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ABSTRACT
It has recently become apparent that both accidental and
maliciously caused randomness failures pose a real and seri-
ous threat to the security of cryptographic primitives, and
in response, researchers have begone the development of
primitives that provide robustness against these. In this
paper, however, we focus on standardized, widely available
primitives. Specifically, we analyze the RSA-OAEP encryp-
tion scheme and RSA-PSS signature schemes, specified in
PKCS#1, using the related randomness security notion in-
troduced by Paterson et al. (PKC 2014) and its extension
to signature schemes. We show that, under the RSA and Φ-
hiding assumptions, RSA-OAEP encryption is related ran-
domness secure for a large class of related randomness func-
tions in the random oracle model, as long as the recipient
is honest, and remains secure even when additionally con-
sidering malicious recipients, as long as the related random-
ness functions does not allow the malicious recipients to effi-
ciently compute the randomness used for the honest recipi-
ent. We furthermore show that, under the RSA assumption,
the RSA-PSS signature scheme is secure for any class of re-
lated randomness functions, although with a non-tight secu-
rity reduction. However, under additional, albeit somewhat
restrictive assumptions on the related randomness functions
and the adversary, a tight reduction can be recovered. Our
results provides some reassurance regarding the use of RSA-
OAEP and RSA-PSS in environments where randomness
failures might be a concern. Lastly, we note that, unlike
RSA-OAEP and RSA-PSS, several other schemes, including
RSA-KEM, part of ISO 18033-2, and DHIES, part of IEEE
P1363a, are not secure under simple repeated randomness
attacks.

1. INTRODUCTION
Modern cryptographic primitives are designed to meet

strong notions of security, such as IND-CCA security in the
case of encryption or UF-CMA security in the case of sig-
natures, and the design of most concrete schemes are sup-
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ported by a proof of security that reduce the security of
the concrete scheme to appropriate computational assump-
tions. However, the security analysis often assumes that ac-
cess to a source providing perfect uniformly distributed ran-
domness is provided. Unfortunately, this assumption might
not hold in practice. Random number generators (RNGs),
used to generate randomness in practical systems, are no-
toriously hard to implement and test, which is evident by
the history of RNG failures [19, 20, 24, 25, 32]. The perhaps
best known example of this, is the Debian Linux vulnera-
bility that causes only 15 bits of entropy to be used in the
RNG [18]. However, implementation errors are not the only
source of randomness failures. In particular, a determined
adversary might attempt to subvert the used RNG, as sug-
gested by the Dual EC controversy [14]. Furthermore, the
deployment of virtual machine servers (e.g. using Amazon
Web Services, Microsoft Azure, or Google Cloud), creates
another randomness attack vector; as observed in [36], an
attacker capable of provoking a virtual machine reset can
cause the virtual machine to use repeated and correlated
randomness values, as the entire state of the virtual ma-
chine, including the state of the RNG, will be restored to a
previous state.

The consequences of randomness failures can be fatal to
security; the examples of real-world security incidents due
to poor randomness are many (e.g. [11,12,26,31,36]). Note
that the widely used DSA signature scheme (and the elliptic
curve variant ECDSA) standardized by NIST in FIPS 186-
4 [33], are particularly vulnerable to randomness failures as
the signing key can be recovered from two signatures us-
ing the same randomness. This property has lead to the
compromise of the Playstation 3 [11], the recovery of TLS
signing keys from virtualized servers [36], and allowed the
theft of Bitcoins [13]. This clearly illustrates the need for
primitives robust against randomness failures.

As the security risks caused by randomness failures are
becoming more evident, cryptographers have begun defin-
ing various security notions capturing different kinds of ran-
domness failures, and design schemes that provide security
against these to the extend that this is possible. In the
symmetric key encryption setting, Kamara and Katz [30]
considered chosen randomness attacks in which the adver-
sary can freely choose the randomness, except for in the
challenge queries. In the public key encryption setting, Bel-
lare et al. [6] introduced hedged encryption, which ensures
that security is maintained as long as the message and ran-
domness combined has sufficient entropy, and that a level
of security corresponding to deterministic encryption [4] is
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achieved when neither randomness nor messages have en-
tropy. Bellare and Tackmann [10] introduced the notion of
nonce-based public key encryption which protects against
randomness failures, but also requires a stateful scheme.
Yilek introduced reset attacks in which repeated random-
ness values might occur for ordinary public key encryption.
Lastly, Paterson et al. [34] introduced related randomness
attacks, which allow the adversary a large degree of control
over the randomness used for encryption, and which cap-
tures reset attacks as a special case.

While this line of research provides new schemes that
are robust against various kinds of randomness failures, the
more immediate question of how robust existing schemes are
against randomness failures has not addressed in the previ-
ous results. Specifically, given the typical time frame for the
development, evaluation, standardization, and deployment
of new cryptographic primitives, the following question is
highly relevant for assessing the security of existing systems
and making design choices for systems currently in develop-
ment:

To what extent are existing standardized and widely
supported primitives secure against randomness failures?

1.1 Our Contribution
In this paper, we focus on the above question in the case

of signatures and encryption. For our analysis, we adopt
(a variation of) the related randomness model of Paterson
et al. [34] and its extension to signature schemes i.e. we
consider security notions which allow the adversary to ma-
nipulate the used randomness via related randomness func-
tions φ. Specifically, in the case of signatures, the adversary
will be able to obtain signatures created using randomness
φ(r) where φ is a maliciously chosen function belonging to
a function class Φ, and r is a fixed randomness value cho-
sen uniformly by the security experiment1. In the case of
encryption, the adversary will be able to obtain encryptions
for maliciously chosen public keys and messages using ran-
domness ψ(r), and is challenged to distinguish between the
encryptions of two maliciously chosen messages under a chal-
lenge public key using randomness φ(r), where ψ and φ are
maliciously chosen functions belonging to function classes Ψ
and Φ. Note that in contrast to the original model from [34]
in which Φ = Ψ, we consider separate function families Ψ
and Φ, which allows the related randomness used in the
encryption for malicious recipients for which the adversary
might known the private key, to be distinguished from the
related randomness used for the honest challenge user (note
that the adversary can use his challenge encryptions as an
encryption oracle for the honest challenge user by choosing
identical challenge messages). This in turn allows a more
detailed statement regarding the related randomness secu-
rity of the analyzed schemes. See Section 4 for the details
of our security model.

Firstly, we focus our attention on the widely used RSA-
OAEP encryption scheme [8] included as part of PKCS#1
v2.2 [37] and furthermore adopted in IEEE P1363 [27]. Specif-
ically, we show that, under the RSA and Φ-hiding assump-
tions, RSA-OAEP encryption is related randomness secure
for any function families Φ and Ψ satisfying that Φ is col-

1While our security notions consider a single value r, as
shown in [34], this is equivalent to considering an experiment
with multiple r values.

lision resistant, and that Φ is hard-to-compute with respect
to Ψ. The latter requirement means that, for a randomly
chosen input, given the output of functions in Ψ, the output
of functions in Φ remains hard to compute for the same in-
put. This implies that RSA-OAEP is secure for a large and
general class of related randomness functions which, for ex-
ample, captures the special case of repeated randomness at-
tacks, when the recipient is honest. Furthermore, even if en-
cryption for malicious recipients is additionally considered,
RSA-OAEP remains secure as long the randomness used for
the honest recipient cannot be efficiently computed from the
randomness used for the malicious recipients. However, we
note that since RSA-OAEP encryption is randomness recov-
ering, security is not guaranteed under randomness relations
that allow malicious recipients to infer the randomness used
for a honest user. This holds for any randomness recovering
scheme (see discussion in Section 4).

Secondly, we focus on the RSA-PSS signature scheme [9],
which is also part of PKCS#1 v2.2 [37]. Specifically, we
show that the RSA-PSS signature scheme is related ran-
domness secure for any related randomness function family
Φ. While this shows robustness against any type of random-
ness failure, the obtained security reduction is not tight like
the original security reduction for RSA-PSS, which was one
of the motivating factors behind the design of the scheme.
We do show, however, that if related randomness functions
are not repeated in signature queries, and Φ is continuously
hard-to-compute, a tight security reduction can be obtained.
The latter requirement means that given the output of a
subset of functions in Φ on a randomly chosen input, the
output of the remaining functions in Φ is hard to compute.
We emphasize that these assumptions can be seen as some-
what restrictive, and that, for example, repeated use of the
same random value is not captured by these. However, the
restrictions can potentially capture a RNG which is in a
state where no new entropy is added, but is evolved for each
signature generation.

1.2 Technical Challenges
The RSA-OAEP encryption scheme makes use of a padding

scheme reminiscent of a Feistel network. Specifically, using
hash functions G and H, a message m is encrypted by firstly
picking randomness r, and essentially setting s← m⊕G(r)
and t ← r ⊕ H(s). Finally, a ciphertext is obtained by
computing (s||t)e mod N where e and N are the RSA en-
cryption exponent and modulus, respectively. The stan-
dard proof of IND-CCA security of RSA-OAEP [21] cru-
cially depend on r being fresh and unpredictable for the
challenge encryption. However, this is not the case in the
related randomness setting. For example, consider the case
in which the same randomness r is used for the encryp-
tion of two different messages m and m′. Here, the values
s = m ⊕ G(r) and s′ = m′ ⊕ G(r) are correlated. In par-
ticular, s ⊕ s′ = m ⊕m′, which is known to the adversary.
Hence, s||t and the corresponding s′||t′ are not independent,
and the approach from original security proof, which relies
on replacing (s||t)e mod N with a random element of Z∗N ,
breaks down. However, by relying on the Φ-hiding assump-
tion and the algebraic properties implied by this2, we show

2In particular, we make use of the result by Smith and
Zhang [40] that essentially shows that, under the Φ-hiding
assumption, an arithmetic progression in ZN and an uni-
formly chosen value in ZN are indistinguishable when ap-
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that a security reduction to the RSA problem can still be
obtained in this case (even when relations arising from any
collision resistant function family Φ are considered).

The RSA-PSS signature scheme makes use of a differ-
ent type of padding scheme. More precisely, using hash
functions G1, G2, and H, a signature on a message m is
obtained by firstly picking randomness r and computing
w ← H(m||r) and y ← 0||w||(r ⊕ G1(w))||G2(w). Finally,
the signature is obtained by computing σ ← yd mod N ,
where d and N are the RSA decryption exponent and mod-
ulus, respectively. The security proof of RSA-PSS [9], which
is tight, relies on the property that a random r will not col-
lide with values queried by the adversary or used in previ-
ously generated signatures. This assumption obviously does
not hold in the related randomness setting. Note also that
since signatures reveal the used randomness, if φ′(r) is com-
putable from φ(r), the adversary will be able to compute the
randomness which will be used in a future signature query.
Additionally, for signature schemes, we might even consider
constant functions φ(·) = c which will make signatures de-
terministic. In this case, the results by Coron [16] imply
that a tight security reduction cannot be obtained. How-
ever, adopting the ideas used by Coron [15] to prove security
of the full domain hash signature scheme, we show a reduc-
tion from the related randomness security of RSA-PSS to
the RSA problem for any function family Φ, with a security
loss proportional to the number of signing queries. Addition-
ally, we show that when the adversary cannot compute φ′(r)
from φ(r) (i.e. the function family Φ is continuously hard-to-
compute and the adversary does not repeatably query the
same function φ), a tight reduction can be recovered.

1.3 On the Related Randomness Security of
Other Schemes

We will briefly make some simple observation regarding
the related randomness security of other encryption and sig-
nature schemes. For this purpose, we consider a very weak
type of a related randomness attack, repeated randomness,
in which the attacker obtains two encryptions (for a chal-
lenge public key) or two signatures using the same random-
ness.

In the case of encryption, the problems that might arise
from repeated randomness are well-known from the litera-
ture on randomness re-use for the purpose of optimization
(e.g. see [3, 5, 35]). For example, it is straightforward to
see that the use of repeated randomness will render the El-
Gamal [23] and Cramer-Shoup [17] encryption schemes inse-
cure, as the structure of the ciphertexts for these schemes al-
lows an attacker to compute the ratio of the encrypted mes-
sages when sent to the same recipient3. While DHIES [1],
standardized in IEEE 1363a [28], is based on ElGamal, a
similar attack is not possible due to the hybrid structure of
DHIES, in which a key for a symmetric encryption scheme
is derived and used to encrypt the message. However, the
use of repeated randomness will cause the symmetric en-
cryption component to use the same key and initialization
vector (IV), and it is well known that common implementa-
tions of symmetric encryption, such as a block cipher used

plying the RSA function to these.
3Let c and c′ be ElGamal encryptions of messages m and m′

under public key y and randomness r. We then have that
c = (c1, c2) = (gr, yr ·m) and c′ = (c′1, c

′
2) = (gr, yr ·m′),

and can hence compute m/m′ = c2/c
′
2.

in counter (CTR) or cipher-block-chaining (CBC) mode, be-
comes insecure in this case. A similar observation holds for
encryption based on RSA-KEM [39], standardized in ISO
18033-2 [29], which will also make use of a symmetric en-
cryption component for the encryption of the message.

In the case of signatures, as already mentioned above,
the DSA signature scheme and the elliptic curve variant
ECDSA, standardized by NIST in FIPS 186-4 [33], becomes
insecure if randomness values are repeated, as this allows the
signing key to be recovered from the resulting signatures.
This is likewise true for the Schnorr signatures scheme [38].
In contrast, the full domain hash signature scheme FDH [7],
also specified as part of PKCS#1 v2.2, is deterministic and
therefore remain secure for any related randomness attack.

Our results show that, unlike the above mentioned schemes
(with the exception of FDH), RSA-OAEP encryption and
RSA-PSS signatures provide some protection against ran-
domness failures, and are hence preferable in environments
where randomness failures might be a concern.

2. PRELIMINARIES

2.1 Notation
Throughout the paper, we will use the following notation.

We let N denote the set of natural numbers. λ ∈ N denotes
the security parameter, which will sometimes be written in
its unary representation, 1λ, and ∅ denotes the empty set.
We let x||y denote the concatenation of (the binary repre-
sentation of) x and y. x ← y denotes the assignment of y
to x. ZN denotes the residue ring Z/NZ and Z∗N denotes
the multiplicative group of integers modulo N . If S is a set,
then x←$ S denotes the selection of an element x uniformly
at random from S. If x is a `-bit string and ` ≥ n, [x]n de-
notes the n most significant bits of x and [x]n denotes the n
least significant bits of x. If A is a probabilistic algorithm,
then y ← A(x1, x2, · · · ) denotes that A takes x1, x2, · · · as
inputs and outputs y, and AO denotes A has oracle access
to the oracle O. If X and Y are random variables, then
SD(X,Y ) denotes the statistical distance between X and Y ,
i.e., SD(X,Y ) = 1

2
Σz|Pr[X = z] − Pr[Y = z]|. A function

ε : N→ [0, 1] is said to be negligible in k if ε(k) < 1/p(k) for
any positive polynomial p(k) and all sufficiently large k ∈ N.

2.2 Collision Resistance
In our analysis of the related randomness security of RSA-

OAEP and RSA-PSS (with tight reduction), we will consider
a class of related randomness functions Φ which is collision
resistant. Following [34], we define this property as follows:

Definition 1 (Collision resistance). Let Φ = {φ :
{0, 1}k → {0, 1}k} be a family of functions, where k(λ) is a
function in λ. We say that Φ is collision-resistant if CRΦ(λ)
is negligible in λ, where

CRΦ(λ) = max
φ1,φ2∈Φ,φ1 6=φ2

Pr[x←$ {0, 1}k : φ1(x) = φ2(x)].

2.3 RSA and Φ-hiding Assumptions
In our security proofs, we will make use of both the RSA

assumption, and in the case of RSA-OAEP, also the Φ-hiding
assumption. We define these as follows.
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2.3.1 RSA Assumption
Let Primesλ denote the uniform distribution of λ-bit primes.

For a constant c ∈ (0, 1), let RSAGen(1λ, c) denote the key
generation algorithm for RSA that chooses p, q ←$ Primesλ/2
and e←$ Primescλ and outputs (N, e, d) where N = p ·q and
(xe)d = x mod N for all x ∈ Z∗N .

Definition 2 (RSA assumption). Let c(λ) ∈ (0, 1) be
a function. For any probabilistic polynomial time adversary
A, the advantage of A for the RSA problem is defined as

Adv
RSA
c,A(λ) =

Pr

[
xe = y mod N :

(N, e, d)← RSAGen(1λ, c);
y ←$ Z∗N ;x← A(N, e, y)

]
.

We say that the RSA assumption holds for c if AdvRSAc,A(λ) is
negligible in λ for any probabilistic polynomial time adver-
sary A.

In shorthand, we use RSAGen(1λ) to denote RSAGen(1λ, c)
for some constant c satisfying RSA assumption. We say that
the RSA assumption holds for ε(λ) if there exists a constant
c ∈ (0, 1) such that the RSA assumption holds for (c, ε(λ)).

Instead of proving the security of RSA-OAEP directly
based on the RSA assumption, we will use the following
equivalent assumption regarding partial-domain one-wayness:

Definition 3 (Partial-domain one-wayness). Let f
be a permutation f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}k, where
k = n+k0+k1. The advantage for a probabilistic polynomial
time algorithm A outputting a set of ` elements is defined as

Adv
s-pd-ow
`,A (λ) =

Pr[s ∈ A(f(s, t)) : s←$ {0, 1}n+k1 , t←$ {0, 1}k0 ].

We say that f is `-set partial-domain one-way if for any
probabilistic polynomial time algorithm A outputting a set
of ` elements, Advs-pd-ow`,A (λ) is negligible in λ.

The following lemma establishes the equivalence between
the RSA assumption and partial-domain one-wayness.

Lemma 1. (Lemma 4 in [22]) Let 2k−1 < N < 2k and let
k > 2k0. Let A be a probabilistic polynomial time algorithm
that given x ∈ ZN , outputs a set of l strings containing the
k − k0 most significant bits of the e-th root of x with prob-
ability ε (i.e. A breaks the l-set partial-domain one-wayness
of f : x→ xe mod N). Then there exists a polynomial time
algorithm B that solves the RSA problem (N, e) with success
probability ε′, where

ε′ ≥ ε · (ε− 22k0−k+6).

2.3.2 Φ-hiding Assumption
The Φ-hiding assumption informally states that given a

RSA modulus N , it is not possible to distinguish primes e′

which do not divide Φ(N) from primes e that do, where
Φ(N) = (p− 1)(q− 1) is Euler’s totient function. Note that
in the latter case, the RSA function f : x → xe mod N
is no longer a permutation, but becomes a lossy function.
Following [40], we define the Φ-hiding assumption as follows.

Let Primesλ[· · · ] denote the uniform distribution of λ-bit
primes satisfying the condition in brackets. Let RSAinjc,θ and

RSAlossc,θ be algorithms that output the public key (pq, e) and
a lossy public key (pq, e) satisfying p = 1 mod e, respectively
(Figure 1).

Definition 4 (Φ-hiding assumption). Let c(λ), θ(λ)
be functions such that c ∈ (0, 1) and θ is an even integer sat-
isfying 0 < θ < λ. For any probabilistic polynomial time dis-
tinguisher A, the advantage of A for breaking the Φ-hiding
assumption is defined as

Adv
ΦA
c,θ,A(λ) =∣∣∣Pr[A(RSAinjc,θ (λ)) = 1]− Pr[A(RSAlossc,θ (λ)) = 1]

∣∣∣ .
We say that the Φ-hiding assumption holds for (c, θ, ε) if for
any probabilistic polynomial time distinguisher A, AdvΦA

c,θ,A(λ)
is negligible in λ.

Smith and Zhang [40] showed that, under a lossy key
(N, e), the distributions of ye mod N and ze mod N are sta-
tistically close, where y is chosen from an arithmetic progres-
sion and z is chosen uniformly at random. We will make use
of this lemma to prove the security of IND-RR-CCA secu-
rity of RSA-OAEP (Lemma 12).

Lemma 2. (Theorem 2 in [40]) Let N = pq (p, q are
primes) and assume that q > p and that σ,N are co-prime.
Let PK = {σi + τ : i = 0, 1, · · · ,K − 1} and assume that
K > q. Let e be such that p = 1 mod e and e, q − 1 are
co-prime. Then,

SD(ye mod n, ze mod N) ≤ 3q

K
+

2p

q − 1
+

2

p− 1
+

√
N

eK
,

where y ←$ PK and z ←$ Z∗N .

2.4 Signatures
A signature scheme S is defined by three algorithms with

the following functionality:

S.KeyGen(1λ) This is the key generations algorithm, which
on input the security parameters 1λ, returns a key pair
(vk, sk) consisting of a verification key vk and a signing
key sk.

S.Sign(sk,m) This is the signing algorithm, which on input
a signing key sk, and a message m, returns a signature
σ on m.

S.Verify(vk,m, σ) This is the verification algorithm, which
on input a verification key vk, a message m, and a
signature σ, returns either a symbol > indicating that
σ is accepted as a valid signature on m under vk, or
the rejection symbol ⊥.

We require a signature scheme to satisfy perfect correctness,
that is, for all λ, all (vk, sk) ← S.KeyGen(1λ), and all mes-
sages m, it holds that S.Verify(vk,m, S.Sign(sk,m)) = >.

2.5 Public Key Encryption
A public key encryption scheme PKE is defined by three

algorithms with the following functionality:

PKE.KeyGen(1λ) This is the key generations algorithm, which
on input the security parameter 1λ, returns a pub-
lic/private key pair (pk, sk). The public key pk defines
a supported message M(pk).

PKE.Enc(pk,m) This is the encryption algorithm, which on
input a public key pk and a message m, returns an
encryption c of m under pk.
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RSAinjc,θ (λ):

(N, e, d)←$ RSAGen(1λ, c)
return (N, e)

RSAlossc,θ (λ):

e←$ Primescλ
p←$ Primesλ

2
− θ

2
[p = 1 mod e]

q ←$ Primesλ
2

+ θ
2

return (pq, e)

Figure 1: Algorithms for defining the Φ-hiding assumption

PKE.Dec(par, sk, c) This is the decryption algorithm, which
on input a private key sk and a ciphertext c, returns
either a message m or the error symbol ⊥.

We require that an encryption scheme satisfies perfect cor-
rectness, that is, for all λ, all (pk, sk)← PKE.KeyGen(1λ), and
all m ∈M(pk), it holds that PKE.Dec(sk, PKE.Enc(pk,m)) =
m.

3. PKCS#1
The Public Key Cryptography Standards (PKCS) are a

group of cryptographic standards originally published by
RSA Securities Inc. The PKCS#1 standard specifies RSA-
based public-key encryption and signatures, and the cur-
rent version, PKCS#1 v2.2 [37], includes the specification
of RSA-OAEP encryption and RSA-PSS signatures, which
we will recall below. Besides these, PKCS#1 v2.2 includes a
signature scheme originating from the earlier PKCS#1 v1.5
standard, which is similar to the FDH signature scheme (un-
like FDH, a simple padding scheme is used), as well as an
encryption scheme which also originates from PKCS#1 v1.5.
However, as the PKCS#1 v1.5 encryption scheme does not
provide an appropriate level of security (e.g. see [2]), we will
not discuss this further.

3.1 RSA-OAEP Encryption
The RSA-OAEP encryption scheme was originally pro-

posed by Bellare and Rogaway [8], and has been shown IND-
CCA secure under the RSA assumption in the random oracle
model [21,22].

In our description of the scheme we make use of RSAGen,
and the scheme is parameterized by k0 and k1 which are
values satisfying k = n + k0 + k1, where k(λ) is the bit
length of the modulus N generated by RSAGen(1λ) and n
is the plaintext length. The scheme makes use of two hash
functions, G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 →
{0, 1}k0 .

KeyGen(1λ) Run (N, e, d)← RSAGen(1λ), and set pk ← (N, e)
and sk ← (N, d). Return (pk, sk).

PKE.Enc(pk,m) Pick r ←$ {0, 1}k0 and compute s = (m||0k1)⊕
G(r) and t = r ⊕H(s). Then sets c ← (s||t)e mod N
and return c.

PKE.Dec(sk, c) Compute s||t = cd mod N , r = t⊕H(s) and
M = r ⊕ G(r). If [M ]k1 = 0k1 , returns [M ]n. Other-
wise, return ⊥.

3.2 RSA-PSS Signatures
The RSA-PSS signature scheme makes use of RSAGen and

is parameterized by k0 and k1 which are values satisfying
k0 +k1 ≤ k−1, where k = k(λ) is the bit length of the mod-
ulus N generated by RSAGen(1λ). The scheme furthermore
makes use of two hash functions, H : {0, 1}∗ → {0, 1}k1 and

G : {0, 1}k1 → {0, 1}k−k1−1. For convenience, we will de-
note by G1(·) the k1 most significant bits of the output of
G, and by G2(·) the remaining k − k0 − k1 − 1 bits.

PSS.KeyGen(1λ) Run (N, e, d) ← RSAGen(1λ), and set vk ←
(N, e) and sk ← (N, d). Return (vk, sk).

PSS.Sign(sk,m) Pick random r ←$ {0, 1}k0 and compute
w ← H(m||r). Then set y ← 0||w||(r⊕G1(w))||G2(w),
and return the signature σ ← yd mod N .

PSS.Verify(vk,m, σ) Firstly compute y ← σd and parse
y → b||w||r′||γ. Furthermore, set r ← r′ ⊕ G1(w).
If b = 0, H(m||r) = w, and G2(w) = γ, return >.
Otherwise, return ⊥.

4. SECURITY MODELS
Related randomness security for encryption was introduced

by Paterson et al. [34], and captures a broad rage of random-
ness failures. In this section, we define (a slight variation of)
the security notion from [34] which we will use to analyze
RSA-OAEP encryption. We furthermore define the natu-
ral adaptation of this security notion to signature schemes
which we will use in our analysis of RSA-PSS signatures.
We note that Yuen et al. [41] considered an adaptation of
the [34] model to signature schemes which additionally takes
into account related key attacks. However, the notion we
define here is only concerned with randomness failures and
will not take into account an adversary with the ability to
manipulate the private key material of the signer.

4.1 Related Randomness Secure Encryption
The related randomness security notion defined in [34]

allows the adversary to control the randomness used in en-
cryption via related randomness functions. Specifically, the
security experiment initially picks a uniformly distributed
value r, and the adversary is allowed to request encryptions
Enc(pk,m;ψ(r)) for public keys pk, messages m, and re-
lated randomness functions ψ of his choice. Note that pk
might be a maliciously generated public key, and that the
adversary potentially knows the corresponding private key.
This captures that encryptions might be done for malicious
users. The adversary is challenged to distinguish between
encryptions Enc(pk∗,m0;φ(r)) and Enc(pk∗,m1;φ(r)) for a
challenge public key pk∗ honestly generated by the experi-
ment, and messages m0, m1 and related randomness func-
tion φ of his choice. Note that in this model, the adversary
cannot influence the randomness used to generate pk∗. The
adversary is allowed to make multiple challenge queries, as
in the related randomness setting, multi-challenge security
is not implied by single-challenge security as for ordinary
IND-CCA security4. Furthermore, note that the challenge
4Note that the challenge queries are no longer independent
due to the use of related randomness, and hence cannot be
treated separately in a reduction to single-challenge security.
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IND-RR-CCAPKE
A (λ):

(pk∗, sk∗)← PKE.KeyGen(1λ)
b←$ {0, 1}; r ←$ R
S ← ∅
b′ ← ALR,Enc,Dec(par, pk∗)
return (b = b′)

proc. Enc(pk,m,ψ):

c← PKE.Enc(pk,m;ψ(r))
return c

proc. Dec(c):

if c ∈ S, then return ⊥
else return PKE.Dec(sk∗, c)

proc. LR(m0,m1, φ):

c← PKE.Enc(pk∗,mb;φ(r))
S ← S ∪ {c}
return c

Figure 2: Game defining indistinguishability under related randomness and chosen ciphertext attacks (IND-
RR-CCA)

queries provide the adversary with an encryption oracle for
the honestly generated pk∗ and functions φ; by submitting
(m,m, φ), the adversary obtains Enc(pk∗,m;φ(r)). Lastly,
as we consider CCA security, the adversary is allowed to
request decryptions under sk∗ corresponding to pk∗ for ci-
phertexts of his choice, but as decryption is assumed to be
deterministic, this is similar to ordinary IND-CCA security.
We refer to an adversary who is restricted to picking related
randomness functions φ and ψ from functions families Φ and
Ψ, as (Φ,Ψ)-restricted. The full security game is shown in
Figure 2.

It should be noted that, in the above description, we con-
sider separate functions families Φ and Ψ, whereas the no-
tion defined in [34] only considers a single function family
i.e. Φ = Ψ. This allows us to distinguish between the related
randomness functions used for malicious users for which the
adversary might know the private key, and the related ran-
domness functions used for the honest challenge user. This
in turn allows a more detailed description of the security
properties provided by RSA-OAEP encryption.

As should be apparent from the above description, the
considered adversary in the related randomness setting is
very powerful, and some restrictions must be applied to
obtain a meaningful notion of security. For example, it is
easy to see that an adversary submitting challenge queries
(m0,m1, id) and (m0,m2, id) can easily detect whether the
first or second message is being encrypted, simply by check-
ing whether the same ciphertext is returned in response to
these queries. This is similar to the notions of determinis-
tic encryption and related key attack security where adver-
sary restrictions are likewise needed to ensure a meaning-
ful security definition. In the following, we will introduce
a restricted class of adversaries which we denote equality-
respecting adversaries. Our notion is slightly weaker than
the corresponding notion in [34] as the restriction does not
take into account encryption queries. This is possible as we
can rule out the trivial attacks not captured by the following
definition, by placing restrictions on the function families Ψ
and Φ that cannot be captured using a single function family
as in [34].

Definition 5 (LR-equality-respecting Adversary).
Consider a (Φ,Ψ)-restricted adversary A playing the IND-

RR-CCA security game. Let (mφ,1
0 ,mφ,1

1 ), . . . , (m
φ,qφ
0 ,m

φ,qφ
1 )

denote the messages A submits to the LR oracle for func-
tion φ. Then A is said to be LR-equality-respecting if, for
all φ ∈ Φ and for all i, j ∈ [qφ] s.t. i 6= j,

mφ,i
0 = mφ,j

0 ⇔ mφ,i
1 = mφ,j

1

With the above restriction in place, we can define the
notion of related randomness security.

HTCΦ,Ψ
A (λ):

x←$ D
S ← ∅
y ← AGet,Set(1λ)
if y ∈ S

return 1
else return 0

proc. Get(i):

return ψi(x)

proc. Set(j):

S ← S ∪ {φj(x)}

Figure 3: Game defining adaptively hard-to-com-
pute function families

Definition 6 (IND-RR-CCA Security). Let the ad-
vantage of an adversary A playing the IND-RR-CCA game
with respect to a public key encryption scheme PKE = (Setup,
KeyGen, Enc, Dec), be defined as:

Adv
IND-RR-CCA
PKE,A (λ) = 2

∣∣∣∣Pr[IND-RR-CCAAPKE(λ)⇒ 1]− 1

2

∣∣∣∣
A scheme PKE is said to be (Φ,Ψ)-IND-RR-CCA secure,
if for all polynomial time (Φ,Ψ)-restricted and LR-equality-
respecting adversaries A, AdvIND-RR-CCA

PKE,A (λ) is negligible in
the security parameter λ.

From the definition, it is clear that security cannot be
achieved for any function families Ψ and Φ. In [34], it was
shown that security is only achievable for collision resistant
and unpredictable functions. We furthermore note that, for
any randomness recovering scheme, such as RSA-OAEP, se-
curity cannot be achieved if Ψ ∩ Φ 6= ∅. Specifically, if
there exist ψ′ ∈ Ψ ∩ Φ, the adversary can simply submit
(m0,m1, ψ

′) to his LR oracle and (pk,m,ψ′) to his Enc or-
acle using a public key pk for which he knows the private
key. From the ciphertext obtained in the latter query, the
adversary can recover ψ′(r) which will also be used as ran-
domness in his challenge query. Hence, the adversary can
trivially determine the challenge bit b by re-encrypting m0

and m1 using ψ′(r).
In this paper, we will be concerned with function families

Φ which are collision resistant (see Section 2), and which
are furthermore (adaptively) hard-to-compute with respect
to the function family Ψ. The latter intuitively means that,
for a randomly chosen r, the values φ(r) for φ ∈ Φ are hard
to compute, even when given values ψ(r) for ψ ∈ Ψ. We
formalize this in the following definition. Note that if Ψ
is hard-to-compute with respect to Ψ, it follows that Φ is
unpredictable and that Ψ ∩ Φ = ∅.

Definition 7. (Adaptively hard-to-compute func-
tion families). A function family Φ is said to be adaptively
hard-to-compute with respect to a function family Ψ if all
polynomial time adversaries A have advantage AdvHTC

Φ,Ψ,A(λ)
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UF-RR-CMAS
A(λ):

(vk, sk)← S.KeyGen(1λ)
r ←R; M← ∅
(m∗, σ∗)← ASign(vk)
if S.Verify(vk,m∗, σ∗)
∧m∗ 6∈ M

return 1
else return 0

proc. Sign(m,φ):

σ ← S.Sign(sk,m;φ(r))
M←M∪ {m}
return σ

Figure 4: Game defining existential unforgeability
under a related randomness and chosen message at-
tack (UF-RR-CMA)

is negligible in λ, where

Adv
HTC
Φ,Ψ,A(λ) = Pr[HTCΦ,Ψ

A (1λ)⇒ 1]

4.2 Related Randomness Secure Signatures
Adapting the related randomness security notion from [34]

is relatively simple. We consider a security experiment which
initially chooses a value r, and then allow the adversary to
obtain signatures σ = Sign(sk,m;φ(r)) for his choice of
message m and related randomness function φ. As in the
case of encryption, we refer to an adversary as Φ-restricted,
if his is restricted to querying functions φ ∈ Φ. The full
security experiment is shown in Figure 4.

Definition 8 (UF-RR-CMA Security). Let the ad-
vantage of an adversary A playing the UF-RR-CMA game
with respect to a signature scheme S = (KeyGen, Sign, Verify),
be defined as:

Adv
UF-RR-CMA
S,A (λ) = Pr[UF-RR-CMAS

A(λ)⇒ 1]

A scheme PKE is said to be Φ-UF-RR-CMA secure, if for all
polynomial time Φ-restricted adversaries A, AdvUF-RR-CMA

S,A (λ)
is negligible in the security parameter λ.

Note that for signatures, no restrictions are placed on
the adversary. Furthermore, security is achievable for any
function class Φ. In fact, any UF-CMA secure signature
scheme can be converted to a scheme achieving UF-RR-
CMA security for any function class Φ by de-randomizing
the scheme. More concretely, using the folklore technique for
de-randomization, a key k for a pseudorandom function prf

could be added to the signing key, and whenever a signature
on message m is created, the randomness r ← prf(k,m) is
used. The UF-CMA security of the scheme is easily seen to
be maintained, and as the scheme no longer uses random-
ness, it is secure against any type of randomness failure.
However, as clearly illustrated by the incidents involving
DSA signatures, randomness failures might have fatal con-
sequences for schemes that are not de-randomized or deter-
ministic by design. For these, considering the above notion
for various function classes Φ is relevant.

In our analysis of RSA-PSS signatures, we will consider a
function class Φ which is continuously hard-to-compute. We
formally define this property as follows.

Definition 9. (Continuously hard-to-compute func-
tion families) A function family Φ is said to be continu-
ously ε-hard-to-compute if all polynomial time adversaries
A have advantage AdvCHTC

Φ,A < ε, where

AdvCHTC
Φ,A = Pr[CHTCΦ

A(λ)⇒ 1]

CHTCΦ
A(λ):

x←$ D
S ← ∅
(j, y)← AGet(1λ)
if y = φj(x) ∧ j 6∈ S

return 1
else return 0

proc. Get(i):

S ← S ∪ {i}
return φi(x)

Figure 5: Game defining continuously hard-to-
compute function families

If ε = ε(λ) is a negligible function, we simply say that Φ is
continuously hard-to-compute.

5. RELATED RANDOMNESS SECURITY OF
RSA-OAEP ENCRYPTION

In this section, we will prove that, under the RSA and Φ-
hiding assumptions, RSA-OAEP is IND-RR-CCA secure in
the random oracle model for function families (Φ,Ψ) where
Φ is collision resistant and adaptively hard-to-compute with
respect to Ψ.

As highlighted in the introduction, the key obstacle to
obtaining a proof is that the IND-RR-CCA game permits
adversaries to query LR oracle multiple times, and hence,
the adversary may obtain two challenge ciphertexts y1 =
(s1||t1)e and y2 = (s2||t2)e such that s1⊕ s2 = ∆ for known
∆. In this situation, there is no obvious way to create a re-
duction to the partial-domain one-wayness as in the original
proof for RSA-OAEP.

To overcome this difficulty, we use the Φ-hiding assump-
tion, which states that the public key e and a lossy key
e′ are statistically indistinguishable. More specifically, un-
der a lossy key e′, we show that an adversary cannot exploit
this knowledge to distinguish challenge ciphertexts from ran-
dom elements, and hence obtain a reduction to the partial-
domain one-wayness. In the proof, we make use of the re-
sults by Smith and Zhang [40] regarding the properties of
the RSA function under a lossy key (see Section 2, Lemma
2).

Theorem 1. Assume that Φ is collision resistant and adap-
tively hard-to-compute with respect to Ψ, that the RSA func-
tion satisfies set partial-domain one-wayness, and that the
Φ-hiding assumption holds. Then, RSA-OAEP is (Φ,Ψ)-
IND-RR-CCA secure. Specifically, for any polynomial time
(Φ,Ψ)-restricted and LR-equality-respecting adversary A, the
following inequality holds.

Adv
IND-RR-CCA
OAEP,A (λ) ≤ qD

2k1
+
qDqG
2k0

+ q2
LR ·CRΦ(λ)

+ qG · AdvHTC
Φ,Ψ,A + 2qLR · Advs-pd-owc,qH ,A(λ) + Adv

ΦA
c,θ,A(λ)

+ 3qLR · (ε+ 2−k/2+2),

where qLR, qG, qH and qD are the number of queries to the
LR, G, H and Dec oracles, and the parameters satisfy that
k0 ≥ logN − log e+ 2 log 1

ε
+ 4, θ ≥ 4 + log 1

ε
and 3θ < k.

We first define a sequence of games. Without loss of gen-
erality, we assume that A never repeats an oracle query.
We will furthermore use the subscript i to denote the values
submitted or computed in the i-th query.

Game0. This is just the IND-RR-CCA game.
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Game1. We modify the above game by changing the Dec
oracle so as to reject all ciphertext y for which the
corresponding t⊕H(s) has not been queried to the G
oracle previously.

Game2. We modify the above game by changing the Dec
oracle so as to reject all ciphertexts y for which the
corresponding s has not been queried to the H oracle
previously.

Game3. In this game, the response to Dec oracle queries is
computed without the challenge private key d. This is
possible because the Dec oracle needs to answer only
the queries where r and s have been previously queried,
and the values G(r) and H(s) are sufficient to decrypt
the corresponding ciphertext5.

Game4. We modify the above game by changing the chal-
lenge public key to a lossy key i.e. (N, e)← RSAlossc,θ (λ).

Game5. We modify the above game by changing the LR
oracle so as to use a uniformly random value g+

i instead
of G(φi(r)).

Game6. We modify the above game by changing the LR
oracle so as to use a uniformly random value h+

i ←$

{0, 1}k0 instead of H(si).

Game7. We modify the above game by changing the LR
oracle so as to compute all challenge ciphertexts yi as

(xi)
e mod N where xi

$←− ZN .

We denote by Si the event b′ = b in Gamei. We denote by
OH
i the set of all x which are queried to the H oracle by the

adversary in Gamei, and by OLR,H
i the set of all s which are

queried to H by Gamei in the response to LR oracle queries.
We likewise define OG

i and OLR,G
i for oracle G. We denote

by AskHi the event OH
i ∩OLR,H

i 6= ∅, and by AskGi the event

OG
i ∩ OLR,G

i 6= ∅.

Lemma 3. |Pr[S1]− Pr[S0]| ≤ qD
2k1

.

Proof. The two games Game1 and Game2 may differ if
there is a Dec query y which is a valid ciphertext while
the corresponding φ(r) has not been queried to G. Since
G(φ(r)) is uniformly distributed, equality [s⊕G(φ(r))]k1 =
0k1 happens with probability 1/2k1 . Summing up for all
Dec queries, it holds that |Pr[S1]− Pr[S0]| ≤ qD

2k1
. 2

Lemma 4. |Pr[S2]− Pr[S1]| ≤ qDqG
2k0

.

Proof. The two games Game1 and Game2 may differ if
there is a Dec query y = (s||t)e mod N which is a valid
ciphertext and the corresponding H(s) ⊕ t value has been
queried to G, while corresponding s has not been queried to
H. Since H(s) is uniformly distributed, H(s) ⊕ t has been
queried to G with probability less than qG/2

k0 . Summing up
for all Dec queries, it holds that |Pr[S3]− Pr[S2]| ≤ qDqG

2k0
.

2

Lemma 5. Pr[S3] = Pr[S2].

Proof. The two games are the same from the adversary’s
point of view. 2

5Note that the Dec oracle can test whether values r and s
correspond to a ciphertext c by setting t ← r ⊕ H(s) and
checking whether c = (s||t)e mod N .

Lemma 6. |Pr[S4]− Pr[S3]| ≤ AdvΦA
c,θ,A.

Proof. The only difference between Game3 and Game4 is
that the former uses the honestly generated public key but
the latter uses a lossy key. We can create a polynomial time
algorithm D such that the statements hold. On receiving
(N, e) which is either an injective or a lossy key, D plays
the security game interacting with A. Since the Dec oracle
was modified so that it does not need the secret key, D can
answer all Dec queries. Finally, D outputs the same bit
as A. If the key is injective, A is in Game4, otherwise, in
Game5. Thus, |Pr[S5]− Pr[S4]| ≤ AdvΦA

c,θ,A. 2

Lemma 7. |Pr[S5]− Pr[S4]| ≤ Pr[AskG5] + q2
LR ·CRΦ.

Proof. Let Coll be the event that, for the set of func-
tions {φ1, φ2, · · · , φqLR} queried by A, there is at least one
collision φi(r

∗) = φj(r
∗) where φi 6= φj .

We claim that Pr[S5|¬(Coll ∨ AskG5)] = Pr[S4|¬(Coll ∨
AskG5)]. Because if φ1(r∗), φ2(r∗), · · · , φqLR(r∗) are all dis-
tinct (unless φi = φj), and they are not queried to the G
oracle, then G(φi(r

∗)) and g+
i are distributed identically.

From the well-known difference lemma, we get

|Pr[S5]− Pr[S4]| ≤ Pr[Coll ∨ AskG5] ≤ Pr[Coll] + Pr[AskG5].

We claim that Pr[Coll] ≤ q2
LR ·CRΦ. For fixed φi, φj ∈ Φ,

the probability that φi(r
∗) = φj(r

∗) for a uniformly random
r∗ is at most CRΦ. Summing up for all pairs (φi, φj), we get

Pr[Coll] ≤ qLR(qLR−1)
2

· CRΦ ≤ q2
LR · CRΦ. This completes

the proof. 2

Lemma 8. The following equations hold.

|Pr[S6]− Pr[S5]| ≤ Pr[AskH6].

|Pr[AskG6]− Pr[AskG5]| ≤ Pr[AskH6].

Proof. The two games Game5 and Game6 are the same
whenever OH

5 ∩ OLR,H
5 = OH

6 ∩ OLR,H
6 = ∅. Thus, we get

Pr[S6|¬AskH6] = Pr[S5|¬AskH5] and

Pr[AskG6|¬AskH6] = Pr[AskG5|¬AskH5].

We complete the proof by using the difference lemma. 2

Lemma 9. Pr[AskG6] ≤ qG · AdvHTC
Φ,Ψ,A.

Proof. We will show that if there is an adversary A
which can cause the event AskG6 with probability ε, then we
can create a reduction algorithm B that can break the adap-
tively hard-to-compute property of Φ with success proba-
bility ε/qG. B plays the role of Game6 without knowing
the randomness r∗. B can answer all Enc queries since B
has access to the Get oracle, which returns ψ(r∗). (Note
that, in Game6, r∗ is not required to respond to LR oracle
queries.) Finally, B outputs x ←$ OG

6 . By assumption, the

event OG
6 ∩ OLR,G

6 6= ∅ occurs with probability ε. Thus, the

probability that x ∈ OLR,G
6 occurs, which is equivalent to

AdvHTC
Φ,Ψ,A, is at least ε/qG. This completes the proof. 2

Lemma 10. The following equations hold.

|Pr[S7]− Pr[S6]| ≤ qLR · (ε+ 2−k/2+2).

|Pr[AskH7]− Pr[AskH6]| ≤ qLR · (ε+ 2−k/2+2).

Proof. Game7 is identical to Game6 except that the chal-
lenge ciphertexts yi = (si||ti)e is replaced with xe where
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x ← Z∗N is a uniformly random element. In Game6, we can
regard the plaintext (si||ti) as a sample from an arithmetic
progression with length 2k0 since ti is uniformly distributed.
More specifically, for i ∈ {1, · · · , qLR}, let Ysi be a set of the
arithmetic progression Ysi = {(si||ti) : ti ← {0, 1}k0}. From
Lemmas 11 and 12 stated in the following, we have

SD(ye mod N, ze mod N) ≤ ε+ 2−k/2+2,

where y ←$ Ysi and z ←$ ZN . Summing up for all LR
queries, we can conclude that |Pr[S7]− Pr[S6]| ≤ qLR · (ε+

2−k/2+2) and |Pr[AskH7]−Pr[AskH6]| ≤ qLR · (ε+ 2−k/2+2).
2

The following two lemmas completes the proof of Lemma
8. The latter lemma (Lemma 12) was originally stated by
Smith and Zhang in [40, Theorem 8].6

Lemma 11. SD(x, x′) ≤ 2−k/2+2, where x ←$ ZN and
z ←$ Z∗N .

Proof. Since |Z∗N | = φ(N) = N−p−q+1, there must be

at least 2k−1 − p− q ≥ 2k−1 − 2k/2+1 elements of Z∗N which
are less than 2k−1 (recall that p and q are k/2-bit primes).
Thus, the statistical distance between the two distributions
is at most 2k/2+1/2k−1 = 2−k/2+2. 2

Lemma 12. Let (N, e) ← RSAlossc,θ (λ), where 3θ ≤ k for
the modulus length k. Let PK = {σi+τ : i = 0, 1, · · · ,K−1},
where σ, n are co-prime. Assume that logK ≥ logN−log e+
2 log 1

ε
+ 4 and θ ≥ 4 + log 1

ε
for some 0 < ε < 1. Then,

SD(ye mod N, ze mod N) ≤ ε,

where y ←$ PK and z ←$ Z∗N .

Proof. From the definition of RSAlossc,θ , e and q − 1 are
co-prime, and q > p and p = 1 mod e are satisfied. The con-
dition K > q is also satisfied from the following inequality:

logK ≥ logN − log e+ 2 log
1

ε
+ 4 ≥ log q.

Therefore, all conditions in Lemma 2 are satisfied. We will
show that each of the four terms is less than ε

4
. We will use

(A) and (B) to denote the conditions logK ≥ logN−log e+
2 log 1

ε
+ 4 and θ ≥ 4 + log 1

ε
, respectively.

log
3q

K
= log 3 + log q − logK

≤ log 3 + log q −
(

logN − log e+ 2 log
1

ε
+ 4

)
≤ log 3 + log q −

(
log q + log

1

ε
+ 4

)
= log

ε

4
.

log
2p

q − 1
= 1 + log p− log(q − 1) ≤ 1 + log p− log q

= 1− θ ≤ 2−
(

4 + log
1

ε

)
= log

ε

4
.

log
2

p− 1
= 1− log(p− 1) ≤ 1− log p = 1− k − θ

2

≤ 1− θ = 1−
(

4 + log
1

ε

)
= log

ε

4
.

log

√
N

eK
=

1

2
(logN − log e− logK) ≤ log ε− 2 = log

ε

4
.

6The details of the proof is not given in [40]. We prove the
lemma under the additional condition 3θ ≤ k.

This completes the proof. 2

Lemma 13. Pr[S7] = 1
2

.

Proof. We observe that the input to the adversary fol-
lows a distribution that does not depend on the bit b. Ac-
cordingly, Pr[S7] = 1

2
. 2

Lemma 14. Pr[AskH7] ≤ qLR · Advs-pd-owc,qH ,A.

Proof. Let f be the RSA function f(x) = xe mod n.

Given y = f(s||t) for random (s||t) $←− Z∗n, the reduction
algorithm B plays the role of Game7 interacting with A.
At the beginning of the game, B randomly chooses i ∈
{1, · · · , qLR}. For the i-th LR query, it returns y as the
response of the oracle. Finally, B simply outputs all ele-
ments in the OH

6 . The probability that B breaks the qH -set
partial-domain one-wayness is greater than 1

qLR
Pr[AskH7].

2

The above Lemmas yield Theorem 1.

6. RELATED RANDOMNESS SECURITY OF
RSA-PSS SIGNATURES

We will now turn our attention to the RSA-PSS signature
scheme. Firstly, we consider related randomness security for
any function family Φ. As already highlighted in the intro-
duction, the original proof [9] will no longer work in this
case, as the randomness used when signing is no longer un-
predictable to the adversary. Furthermore, as an adversary
is allowed to used constant functions, which will essentially
make the signature scheme deterministic, the impossibility
results by Coron [16] implies that a reduction with a secu-
rity loss less than qs is not achievable. However, we show
a reduction that essentially meets this bound. The proof of
the following lemma builds upon the techniques from [15]
used to analyze the FDH signature scheme.

Theorem 2. Assume the RSA problem is hard with re-
spect to RSAGen. Then the PSS signature scheme is Φ-UF-
RR-CMA secure for any function family Φ in the random
oracle model. Specifically, for any polynomial time adver-
sary A against PSS, there exist a polynomial time algorithm
B such that

Adv
UF-RR-CMA
PSS,A (λ) ≈

e · qs · AdvRSA
RSAGen,B(λ) + (qs + qh) · 2−k/2+2

+ e · ·qs · (qs + qh) · (1

2
+ 2−k/2+2)k0

+ e · ·qs · (qs + qh)2 · (2−k1 + 2−k/2+2)

for large values of qs, where qs and qh denotes the number
of sign and hash queries made by A, respectively, and e is
the base of the natural logarithm.

Proof. Given an adversary A that succeeds in breaking
the UF-RR-CMA security of PSS with probability ε′, we
construct an algorithm S that solves the RSA problem with
respect to RSAGen with probability ε as given in the theorem.
S is constructed as follows:

Firstly, S receives as input values (N, e) and a challenge
y; the goal of S is to compute x such that y = xe mod N .
S sets pk ← (N, e), picks randomness r∗ ←$ {0, 1}k0 , and
runs A with input pk. While A is running, S will respond to
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Sign, H, and G oracle queries as described below. Without
loss of generality, we assume that A never repeats an oracle
query. We will furthermore use the subscript i to denote the
values submitted or computed in the i-th query.

H queries On input mi||ri, if there exists j < i such that
mi||ri = mj ||rj , S returns the previous oracle answer
hj . Otherwise, S picks a random xi ←$ Z∗N . Then,
with probability p (where p will be determined later),
S proceeds as follows: S computes yi ← y(xi)

e and
parses yi as b||wi||r′i||γi. If b 6= 0, S will sample a new
yi (by picking a new xi) until a yi value with b = 0 is
obtained. To ensure that S remains a polynomial time
algorithm, S will abort if a suitable yi value is not
obtained after k0 trials. Then, for the obtained yi =
0||wi||r′i||γi, if there exists a j < i such that wi = wj ,
S aborts. Finally, S sets hi ← wi and gi ← (r′i⊕ri)||γi
(this will set G(wi) = gi), and returns hi. We will refer
to queries handled in this way as type I queries.

On the other hand, with probability 1 − p, S pro-
ceeds as follows: S computes yi ← xei and parses yi as
b||wi||r′i||γi. As above, if b 6= 0, S picks a new yi until
this is the case (but aborts after k0 trials), and fur-
thermore aborts if wi = wj for a j < i for the obtained
yi value. Finally S sets hi ← wi and gi ← (r′i ⊕ ri)||γi
(this will set G(wi) = gi), and returns hi. We refer to
queries handled in this way as a type II queries.

G queries On input wi, if there exists j < i such that wi =
wj , S returns the corresponding gj value. Otherwise,
S picks random gi ←$ {0, 1}k−k1−1, and returns gi.

Sign queries On input (mi, φi), S first computes ri ←
φi(r

∗), and makes the query H(mi||ri) if A has not
already done so. Let the H query corresponding to
mi||ri be the j-th query. If this is a type I query, S
aborts. Otherwise, S simply returns σ ← xj . Note
that due to the way S responds to H type II queries,
σ is a valid signature on mi using randomness φi(r

∗).
Specifically, σe = xej = 0||wj ||r′j ||γj where φi(r

∗) =
r′j ⊕G1(wj), H(mi||φi(r∗)) = wj , and G2(wj) = γj .

Assume that S does not abort and that A produces a
valid forgery σ∗ on a message m∗. Let (σ∗)e = 0||w∗||r′||γ∗
(note that the most significant bit must be 0 for the forgery
to be valid) and let r∗ ← r′ ⊕ G1(w∗). Without loss of
generality, we assume that m∗||r∗ was queried to H. If the
query is a type II query, S aborts. Otherwise, H(m∗||r∗)
must have been a type I query. Let this query be the j∗-
th query. Then we must have that σ∗ = (0||w∗||r′||γ∗)d =
(y·(xj∗)e)d = yd·xj∗ , and S can compute yd = σ∗/xj∗ which
is the solution to the given RSA problem. This completes
the description of S.

It remains to estimate the success probability of S. Let
Forge denote the event that A produces a valid forgery,
let A1 denote the event that S aborts due to k0 yi values
being sampled in a H or a Sign query, all having the most
significant bit set to 1 (i.e. b = 1), let A2 denote the event
that S aborts due wi = wj in a H or Sign query for a j < i,
and finally let A3 denote the event that S aborts due to a
Sign query or the forgery corresponding to a wrong query
type. From the above, it follows that

Adv
RSA
RSAGen,S = Pr[Forge ∧ A1 ∧ A2 ∧ A3]

≥ Pr[Forge|A1 ∧ A2 ∧ A3] · Pr[A3]− Pr[A1]− Pr[A2].

We proceed by showing the following lemmas.

Lemma 15. Pr[Forge|A1∧A2∧A3] ≥ ε−(qs+qh)·2−k/2+2.

Proof. Note that the view of A in the simulation pro-
vided by S would have been identical to the view of A in
the UF-RR-CMA game had the responses to the H and
G queries (i.e. the hi and gi values) been uniformly dis-
tributed. In this case, A is guaranteed to produce a forgery
with probability ε. We will now argue that the responses
are statistically close to uniform.

Firstly, note that had the yi values been sampled from
Z2k−1 , the hi and gi values would have been uniformly dis-
tributed. Secondly, note that in the simulation, the yi val-
ues correspond to uniformly chosen elements of Z∗N less than
2k−1, as the xi values are sampled from Z∗N , y ∈ Z∗N , and
the RSA function is a permutation over Z∗N . Finally, due to
Lemma 11 and the fact that S use qs+qh samples, A will pro-
duce a forgery with probability at least ε−(qs+qh)·2−k/2+2.
2

Lemma 16. Pr[A1] ≤ (qs + qh)( 1
2

+ 2−k/2+2)k0 .

Proof. Note that the yi elements sampled by S are uni-
formly distributed in Z∗N . Also note that had the values
been sampled from ZN , the probability that the most sig-
nificant bit is 1 would have been less than 1/2. However,
as the statistical difference between sampling from ZN and
Z∗N is (N − φ(N))/N ≤ 2k/2+1/2k−1 = 2−k/2+2, we have
that S aborts in a single query with probability at most
(1/2 + 2−k/2+2)k0 . As there are qs + qh queries, the lemma
follows. 2

Lemma 17. Pr[A2] ≤ (qs + qh)2(2−k1 + 2−k/2+2).

Proof. Using similar observations as in Lemma 15 above,
we can see that the statistical difference between sampling
wi from uniform and as done by S, is at most 2−k/2+2.
Hence, the chance that wi collides with any of the previous
values, is at most (qs+qh)(2−k1 +2−k/2+2). Hence, consider-

ing all queries, we have Pr[A2] ≤ (qs+ qh)2(2−k1 + 2−k/2+2).
2

Lemma 18. Pr[A3] ≈ (e · qs)−1 for the optimal choice of
p and large values of qs, where e is the base of the natural
logarithm.

Proof. Note that for S not to abort based on the type of
query, all Sign queries has to correspond to type II queries,
and the forgery has to correspond to a type I query. From
the above description, it is easily seen that this will happen
with probability pqs(1 − p). This expression is maximized
for p = 1 − 1/(qs + 1). Inserting this value in the former
expression yields that Pr[A3] ≈ e · qs for large values of qs.
2

Combining the above expression for AdvRSA
RSAGen,S with the

above lemmas yields the theorem.
2

We will now show that by restricting the function class Φ
and the adversary, a tight reduction can be obtained. Specif-
ically, we will consider a function class Φ which is continu-
ously hard-to-compute, and an adversary that will query a
new related randomness function φ in each signature query.
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We will refer to this type of adversary as a unique random-
ness query respecting adversary. Note that the combination
of these assumptions will imply that the adversary cannot
predict the randomness value using in a signature query,
which allows us to obtain a tight proof, assuming the colli-
sion resistance and continuously hard-to-compute properties
of Φ are sufficiently strong. However, we stress that these
assumptions are relatively strong, and that, for example, re-
peated randomness attacks are not captured when making
these. Nevertheless, our result shows that tight security is
achieved, even for maliciously biased randomness values, as
long as these are not predictable by the adversary.

Theorem 3. Assume that Φ is collision resistant and con-
tinuously hard-to-compute, and that the RSA problem is hard
with respect to RSAGen. Then PSS is UF-RR-CMA secure
for all unique randomness query respecting adversaries, and
the reduction to the RSA problem with respect to RSAGen is
tight. Specifically, for all polynomial time and unique ran-
domness query respecting adversaries A against PSS, there
exists algorithms B1,B2 such that

Adv
UF-RR-CMA
PSS,A (λ) ≤ Adv

RSA
RSAGen,B1(λ) + (qs + qh) · 2−k/2+2

+ (qs + qh) · (1

2
+ 2−k/2+2)k0

+ (qs + qh)2 · (2−k1 + 2−k/2+2)

+ qs · qh · AdvCHTC
Φ,B2 (λ) + q2

s ·CRΦ(λ)

Note that for the reduction to be tight, the continuously
hard-to-compute property and the collision resistance of Φ
needs to be sufficiently strong, i.e. qs · qh · AdvCHTC

Φ,B2 and q2
s ·

CRΦ has to be negligible in the security parameter. Due
to space restriction, the proof of the above theorem is not
included here.

7. CONCLUSION
In this paper, we have provided a detailed analysis of the

robustness of the RSA-OAEP encryption scheme and the
RSA-PSS signature scheme, against related randomness at-
tacks. Specifically, we have shown that under the RSA and
Φ-hiding assumptions, RSA-OAEP encryption remains se-
cure against related randomness attacks for function fami-
lies (Φ,Ψ) where Φ is collision resistant and hard-to-compute
with respect to Ψ. This implies that RSA-OAEP is secure
for a large class of related randomness attacks if the recipi-
ent is honest, and remains secure even if malicious recipients
are additionally considered, as long the randomness used for
the honest recipient cannot be efficiently computed from the
randomness used for the malicious recipients. However, we
highlight that, since RSA-OAEP is randomness recovering,
security is not guaranteed if highly correlated randomness
is used for encryption for both malicious and honest recip-
ients. Furthermore, we have shown that under the RSA
assumption, the RSA-PSS signature scheme remains related
randomness secure for any function family Φ, albeit with
a non-tight security reduction, but if Φ is additionally as-
sumed to be continuously hard-to-compute and the attack
is not capable of forcing the use of repeated randomness,
a tight reduction is possible. Our results show that, com-
pared to other widely available and standardized schemes,
RSA-OAEP and RSA-PSS provides better protection when
used in environments where (potentially maliciously caused)
randomness failures might occur.
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