed in a
VirtualBox environment.

Furthermore, many of the analyzed malware samples did
not show any significant activities during the 5 minute mon-
itoring period. This inactivity was due to event-based activ-
ity mechanisms that were not triggered during our analysis;
the corresponding malware was aware of being analyzed and
thus did not start its usual infection routines; or it had de-
ferred activity that we simply did not catch within our short
monitoring period. This led us to further subdivide the set
of malware samples into active and inactive ones. As our
approach entirely relies on analysis of runtime behavior, we
do not consider non-detected inactive malware samples to
be real false negatives.

For the goodware tests we constructed graphs that repre-
sented the behavior of 2199 samples of 131 different known
benign programs, ranging from standard pre-installed Win-
dows programs like notepad or paint, over various instal-

Goodware
Family

Smp. FP (N/Q) FP Rate (N/Q)

Installer 261 14/18 5.36% / 6.90%

Std. Programs 1194 2/6 0.17% / 0.50%

3rd Party 744 6/11 0.81% / 1.48%

Total 2199 22/35 1.00% / 1.59%

Table 2: False Positive Rate

lation routines for software like Oracle’s Java, or Adobe’s
Flash Player, to a variety of third party software, includ-
ing Microsoft Office products, anti-virus scanners, webcam
software, or archiving or music production tools.

On these graphs we then conducted the analysis steps, as
described in Section 2.2, using the heuristics described in
Section 3.2, to classify each graph node into the categories
malicious and benign. To further analyze the effect of quan-
titative properties on detection effectiveness we conducted
the test both with and without using quantitative heuristics.
As depicted in Table 1, we were able to detect all analyzed
malware families. In sum, with respect to the active mal-
ware samples that we analyzed, we achieved a detection rate
of about 83% without, and about 96% with using quantita-
tive heuristics. This clearly underlines our hypothesis on the
usefulness of quantitative aspects for detection effectiveness.

Our detection technique is sensitive to web installation
routines as e.g. used by the Java or Flash update processes
and thus quite often misclassified them as malware. The
comparably high false positive rate of up to 7% on installer
routines can be explained by the fact that, from the per-
spective of the employed heuristics, a web installation pro-
cess in fact does similar things as a malware reloading ad-
ditional payload from the internet. To cope with this prob-
lem we would thus need to accompany the corresponding
detection heuristics with additional, more-specific detection
patterns. Considering all analyzed samples of non-malicious
processes, we achieved an aggregated false positive rate of
about 1.0% for the non-quantitative case, and 1.6% if quan-
titative heuristics were used (see Table 2). This loss in de-
tection precision when using quantitative heuristics can be
explained by the limited specificity of quantitative heuristics
in comparison to non-quantitative ones.

4.2 Efficiency
A crucial requirement for all malware detection and analy-

sis approaches is their efficiency. In particular, if such an ap-
proach should be used for runtime malware detection, time
efficiency is highly relevant since slow detection gives mal-
ware the change to interact with the system for some time
without being stopped and thus increases the chances for a
sophisticated malware to purge its traces of spread in a way
that is hard to be later coped with. On the other hand, if
a detection approach is to be used for forensics, space ef-
ficiency is of crucial importance to minimize to-be stored
forensic data. For that reason we considered both, time and
space aspects for our efficiency evaluation.

To get a realistic baseline for these efficiency evaluations
we built the graphs on the logs that were also used for the
goodware and malware effectiveness test. In addition we
incorporated a log of a system were we tried to simulate a
realistic usage behavior. This included web surfing, checking
emails, writing and opening documents in Microsoft Word,
listening to some music files in a media player, as well as
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Figure 4: Scaling factor - graph to log size [kb]

Figure 5: Graph growth - total complexity over time

copying files between different folders of the file system. This
log captured the behavior of this system during a period of
about 9 hours.

4.2.1 Space Efficiency

In terms of space efficiency we first analyzed the relation-
ship between raw log file sizes and the sizes of the corre-
sponding generated graphs. Due to the way we built our
graphs, in particular the aggregation as defined by the update
function, we expected to see an increasing scaling factor be-
tween graph and log size for increasing log file sizes. The
findings depicted in Figure 4 support this hypothesis, as we
can see that while the size of a log file increases, the aver-
age relative graph size and thus the scaling factor decreases.
With the exception of some outliers we can see an average
scaling factor of about 40% for small logs of less than 1
MByte, going down to 10-20% for bigger log files.

These findings indicate that the amount of data that need
to be stored in order to perform full-system malware detec-
tion and gives rise to optimism w.r.t. scalability.

In addition to this scaling factor analysis we also investi-
gated the average graph growth and complexity over time.
Due to our aggregation algorithms we assumed that after
some time of system usage, the graph would not grow as
fast as in the beginning of a system run. This is because
after a while most of the connections between system enti-
ties should be present (e.g. because all necessary registry
keys, files, and processes have been touched or run at least
once) and future activities should only result in node or edge
attribute updates.

Figure 5 supports this assumption, as we can see slow
growth of graph complexity over time with a short complex-
ity jump in the beginning. This slow growth during nor-
mal usage suggests that our approach also scales in terms
of space complexity over time and thus, by construction,
results in reasonably small graph sizes.

Figure 6: Relative analysis time per edge

Figure 7: Absolute analysis time per edge

4.2.2 Time Efficiency

For reasoning about time efficiency we analyzed the rela-
tive time it took to match a graph node against the set of
heuristics with respect to the graph size in terms of number
of edges (see Figure 6). As we can see, the relative analysis
time is independent of the graph size and, with the exception
of some outliers, within the range of 1-2ms per node.

In absolute terms this means that the detection time is
quasi-linear in the amount of edges of the graph (see Fig-
ure 7). For graphs of a maximum size of 1000 edges, which
roughly corresponds to the behavior of a system with av-
erage activity over a period of about 60 minutes (see Fig-
ure 5), the complete graph analysis can be conducted in
under 500ms.

With an average detection time of less than one second for
a complete graph analysis, we consider our approach suffi-
ciently fast to be usable for runtime detection. Our QDFT
graphs typically only grow slowly under normal usage be-
cause of the applied aggregation steps of our model, with
occasional peaks whenever new programs are started. This
means that, although linear w.r.t. graph complexity, the
necessary analysis time also only grows very slowly with re-
spect to system runtime.

Note that all the heuristics presented in this paper are of a
local nature (checking only a small neighborhood of a given
node). Since atomic system events also impact a small por-
tion of the graph, one does not need to re-check it entirely
in each step, but it suffices to analyze the impact of the sys-
tem event in a local neighborhood. Therefore we limited the
efficiency analysis to graphs constructed after a few minutes
of activity since the analysis times are representative for up-
dates to bigger graphs in that time lapse. In general such
a local reasoning is however not possible since interesting
heuristics could include system-wide properties which force
the re-verification of the complete graph.
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Monitor Overhead: For space reasons, we do not include a
dedicated discussion on the performance of the event moni-
tor. In general, the computational overhead induced by the
monitor under normal operation conditions is in the order
of magnitude of about 20% and thus cannot be considered
a show-stopper [31].

In sum, our measurements indicate sufficient efficiency of
our approach and give rise to optimism w.r.t scalability.

5. RELATED WORK
As mentioned in the introduction, although still popu-

lar, signature-based malware detection is ineffective against
unknown or obfuscated malware and thus can, when used
in isolation, be considered insufficient to cope with modern
malware. Behavior-based approaches in contrast are typi-
cally able to detect unknown malware because they focus
on detecting malware by analyzing its behavior and not its
persistent representation.

In the past decades, a plethora of work has been published
in the broad area of behavior-based malware and intrusion
detection and analysis [7]. This work can be be categorized
according to several dimensions: targeted level of abstrac-
tion (e.g. host- vs. network-based), underlying detection
model (misuse- vs. anomaly-based), or type of used analysis
(static vs. dynamic analysis).

Because of the considered level of behavioral abstraction
and system-external deployment, network based detection
approaches exhibit several advantages over host-based ap-
proaches, including a lower likelihood to get disabled or cir-
cumvented by malware. These advantages, however, also
come with a core limitation: By design, they work at a
system rather than a process level, and therefore they can-
not analyze the behavior of individual processes and thus in
general provide less fine-grained behavior information than
host based approaches. This in particular means that they
usually cannot provide information about compromised or
leaked system resources. Futhermore, network-based ap-
proaches are significantly challenged if malware uses ad-
vanced obfuscation or encryption techniques to blur or hide
its network behavior [26].

Since our work focuses on host-based malware detection,
we limit ourselves to review host-based behavioral malware
detection approaches in the following. A seminal idea or
Forrest et al. [9] in host-based malware detection through
process behavior analysis is to profile benign and malicious
processes through characteristic sequences of their interac-
tions with the system, e.g., through issued system calls.
The idea was later caught up by more elaborate text-mining
and specifically n-gram based approaches that used machine
learning to improve accuracy and precision [19, 13, 17, 25,
30, 6].

Our work differs from these approaches in two ways: First,
these latter typically do not assign any explicit semantics to
the used n-grams. By construction they can thus detect the
presence of malware but cannot yield a deeper analysis of
high-level malware behavior. Our solution, in contrast, gives
a clear high-level semantics of observed malware behavior
patterns. Besides detecting and pin-pointing to infections,
our approach thus also establishes a basis fore more com-
prehensive behavioral analysis, e.g., to reason about mal-
ware intentions and attack goals. Second, approaches of the
cited kind are typically sensitive to advanced behavioral ob-
fuscation techniques like reordering system calls, randomly

inserting bogus calls, or substituting calls with semantically
equivalent calls. Due to the used abstraction from concrete
system calls to induced data flows, which are oblivious to
these obfuscation methods, our approach by construction is
more robust against many obfuscation mechanisms as used
by modern malware [3, 27, 33].

An orthogonal line of research on behavioral malware de-
tection bases on the analysis of dependencies and interrela-
tionships between activities like system call invocations of
processes. After the extraction of characteristic call depen-
dencies of different knowingly malicious processes they can
be used to re-identify certain dependency patterns in un-
known behavior graph samples in order to discriminate be-
tween malicious and non-malicious processes. This behavior-
focused line of research can be roughly subdivided into the
categories: approaches that are based on the derivation and
later re-identification of potentially malicious call-dependency
(sub-)graphs [16, 21, 22, 12, 18], approaches that infer high-
level semantics for call-dependency graphs or sequences [5,
4, 23], and approaches that tackle the data flow aspects of
potentially malicious behavior [32, 10, 14, 15].

One of the first call-graph based approaches was proposed
by Kolbitsch et al. [16] who introduced the idea of deriving
call-graphs from known malware samples that represent de-
pendencies between different runtime executions of system
calls, their arguments, and return values and using them as
behavioral profiles for later re-identification in unknown exe-
cutables. This idea was later refined by clustering and deriv-
ing near-optimal graphs to increase precision [12], or antici-
pate malware metamorphism [18]. Recent work in this field
aimed at reducing the amount of to-be maintained behavior-
graphs by mining specific invariants and paths from graphs
of samples from same malware families [21, 22]. These ap-
proaches have several advantages over n-gram based ideas.
Deriving and maintaining call-graph databases typically re-
quires less sampling and storage effort than n-gram based
approaches and is often more resilient to reordering or bo-
gus call insertion obfuscation techniques.

Although we also base on the construction and analysis of
behavioral graphs, we base our graph generations on quanti-
tative data flows between system entities rather than on de-
pendencies between single system calls. This provides bet-
ter resilience against reordering and semantic obfuscation
as the data flow based graph construction is less affected by
shuffling and replacement of semantically equivalent calls.
Also related approaches often make use of NP-complete al-
gorithms like sub-graph isomorphism analysis which has a
negative impact on the time-efficiency of these approaches.
Our approach in contrast is of linear time complexity in
terms of graph size. Besides quantitative aspects we fur-
thermore differ from clustering approaches as presented by
Park et. al. [21, 22] in that we construct per-system rather
than per-process data flow graphs which widens the detec-
tion scope to inter-process behavior.

A seminal work of the third large pillar of behavioral mal-
ware detection was presented by Christodorescu et al. [5, 4,
12]. The basic idea of these type of approaches is to give
high-level semantics to observed malware behavior. Rather
than matching behavior on a purely syntactic and struc-
tural level, these approaches try to extract and re-identify
characteristic behavior at a semantic level. Follow-up work
further enriched this idea with formal semantics for iden-
tified malware behavior [23]. The semantic perspective of
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these approaches typically leads to better resilience against
more simple obfuscation like call re-ordering. This is be-
cause, although resulting in mutations of call-graphs and
thus challenging normal call-graph based approaches, such
obfuscation attempts do not change the semantic dimension
of the malware behavior and therefore cannot easily trick
semantics-based approaches.

The main commonality with this line of research is that
we also base our analysis on graphs and give high-level se-
mantics for specific of malware behavior patterns. However,
in contrast to the aforementioned approaches we base the
construction of our behavior graphs on the analysis of data
rather than control flows. As mentioned before, this abstrac-
tion increases the resilience against advanced obfuscation
like permutations between semantically equivalent function-
ality, which is usually not given by such approaches [5]. The
data flow perspective, as abstraction from control flows, fur-
thermore reduces the set of sub-graphs or properties we need
to maintain in order to detect malicious activities, which has
a positive impact on detection efficiency. Intuitively, this is
because one data flow property often subsumes multiple con-
trol flow properties.

The last category of related work tackles the data flow
perspective of malicious behavior. One of the most promi-
nent examples for this family of approaches is the Panorama
system of Yin et al. [32] that leverages dynamic data flow
analysis for the detection of malicious activities. The ba-
sic idea of Panorama is to profile data flow behavior of
malicious processes through fine-grained system-wide taint
analysis and match it against manually specified data flow
properties. Similarly, our approach uses system-wide data
flow graphs to represent process and system behavior and
match them against FOL data flow invariants. However, we
make use of quantitative flow aspects to increase invariant
specificity and thus detection precision. Moreover, we in-
corporate dedicated graph aggregation, simplification, and
abstraction steps which helps to keep data structures lean
and maintainable, resulting in little performance impact,
whereas Panorama induces performance overhead of up to
2000% which renders it unsuitable for runtime detection pur-
poses. We mainly differ from data dependency graph based
work like the one presented by Elish et al. [8] in that we
leverage quantitative flow aspects for our analysis and have
a system- rather than a program-centric scope by founding
our analysis on data dependencies between system entities
instead of individual program points.

In sum, the main difference between our work and related
contributions is that to the best of our knowledge we are
the first to leverage quantitative data flow aspects for the
behavior-based detection of malware. Our approach also
offers more resilience to behavioral obfuscations like call re-
ordering or semantic replacements. In addition, graph sim-
plification allows us to optimize storage and computational
efforts, resulting in a superior space and detection time effi-
ciency.

6. DISCUSSION AND CONCLUSION
We have proposed a novel approach to leverage quantita-

tive data flow analysis and graph analysis for the detection of
malicious activities. Through the specification of heuristics
in form of malware-specific quantitative data flow patterns,
we can then identify data flow activities that relate to the
presence of malware. To demonstrate the practicability of

our generic model, we presented an exemplary instantiation
for Microsoft Windows operating systems based on a proto-
type that builds on top of a user-mode monitor, capturing
process activities in form of data flows induced by process
calls to the Windows API.

On the basis of a proof-of-concept evaluation we showed,
that our approach is able to effectively discriminate between
malware and goodware with competitively high detection
(up to 96%) and low false positive rates (less than 2%) com-
pared to related approaches from literature [5, 16, 32]. These
results are based on preliminary measurements and thus do
not necessarily generalize due to the relatively small sample
size and inherent bias in the selection of analyzed malware
and goodware. For future work we thus plan to extend our
evaluation to a larger set of malware and goodware samples,
as well as to longer system runs to more deeply investigate
graph complexity over time.

The evaluation results also indicate good space and time
efficiency: the complexity of the data flow graphs turned out
to only grow slowly over time for normal system usages and
we observed a linear relationship between the graph com-
plexity and the time it takes to perform a full system mal-
ware detection. The full detection time for average system
activity remains under one second with an average detec-
tion overhead of less than one millisecond per graph edge.
In comparison to the data-flow based malware detection ap-
proaches closest to ours [32] we achieved a better perfor-
mance with comparable detection and false positive rates.
These preliminary results indicate that our approach is suited
for multiple malware-related application areas including run-
time malware detection and analysis, as well as offline foren-
sics, and has better time and space efficiency than most re-
lated approaches.
Limitations: Although using quantitative data flows as ab-
straction of malware activities raises the bar for malware
to hide its presence through obfuscation, the quantity-based
detection mechanisms are challenged if the malware obfus-
cates flow quantities by e.g. blurring malicious flows by scat-
tering them over time or adding bogus data flows. We ac-
knowledge the threat arising from the so-called base-rate fal-
lacy [1] on the effectiveness of intrusion and malware detec-
tion approaches, including ours. According to this paradox,
even a low false-positive rate of less than 2% can render an
approach ineffective if malicious activities are considerably
less frequent than benign ones. To cope with these prob-
lems and to further reduce false positives we plan to come
up with more elaborate and thus more resilient combinations
of (potentially adaptive) quantitative heuristics.

In addition, our current implementation is solely based
on static data flow heuristics which only allows us to detect
malware that has the specified behavioral characteristics.
Although we used a wide range of behavioral descriptions of
different malware families to derive our heuristics, new mal-
ware could thus simply achieve its goals in a way that we did
not anticipate. To thwart this issue we intend to investigate
the effectiveness of state-of-the-art machine-learning based
anomaly detection on the basis of quantitative data flows.

Also the security of our prototype itself is out of the scope
of this paper. Sophisticated malware could for example try
to disable the event monitor to evade detection. We plan
to counteract this threat by moving our monitor down the
stack to the kernel layer which would give us a certain degree
of tamper-resilience against user-mode malware. In sum, we
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have shown that quantitative data flow analysis can be used
for effective, efficient, and resilient malware detection.
Acknowledgments This work was done as part of the DFG’s
Priority Program SPP 1496 “Reliably Secure Software Sys-
tems,” ref. numbers PR-1266/1-2.
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APPENDIX

In the following, we will use projections !i with (x1, . . . , xk)!i =
xi for 1 ≤ i ≤ k. We use the same notation to address a
specific element y in the i-th position of a sequence Y .

A. TEMPORAL CONSISTENCY
For the accuracy of our analysis it is important that we

consider paths between nodes that have a certain temporal
consistency. Consider the following example. Process P1

reads from file F at time t1. Then process P2 writes to file
F at time t2 > t1. Then, although it is possible to find a
path from P2 to P1 in the data-flow graph, there has not
been an actual flow from P2 to P1, because of the order in
which the events happened. We characterize this temporal
consistency with the following theorem.

Theorem 1. Let p = (e1, . . . , ek) ∈ P . A flow from e1!1
to ek!2 is possible if and only if:

maxi=1...j−1(min(λ(ei, time))) < max(λ(ej, time))

for 0 ≤ j ≤ k.

Proof. Clearly, there is a flow from node n to node n′ if
an only if there is connected path from n to n′ of length k

and an increasing sequence of k timestamps such that data
is transferred through the connecting nodes. By induction
on k, it is easy to see that if the proposition holds, it is
possible to construct such a sequence. On the other hand
if the proposition does not hold, this is impossible, because
for some j, there is a predecessor minimum which is greater
than the current maximum time-stamp, so that the sequence
can not be increasing.

Note that this characterization is still an approximation:
consider a similar example as before, now process P2 writes
from file F at time t1. Then process P1 reads from file F

at time t2 > t1. In this case although possible, there is
no guarantee of an actual flow in an information theoretical
sense from P2 to P1, since we do not know whether P1 reads
the portion of F written by P2

B. FORMALIZATION OF HEURISTICS
In the following, we provide formalizations of the heuris-

tics described in Section 3.2. These formalizations come as
predicates φ ⊆ N × G that are to be read as follows. If
φ(n,G) is true for some node n in a given QDFG G, then
the heuristics corresponding to φ suggests that malware is
present. This means that the evaluation must be performed
for each node.

To simplify the description, we define a sub-string function
to extend heuristics definitions with string comparisons: ss :
S ×S → {0, 1} which evaluates to true, iff the first provided
string is a sub-string of the second string parameter.

B.1 Replication Heuristics
Local replication is formalized as

φrep1(n,G) := ∃p = (e1, e2, . . .) ∈ pathsfrom(n)•
(n, Type) = F ∧ (e1!2, type) = P ∧ ss(e1!2, n)∧
(e2!2, T ype) = P ∧ (e1, size) = (e2, size).

Network replication is formalized as

φrep2(n,G) := ∃p = (e1, e2, . . .) ∈ pathsfrom(n)•
(n, Type) = F ∧ (e1!2, type) = P ∧ ss(e1!2, n)∧
(e2!2, T ype) = S ∧ (e1, size) ≤ (e2, size).

Binary infection is formalized as

φrep3(n,G) := {(e1, . . .) ∈ pathsfrom(n)|
(n, Type) = P ∧ (e1!2, T ype) = F ∧ ss(“.exe′′, e1!2)∧
(e1!2, size) > 0} ≥ 2

Download and Start Payload is formalized as

φrep2(n,G) :=
∃p = (e1, e2, e3, e4, . . .) ∈ pathsfrom(n)•
(n, Type) = S ∧ (e1!2, type) = P ∧ (e2!2, type) = F∧
ss(“.exe′′, e2!2) ∧ e3!2 = e2!1 ∧ (e4!2, type) = P∧
(e1, size) ≥ (e2, size) = (e3, size) = (e4, size).

B.2 Manipulation Heuristics
Leaked Cached Internet Data is formalized as

φmpl1
(n,G) := ∃p = (e1, e2, . . .) ∈ pathsfrom(n)•

(n, type) = F ∧ (e1!2, type) = P∧
(ss(“Cookie′′, n) ∨ ss(“Temporary Internet F iles′′, n))∧
(e2!2, type) = S ∧ (e1, size) ≤ (e2, size).

Spawn Shell is formalized as

φmpl2
(n,G) := ∃n′ ∈ (pre(n) ∪ suc(n))•

(n, type) = S ∧ (n′, type) = P ∧ ss(“cmd.exe′′, n′).

Deploy System Driver is formalized as

φrep3(n,G) := ∃p = (e1, e2, . . .) ∈ pathsfrom(n)•
(n, Type) = P ∧ (e1!2, type) = F ∧ ss(“.sys′′, e1!2)∧
(e2!2, T ype) = P ∧ (e1, size) = (e2, size)∧
(ss(“wdreg.exe′′, e2!2) ∨ ss(“sc.exe′′, e2!2)).

B.3 Quantitative Heuristics
Single-hop Data Amount Entropy is formalized as

φqnt1(n,G) := (n, type) = P∧

NE(
⋃

e∈(in(n)∪out(n))

(e,size)
∑

e′∈(in(n)∪out(n))

(e′,size)
) ≥ 0.8

with the normalized entropy NE defined as:

NE(S) :=

−
∑

si∈S

si ∗ log(si)

log(|S|)
.

Registry Call Ratio is formalized as

φqnt2(n,G) := (n, type) = P∧
|{e|e∈in(n)∧(e!1,type)=R}|

|in(n)|
≥ 0.8.
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