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ABSTRACT
To protect customers’ sensitive information, many mobile financial
applications include steps to probe the runtime environment and
abort their execution if the environment is deemed to have been
tampered with. This paper investigates the security of such self-
defense mechanisms used in 76 popular financial Android apps
in the Republic of Korea. Our investigation found that existing
tools fail to analyze these Android apps effectively because of their
highly obfuscated code and complex, non-traditional control flows.
We overcome this challenge by extracting a call graph with a self-
defense mechanism, from a detailed runtime trace record of a target
app’s execution. To generate the call graph, we identify the causal-
ity between the system APIs (Android APIs and system calls) used
to check device rooting and app integrity, and those used to stop an
app’s execution. Our analysis of 76 apps shows that we can pin-
point methods to bypass a self-defense mechanism using a causal-
ity graph in most cases. We successfully bypassed self-defense
mechanisms in 67 out of 73 apps that check device rooting and
39 out of 44 apps that check app integrity. While analyzing the
self-defense mechanisms, we found that many apps rely on third-
party security libraries for their self-defense mechanisms. Thus we
present in-depth studies of the top five security libraries. Our results
demonstrate the necessity of a platform-level solution for integrity
checks.

CCS Concepts
•Security and privacy → Software and application security;
Mobile and wireless security; Software reverse engineering;
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1. INTRODUCTION
Mobile financial applications (hereafter referred to as apps) are

gaining popularity, such as banking apps, retailer apps (e.g., Cur-
rentC [22]), credit card apps, and payment modules embedded
in messaging apps. In the United States, smartphone users who
use mobile banking and mobile payments has increased annually,
reaching 53% and 28% in 2015, respectively [8].

To protect users of financial services, mobile financial apps use
an extra layer of security, such as two-factor authentication [40],
or one-time passwords [10]. Although these security measures are
beneficial to a certain degree, if an app’s platform is compromised,
any application-level measure can be bypassed, thereby becoming
ineffective against various known attacks, including root-exploit at-
tacks [41], app-repackaging attacks [52], and memory-dumping at-
tacks [49]. Therefore, apps must check the integrity of the platform
to make other security measures effective.

In principle, there is no bullet-proof solution that assists Android
apps to determine whether the device on which they are running
has been rooted or whether the binary of the app itself has been
modified. Nonetheless, we observe that many Android financial
apps appear to employ some mechanisms that check for evidence
of tampering and then abort an execution with a warning message if
it detects something suspicious. Throughout the paper, we refer to
these mechanisms as self-defense mechanisms. Despite their wide
use, little is known about how these mechanisms are designed and
whether they are effective in practice.

This paper examines the effectiveness of the self-defense mecha-
nisms used in Android financial apps. We specifically focus on the
following research questions:

• What information do apps obtain (and how do they collect
it) to determine whether a device has been rooted or if the
app’s binary has been tampered with? How can we identify
self-defense mechanisms precisely?

• Once self-defense mechanisms are identified, what are the
steps needed to bypass them in order to continue executing
the app as if the self-defense mechanism had passed?

Analyzing Android financial apps is challenging for several rea-
sons. First, we observed that these apps often heavily use code ob-
fuscation, making it difficult to gain an understanding of actual con-
trol flows through static analysis. For example, obfuscation tools
change the names of an app’s methods and classes to meaningless
ones to conceal their roles [15]. Second, the control flows of An-
droid apps tend to be complex, involving native code, and some
are not connected directly. In Android, an app’s components (e.g.,
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Activity, Service, BroadcastReceiver, ContentProvider) or threads
can communicate with each other using a message object. An An-
droid app’s control flow cannot be captured entirely without those
indirect relationships. However, they are not connected with a tra-
ditional caller–callee relationship, leading many existing dynamic
analysis tools to fail to detect them.

To overcome these difficulties, we implemented MEthod
Recorder with Connecting Indirect relations (MERCIDroid), an en-
hanced Android platform that tracks an app’s control flow. To get
the call graph, the tool first records a detailed runtime trace of a
target app’s execution, including the indirect relationships between
threads and components. From the recorded data, the tool finds
the causality between the environment investigation, which checks
device rooting and app tampering, and the execution termination,
which blocks an app’s execution, by identifying the Android APIs
and the system calls that each part uses. By finding the causal con-
nection, MERCIDroid can pinpoint the self-defense mechanisms
among the thousands of methods in a target app. The tool identi-
fied 92.9% of the self-defense mechanisms in the studied apps and
narrowed the scope of the methods we investigated in the execution
path to 3.7% on average.

Using MERCIDroid, we analyzed Android financial apps to in-
vestigate the effectiveness of self-defense mechanisms adopted in
the apps. For the analysis, we selected 200 apps randomly from
top 400 apps in the Finance category of Google Play available in
the Republic of Korea, as of January 2016. Of the 200 apps, we
found that 73 apps perform a device rooting check, and 44 apps
perform an app integrity check. Based on the understanding of var-
ious self-defense mechanisms used in these apps, we constructed
strategies for bypass attacks: we listed techniques to bypass self-
defense mechanisms, and first tried to apply the easiest one per
each self-defense mechanism. If the technique did not work, we
tried more difficult techniques. Following these strategies, we suc-
cessfully bypassed the device rooting checks in 67 out of the 73
apps and the app integrity checks in 39 out of the 44 apps.

Our analysis shows that the apps look at only a limited set of
characteristics of rooted platforms and tampered apps, such as the
existence of files related to device rooting or the hash value of app
package files. In addition, once self-defense mechanisms are iden-
tified, bypassing them only requires modifying a few lines of byte-
code or native code. In the analysis, we found that many apps use
several third-party security libraries for their self-defense mecha-
nisms, so the apps share same self-defense mechanism codes. To
shed insights on the effectiveness of these security libraries, we
conducted in-depth case studies of five popular security libraries
used in our studied apps. We found that most libraries share the
same weaknesses. Some libraries use techniques that other self-
defense mechanisms do not use, such as checking a system pro-
cess’s user ID and investigating a system property to check device
rooting. Nevertheless, the libraries cannot prevent themselves from
being bypassed through app rewriting.

Our contributions are threefold:

• We present an empirical study of the self-defense mecha-
nisms employed in 76 popular Android financial apps. This
was possible using MERCIDroid, an enhanced Android plat-
form that traces method calls, including indirect method rela-
tionships such as inter-thread and inter-component commu-
nications, and constructs runtime call graphs. MERCIDroid
enables us to locate self-defense mechanisms precisely.

• Based on the analysis of the self-defense mechanisms, we
show that the apps and third-party libraries try to detect mali-
cious system manipulation attempts using various techniques

and system functions. However, they mostly leverage only a
few characteristics of rooted systems and tampered apps.

• We demonstrate that our bypass attacks are effective in de-
touring most of the self-defense mechanisms observed above
with simple code modifications, which proves that self-
defense mechanisms are not effective as it is. We detoured 67
out of 73 device rooting checks and 39 out of 44 app binary
integrity checks.

The rest of the paper is structured as follows. Section 2 presents
an overview of self-defense mechanisms. Section 3 describes the
design and the implementation of MERCIDroid. Section 4 presents
an empirical study of apps using MERCIDroid. Section 5 evaluates
MERCIDroid’s effectiveness and limitations. Section 6 discusses
ways to improve self-defense mechanisms and the implications of
our findings. Finally, Section 7 discusses related work, followed by
our conclusions in Section 8.

2. DESIGN CHARACTERISTICS OF
SELF-DEFENSE MECHANISMS

To explain the typical structure of self-defense mechanisms, we
begin by discussing an example of those used in a real app, AppC.
The anonymized code in Listing 1 illustrates two distinct steps: the
first checks whether the device is rooted, and the second displays
an alert dialog if detected. We next describe each step in detail.
Step 1: Checking device rooting. AppCActivity .on-
Resume() calls the native method Lib0.check() to check
whether the device is rooted (Line 4). onResume() then logs
the result (Line 5). If check() returns a positive integer, im-
plying that the device is rooted, the method calls PopupDia-
log.showAlert() (Lines 6–7) to show a dialog as described
in Step 2. If check() does not detect that the device is rooted,
onResume() calls another method to check device rooting (Line
8).
Step 2: Displaying an alert dialog. PopupDia-
log.showAlert() calls PopupDialog.show(), and
it calls PopupDialog.alertDialogSetter(). (Lines 7,
29, and 34, respectively). alertDialogSetter() finally sets
the AlertDialog that warns the user before aborting the app (Lines
40–42).

Figure 1 shows high-level structure of self-defense mechanisms
observed from analyzing a large number of Android financial apps.
Listing 1 fits the structure. First, a method, which we label a com-
mon ancestor, calls an environment investigation investigate the
app binary and the platform on which the app is installed (Fig-
ure 1(1)). This environment investigation then calls environment
information providers, which provide the system environment
variables necessary for the check. Based on the values returned,
the environment investigation decides the app’s integrity and/or de-
vice rooting and returns the result to the common ancestor method
(Figure 1(2)). If the execution environment is deemed unsafe, the
common ancestor method calls the code to terminate the app (Fig-
ure 1(3)). Typically, this execution termination calls an execution
terminator that aborts the app by displaying an alert dialog that
terminates the app process, or by finishing the app process di-
rectly. In the case of AppC, AppCActivity.onResume(),
Lib0.check(), PopupDialog.showAlert() correspond
to the common ancestor, the environment investigation, and the ex-
ecution termination, respectively.

180



1 //Common ancestor
2 public class AppCActivity extends Activity {
3 public void onResume() {
4 int i = Lib0.check(this);
5 AppCLogger.e("AppCActivity", i);
6 if (i > 0)
7 PopupDialog.showAlert(this);
8 else if(SecureManager.checkRooting())
9 PopupDialog.showAlert(this);

10 }
11 }
12

13 //Environment investigation
14 public class Lib0 {
15 private static int check(Context paramContext) {
16 return Lib0Native();
17 }
18

19 private static native int Lib0Native() ;
20 }
21

22 //Execution termination
23 public class PopupDialog {
24 Dialog dialog;
25

26 public static PopupDialog showAlert(Activity
paramActivity) {

27 PopupDialog alertDialog = new
PopupDialog(paramActivity);

28 alertDialog.setType(100);
29 return alertDialog.show();
30 }
31

32 public void PopupDialog show() {
33 if(getType() == 100) {
34 this.dialog = alertDialogSetter();
35 this.dialog.show();
36 }
37 }
38

39 private AlertDialog alertDialogSetter() {
40 AlertDialog.Builder localBuilder = new

AlertDialog.Builder();
41 localBuilder.setTitle(getTitle());
42 localBuilder.setMessage(getMessage());
43 return localBuilder.create();
44 }
45 }

Listing 1: AppC’s device rooting check methods
(decompiled with jd-gui [12]): We simplified the code for
readability.

The typical structure of self-defense mechanisms assumes that
environment investigation and execution termination are connected
by a common ancestor. We found that 93% of the self-defense
mechanisms in our analysis follow this structure (see Section 4).
In the following, we describe the details of the environment inves-
tigation and execution termination. We then explain challenges to
identifying self-defense mechanisms.

2.1 Environment investigation
The role of environment investigation is to obtain information

about the execution environment (e.g., the existence of a specific
file, package information), and decide whether the environment is
unsafe. For example, an app checks for device rooting by scanning
for the existence of the su binary or permission management apps
such as SuperSu. To check app integrity, an app may check for the
path of the Android application package (APK) file and its signa-
ture. To get information about the execution environment, the en-
vironment investigation calls environment information provider(s).
Thus, we can use the environment information provider(s) to locate
the environment investigation.

The environment information providers can be categorized into

Common Ancestor

Environment Investigation Execution Termination

Environment Information 
Provider

Execution Terminator

(1) (2)

Safe?

No

Normal
App Function

Yes

: Android API or Linux system call

(3)

Figure 1: Control flow of a self-defense mechanism.

two types: Android APIs and Linux system calls. An app may use
specific Android APIs and system calls (mostly through C wrapper
functions) to retrieve information required to investigate the envi-
ronment, such as file paths of binaries or app packages. Based on
the survey of known techniques [1, 35], we selected the Android
APIs and system calls shown in Tables 1 and 2 as environment
information providers. However, because these APIs and system
calls can be called from parts other than self-defense mechanisms,
we only consider them as environment information providers when
additional conditions are satisfied, described in the tables.

2.2 Execution termination
If an environment investigation part detects a tampered environ-

ment, the common ancestor executes an execution termination to
prevent the app from executing in the environment. A common
way to abort the execution is to show an alert dialog with a button
to terminate the app. The alert dialog typically contains a warning
message that describes the reason for the termination. The warning
message contains specific keywords such as “rooted” and “forged”.
To reduce false negatives, we consider various keywords in English
and Korean. We also cover app termination that does not display
an alert dialog. For example, some apps directly kill the running
processes of themselves using Android APIs or exit() system
call. Some other apps launch the application uninstaller to uninstall
themselves from the device. Table 3 shows all execution termina-
tors found after analyzing our target financial apps’ behaviors. Sim-
ilar to environment information providers, we consider the APIs or
the system call as execution terminators only when they meet the
terminating condition.

2.3 Challenges to locating self-defense mech-
anisms

Although self-defense mechanisms mostly follow the main exe-
cution path as shown in Figure 1, many self-defense mechanisms
contain extra steps that complicate the analysis. Therefore, even
if the environment investigation and execution termination parts
have their own characteristics, finding just one of the parts is not
enough to locate a self-defense mechanism. For example, syntacti-
cally searching for environment investigation alone is insufficient
because these can be called for several reasons other than self-
defense mechanisms, even if they meet the conditions described
in Tables 1 and 2. For example, an app reads its package file not
only to check its integrity, but also to get resources. We need to
know if the call of an environment information provider leads to
the call of an execution terminator.

Finding and modifying only the execution termination part is not
sufficient to bypass the self-defense mechanism because the branch
point between the execution termination part and the normal ex-
ecution path is located outside of the execution termination part.
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Type Environment information providers How to check the device rooting using the API [2] Investigating conditions

Android API

Runtime.exec() Run the su command The command name is “su”

PackageManager.getPackageInfo() Find whether a root-related app is installed The package name is related to device
rooting (e.g., eu.chainfire.supersu)

File.exists()

Investigate the existence of su binary and app packages
related to device rooting

The file name is “su” or APK file related
to the device rooting

System call

stat()

access()

open()
Check the adbd process’ user ID The file name is “/proc/[pid]/status”

opendir(), readdir(), chdir() Examine every file and directory -

Table 1: Environment information providers for device rooting checks.

Type Environment information providers How to check the app tampering using the API [2] Investigating conditions

Android API

PackageManager.getPackageInfo() Get the signature of an app package The flags include GET_SIGNATURES

Context.getPackageCodePath() Get the path of the app’s package file -

File.<init>()

Handling the app’s package file The handled file is the APK file of the app
ZipFile.<init>()

RamdomAccessFile.<init>()

System call open()

Member variable
ApplicationInfo.sourceDir

The path of the app’s package file -ApplicationInfo.publicSourceDir

Table 2: Environment information providers for the app integrity checks.

Since the branch point lies in the common ancestor, just skipping
execution terminators does not make the app enter the normal con-
trol flow (Figure 1(3)). Therefore, we should modify the branch
point or the checking part in order to bypass the self-defense mech-
anisms.

In addition to the above difficulties to locate a self-defense mech-
anism, apps often employ extra steps beyond a single environ-
ment investigation and a standard execution termination as de-
scribed below. First, a common ancestor may log the result re-
turned from the checking part by using Android Logcat or by send-
ing it to an external server, as shown in Line 5 in Listing 1 (Fig-
ure 2(i)). These steps add more method calls between environ-
ment investigation and execution termination, making it difficult
to find causality between them. Second, the checking part may
communicate with an external server for the integrity check (Fig-
ure 2(ii)). For example, one possible way to check the app bi-
nary integrity is to send a hash value of the app’s APK file and
ask the server to verify it. Third, a common ancestor sometimes
calls more than one environment investigation as shown in Fig-
ure 2(iii). The common ancestor then gathers results from the
environment investigations and makes a decision. For example,
Listing 1 shows that AppCActivity.onResume() calls two
environment investigations: Lib0.check() and SecureMan-
ager.checkRooting(). These extra tasks make the analy-
sis of a self-defense mechanism complicated. In the next section,
we describe how we overcome these difficulties by exploiting the
causality between the environment investigation and the execution
termination.

3. ANALYSIS METHODOLOGY
This section describes a tool that we developed to locate the code

relevant to self-defense mechanisms in Android apps. In particular,
we focus on how our tool traces various indirect method calls and
native calls at runtime.

Environment Investigation

Common Ancestor

(ii) Send the data to the server

Execution Termination

(i) Log the result

(iii) Environment Investigation 2

Safe?

No

Normal
App Function

Yes

Figure 2: Control flow of a self-defense mechanism with optional,
additional tasks. The tasks are presented as gray boxes.

3.1 Key Insight
To narrow down the code path to investigate, we can start with

finding known environment information providers or execution ter-
minators. However, searching for them separately is not efficient
and often generates false positives. For example, a financial app
that we analyzed contained approximately 30,275 methods on av-
erage and, therefore, false positives would significantly slow our
analysis as each case needs to be manually examined.

The key insight for improving the accuracy of locating self-
defense mechanisms is using the causality between the environ-
ment information providers and the execution terminator in the con-
trol flow graph recorded at runtime. To construct a call graph, we
perform the following steps. First, we record all the invoked (Java
method and native function) calls and returns while a target app
executes. While tracing, we record additional information to con-
nect indirect relationships between threads and Android compo-
nents and to identify environment information providers. Second,
when an execution terminator is called, we flush the recorded data
into a file. Finally, we parse the records and find common ances-
tors between the identified environment information providers and
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Type Execution terminators How to use to terminate an app [2] Terminating conditions

Android API

AlertDialog.setMessage() Set a warning message for an AlertDialog
The message contains specific keywords
(e.g., “rooting,” “tamper,” “integrity”)TextView.setText() Set a warning message for a custom alert dialog

Toast.makeText() Set a warning message for a Toast message

Intent.setAction() Launch the application uninstaller The package name to uninstall is that of the app
itself.

Process.killProcess()
Kill the app’s process

Process ID to kill is that of the app itself

System.exit() -

System call exit() Kill the app’s process in a native function -

Table 3: Execution terminators for self-defense mechanisms. System.exit() and exit() do not have a terminating condition because
they are only used to kill an app itself.

> Handler.handleMessage()

Interaction 1 Callee

> Handler.dispatchMessage()

< Handler.sendMessage()

Interaction 1 Caller

> Handler.sendMessage()

< Activity.onCreate()

> Activity.onCreate()

< Application.onCreate()

> Application.onCreate()

> ZygoteInit$MethodAndArgsCaller.run()

< File.exists()

        Provider Flagged    (b)

> File.exists()

> MyClass.checkRooting()

> Thread.run()

(a) (a)

(c)

Thread 1 main Thread 2

Figure 3: Recording of method invocations in each thread. Each
method call/return is stored from the bottom to top (a). An envi-
ronment information provider that meets the condition is flagged
(b). The indirect caller and callee are connected through an inter-
action ID (c).

the execution terminator, and locate the common ancestor that is
closest to the execution terminator.

We next explain the design and implementation of the steps nec-
essary to construct a call graph.

3.2 Tool Design and Implementation
In order to locate common ancestors between environment in-

formation providers and execution terminators, we need to track
caller-callee relationships across threads, components, and process
boundaries. MERCIDroid has two parts: 1) collecting control flow
information by tracing calls at runtime; and 2) extracting a call
graph containing the methods related to a self-defense mechanism.
In this paper, we focus on using MERCIDroid to analyze finan-
cial app’s self-defense mechanisms, but MERCIDroid can also be
used for other purposes that can benefit from identifying causality
between the system APIs.

3.2.1 Recording method calls at runtime
To record method calls of an app at runtime, we modified An-

droid 4.4.4. We focused on Dalvik Virtual Machine (VM), An-
droid Runtime that Android 4.4.4 uses because Android 4.4.4 is
still the most widely used version [7]. Higher versions of Android
use Android Runtime (ART), replacing Dalvik VM. However, the
underlying runtime does not affect our analysis. Since ART is com-
patible with Dalvik [5], most Android apps work on both runtimes.
We had only one financial app that requires version higher than 4.4.

The modified system records method calls and indirect relation-
ships between threads and components as described in Figure 3.

Recording method calls per thread. Using a similar approach as
in Compac [50] and the Method Trace function in Android Moni-
tor [34], we modified the Dalvik VM to record the method calls in
each thread. We modified a portable C implementation of mterp,
the interpreter that interprets and executes Dalvik bytecode. In par-
ticular, we focused on invoke and return instructions, which are
related to method invocations and returns, respectively. To record
the instructions, we first allocated additional space in each thread to
store invocation and return histories. We also modified the portable
C code related to the instructions to record the method invocations
and returns in the additional space as shown in Figure 3(a).
Flagging relevant environment information provider calls.
While recording method calls, MERCIDroid flags the calls for the
environment information providers, as described in Tables 1 and
2. MERCIDroid uses runtime arguments to check the investigat-
ing conditions. If the condition holds, MERCIDroid adds an extra
record between the method invocation and the method return to flag
the method call as shown in Figure 3(b). Also, to flag environment
information providers whose type is a system call, MERCIDroid
executes strace and parses the result.
Finding indirect relationships of method calls. Tracing direct
caller-callee relationships only is insufficient to generate a call
graph that contains a self-defense mechanism. For example, a
thread that manipulates the UI must send a Message to the UI thread
using Handler.sendMessage(Message msg) [2]. Then,
in the UI thread, Handler.dispatchMessage(Message
msg) calls another method to handle the message. In this
case, sendMessage(Message msg) and dispatchMes-
sage(Message msg) are not in a direct caller–callee relation-
ship. Thus, to link these two method calls, we need more informa-
tion.

To connect the indirect caller-callee relationships, MERCIDroid
allocates a unique ID to a message object that both the caller and the
callee use. MERCIDroid adds a unique ID to a Message object
such that we can link the method calls with a Message object by
checking its ID. To track interactions between Android app com-
ponents (Activity, Service, and Broadcast Receiver), MERCIDroid
adds a unique ID in an Intent object [2]. Figure 3(c) illustrates how
this added ID can be used to link the indirect method calls. Ap-
pendix A describes the list of indirect relationships in more detail.
Storing method call records. When an app is stopped by an exe-
cution terminator shown in Table 3, the system stores all the records
collected thus far in all threads in a file. With the collected data, we
can backtrace the control flow from an execution terminator.

3.2.2 Constructing a call graph
We implemented a call graph generator which parses the records,

constructs a call graph including the aforementioned indirect rela-
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tionships. Once a call graph is constructed, the generator extracts a
self-defense mechanism graph (SDMGraph), which contains only
the methods relevant for identifying the self-defense mechanisms.
The root node of the SDMGraph is the common ancestor of the exe-
cution terminator and the environment information provider(s). By
narrowing the scope of the methods to those in the SDMGraph, we
can manually disassemble and analyze a small number of methods
to find one that we can modify to bypass the self-defense mecha-
nisms. We describe the construction process of an SDMGraph in
more detail in Appendix B.

3.2.3 Handling inter-process communication
Android components can communicate across different pro-

cesses. For example, an app can execute its service in a separate
process using the android:process manifest attribute. An app can
also request the self-defense mechanisms of a separate security app.
Android processes use Intent to execute an Android component in
another app, and Parcel to send a data to another process. There-
fore, we instrumented Intent and Parcel to trace between two pro-
cesses.

To capture inter-process communications, we parse collected
method calls from all the processes related to self-defense mech-
anisms. Therefore, when an execution terminator is called in one
process, the other processes should be aware of this event and flush
the recorded methods into a file. To support this scenario, we added
a new system service, MERCIService, and when a process begins
execution, it registers itself with it. If one of the registered pro-
cesses is terminated by an execution terminator, MERCIService
triggers each registered process to store the records in a file.

4. APP ANALYSIS & BYPASS ATTACKS
This section shows the results of our analyses of selected An-

droid apps using MERCIDroid. We first describe how we chose
the apps to analyze. Based on the observed characteristics of self-
defense mechanisms, we next describe the traits of self-defense
mechanisms and show how we actually bypassed them. We then
describe the security libraries used in the studied apps and present
an in-depth analysis of the top five popular libraries, demonstrating
how effectively our bypass attacks defeat the seemingly compli-
cated self-defense mechanisms employed by those libraries.

4.1 App Selection
We started with the top 400 apps in the “Finance, Free” category

of Google Play in the Republic of Korea, as of January 2016. To
cover a diverse set of apps from popular to infrequently used apps,
we randomly selected 200 apps from the 400 apps instead of se-
lecting top 200 apps. Note that analyzing financial apps requires
setting up credit or bank accounts, thus we had to limit the number
of apps we analyzed. To find apps that contain self-defense mech-
anisms, we went through the following steps. First, to find apps
that check device rooting, we installed each app on a rooted device
and executed it. To find apps that perform an app binary integrity
check, we disassembled the app binary, added an empty class to the
code, reassembled a DEX file of the app, and executed the modi-
fied app binary. If the activity had a button, such as “Press to start,”
we pressed the button to see whether the app proceeded to the next
activity. If the app’s execution was blocked, we concluded that the
app performs a self-defense mechanism and added it to the list of
apps to analyze.

Additionally, we excluded the following apps for further analy-
sis: (a) 8 apps without a main activity: these apps run like a dae-
mon process or need to run with another app; (b) 14 malfunctioning
apps: these apps crash after app repackaging upon launching; (c) 1

Groups # of
apps

SDMGraphs
generated: 67

R_Group_API 14

R_Group_Native_Predictable_Return 57

R_Group_Native_Unpredictable_Return 6

SDMGraphs
not generated: 6

Limit_Case_2 1

Limit_Case_3 5

(a) Device rooting checks

Groups # of
apps

SDMGraphs
generated: 39

I_Group_Predictable_Return 16

I_Group_Signature 2

I_Group_APK_Path 14

I_Group_APK_Path_Context 10

SDMGraphs
not generated: 5

Limit_Case_1 3

Limit_Case_2 2

(b) App integrity checks

Table 4: The number of apps in each group for the device rooting
checks (73 apps in total) and the app integrity checks (44 apps in
total). Note that some apps check device rooting and app integrity
more than once. We categorize the self-defense mechanisms for
which a SDMGraph is generated into X_Group_Y, where X is R
for device rooting check and I for app integrity check, and Y is a
characteristic of the group. We explain the Limit_Case groups in
Section 5.2.

app that could not be disassembled or reassembled with the apktool
and the smali tools; and (d) 1 app requiring an Android platform
whose version is higher than 4.4.

We found 76 apps that perform one or more self-defense mech-
anisms: 73 of the 76 apps check device rooting, and 44 of the 76
apps check app integrity. We ran all 76 apps using MERCIDroid to
analyze and bypass the self-defense mechanisms.

4.2 Traits of Self-defense Mechanisms
Using MERCIDroid, we successfully constructed the SDM-

Graphs for 67 out of 73 apps that check device rooting and 39 out
of 44 apps that check app integrity (See Section 5 for more details).
We then successfully bypassed every self-defense mechanism for
which an SDMGraph has been generated.

We found that the self-defense mechanisms can be grouped by
how they use the Android APIs and the system calls described in
Tables 1 and 2 and how difficult they were to bypass. Based on the
flowcharts described in Appendix C, we ran through each marked
method in an SDMGraph, bypassing the self-defense mechanisms
by rewriting the app’s Dalvik bytecode using the techniques de-
scribed in Figure 4 and then grouped the apps. Table 4 shows the
number of apps included in each group.

Next, we describe the traits of the self-defense mechanisms in
each group and how we bypassed them.

4.2.1 Device rooting checks

R_Group_API.
Apps in this group use Java methods to check device rooting.

They use the Android APIs in Table 1 to detect the existence of
binaries or apps related to device rooting. For example, some
apps check the presence of the “su” binary or command using the
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1 new-instance v0, Ljava/io/File;
2 const-string v1, "su"
3 const-string v1, "us"
4 invoke-direct {v0, v1}, Ljava/io/File;->
5 <init>(Ljava/lang/String)V;
6 invoke-virtual {v0}, Ljava/io/File;->
7 exists()Z
8 move-result v2

(a) Modify an argument for an Android API

1 new-instance v0, Ljava/io/File;
2 sget-object v1, Lcom/execution/environment;->su;
3 invoke-direct {v0, v1}, Ljava/io/File;->
4 <init>(Ljava/lang/String)V;
5 invoke-virtual {v0}, Ljava/io/File;->
6 exists()Z
7 move-result v2
8 const v2, 0x0

(b) Overwrite a return value

1 #.method public native integritycheck()Z;
2 .method public integritycheck()Z;
3 const v0, 0x0
4 return v0
5 .end method

(c) Change a native method declaration to a Java method, which
returns a fixed value

1 .method public integritycheck()Z;
2 const v0, 0x0
3 return v0
4 # The rest are ignored...
5 .end method

(d) Fix a return value

1 invoke-virtual {p0},
Lcom/execution/MainActivity;->

2 getPackageCodePath()Ljava/lang/String;
3 move-result-object v0
4 invoke-static

p0, Lcom/execution/FakeActivityManager;
->getUntamperedPackageCodePath
(Landroid/content/Context;)
Ljava/lang/String;

5 move-result-object v0
6 invoke-static {v0}, Lcom/execution/environment;->
7 integritycheck(Ljava/lang/String;)Z;

(e) Generate a file path for the original app package

1 new-instance v0, Lcom/execution/FakeContext;
2 invoke-direct v0,

p0, Lcom/execution/FakeContext;-><init>
(Landroid/content/Context;)V

3 invoke-static {v0}, Lcom/execution/environment;->
4 integritycheck(Landroid/content/Context)Z;

(f) Generate a FakeContext

Figure 4: Example smali [16] code to bypass self-defense mecha-
nisms. The lines added to bypass the self-defense mechanism are
presented in bold.

File.exists() or Runtime.exec() methods, respectively.
Apps also use PackageManager.getPackageInfo() to
check whether apps related to device rooting (e.g., SuperSU) have
been installed.
How to bypass. We modify an argument or the return value of an
Android API (Figure 4a or 4b). We change the name of a file the
apps try to find (e.g., “su” to “us”) or fix the return value to false,
based on the property of the API.

R_Group_Native_Predictable_Return.
This group contains apps that check device rooting in native li-

braries. The Java code in the apps includes the declaration of the
native methods mapped to functions in native libraries. The apps
use the native functions by calling the native methods. For exam-
ple, apps use open() or stat() to check for the existence of the
“su” binary. We list the native functions used by the self-defense
mechanisms at the native level in Tables 1 and 2.
How to bypass. We change the native method’s declaration to a
fake Java method that returns a fixed value (Figure 4c). This is
made possible because it is easy to predict the return values of the
native methods when a device is not rooted.

R_Group_Native_Unpredictable_Return.
Device rooting checks for apps in this group are similar to

those in R_Group_Native_Predictable_Return, except that the na-
tive methods return unpredictable values. If a native method returns
a byte array or a string that contains randomly generated values,
predicting the value when a device is not rooted and overwriting
the return value is difficult.
How to bypass. In this case, we modify the native code directly
using IDA Pro [11] to rewrite bytes in the text section to skip the
check.

4.2.2 App integrity checks

I_Group_Predictable_Return.
Similar to the R_Group_Native_Predictable_Return, checking

part methods in the apps in this group returns predictable values,
such as false or 0, when the apps are not forged.
How to bypass. When the marked method is a native method, we
change the method’s declaration to a Java method that returns a
fixed value (Figure 4c). In the case of an Android API, we find the
caller and make the method return a fixed value (Figure 4d).

I_Group_Signature.
This group includes apps that try to verify their signa-

ture. Apps can get their signature using PackageMan-
ager.getPackageInfo() with a GET SIGNATURES flag
(see Table 2). The signature of the rewritten app is different from
that of the unmodified one. Therefore, examining the signature can
be a way to check app integrity.
How to bypass. To bypass the app integrity checks using signa-
tures, we obtain the pure app’s signature and overwrite the return
value of Signature.hashCode() to the obtained signature.

I_Group_APK_Path.
This group contains apps that check app integrity by reading the

app’s package file or library. The apps get the file path of the APK
file or library file using Android APIs, as shown in Table 2. The
apps then read the file using File, RamdomAccessFile, or ZipFile
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Name
# of apps that adopt the libraries Additional features Server communication

All Device rooting App integrity Malware Anti-reverse Other to check/report
check check detection engineering features the result

Lib0 30 30 O
Lib1 11 11 O
Lib2 10 7 8 O Secure session ID O
Lib3 7 7 7 O Cryptography algorithms O
Lib4 6 5 6 One-time verification token O
Lib5 4 4 O
Lib6 3 3 O O
Lib7 2 2 O

Lib8 § 2 2 2 O O
Lib9 3 3 O

Lib10 1 1 1 O O
Lib11 1 1 O O
§ Written in Java. Other libraries are native libraries.

Table 5: List of libraries that contain self-defense mechanisms.

classes to compute the hash value (see Table 2). The apps send it
to an external server to check their tampering.
How to bypass. To allow the tampered app to read the unmodi-
fied app’s package and native library file instead, we first copy the
unmodified files into the tampered APK file. Then, we implement
the getUnmodifiedPackageCodePath(), which copies the
unmodified files to its private storage and returns the file path. We
use this method to bypass the checks (Figure 4e).

I_Group_APK_Path_Context.
Apps in this group perform checks through a native code

that takes a Context, which contains the APK file path, as
an argument. The APK file path in the Context can be ob-
tained with Context.getPackageCodePath(), Con-
text.getApplicationInfo().sourceDir, or Con-
text.getApplicationInfo().publicSourceDir.
The native code then reads the APK file and checks for app
tampering, similar to I_Group_APK_Path.
How to bypass. For such cases, we implement FakeContext, which
is exactly same as Context except that it contains the path to the
unmodified APK file generated by getUnmodifiedPackage-
CodePath() (Figure 4f).

4.3 Third-party Security Libraries
On close examination, we found that 60 (out of 76) apps inte-

grated one or more security libraries that implement self-defense
mechanisms. We used the Java package names and the file name of
the libraries to infer the security company that produced the library.

Table 5 shows those libraries and the additional security features
that the libraries support. All libraries except Lib8 are written in
native code. From the library code and the security companies’
web pages, we discovered that the libraries provide various secu-
rity functions other than self-defense mechanisms. The most com-
mon function provided by the libraries is malware detection. The
libraries scan malicious apps and processes directly by getting the
lists of installed apps and running processes from the system, or
they scan by transacting with security apps developed by the same
vendor. Also, the libraries support various features, such as code
obfuscation, anti-decompiling, and emulator detection, to prevent
the reverse engineering of apps.

We found that some libraries communicate with an external
server while running self-defense mechanisms. As described in
Section 2, the libraries send data or the examination result to the
server to be validated, which results in a complex call graph.

Risk of using security libraries. If many apps share the same li-
braries, these apps are vulnerable to the same bypass attacks. For
example, as shown in Table 5, 30 apps use Lib0 to perform de-
vice rooting checks, and our single bypass attack defeated 17 out
of these 30 apps. The rest needed more than one type of bypass
attacks.

4.3.1 Case Studies
Given the popularity of security libraries, we did an in-depth

analysis of the self-defense mechanisms implemented in those li-
braries. Specifically, we chose the top five libraries, Lib0, Lib1,
Lib2, Lib3, and Lib4. Although the libraries use various methods
to check device rooting and app integrity via the system calls de-
scribed in Tables 1 and 2, we bypassed all checks with the app
rewriting techniques described above.

How the libraries check device rooting.
The libraries use various system calls to check device rooting.

Normally, they concentrate on finding executable binary files and
app package files related to device rooting. However, some libraries
use other methods to examine device rooting, such as checking the
user ID of a system process and investigating system properties.
Lib0. We found two ways that Lib0 checks device rooting. First,
the library checks predictable file paths in the su binary (e.g., /sys-
tem/xbin/su, /system/bin/su) using the stat() [13] system call.
The system call takes the file path as an argument and returns the
existence of the file. The library checks the existence of the su
binary by calling stat() for each predictable file path.

Second, the library checks the user ID of the adbd process.
The library finds adbd’s process ID by scanning the /proc/ direc-
tory, which contains numerous subdirectories for running processes
named by the process IDs [13]. The library then gets the user ID
of the adbd process by reading the /proc/[pid]/status file via the
read() system call. If the device is not rooted, the user ID of
adbd is 2,000, which is the shell user’s ID. Otherwise, the user ID
of adbd is zero, which is the root user’s ID. Therefore, the library
can check device rooting using adbd’s user ID.
Lib1. To check device rooting, Lib1 tries to open or access
files or directories related to device rooting. First, it calls the
access() system call to check whether private directories for
the apps related to device rooting (e.g., com.marutian.quckunroot,
com.noshufou.android.su) are accessible.

Second, the library tries to open the su binary and root-related
apps’ APK files using the open() system call. If the file
can be opened as read-only, open() returns its file descrip-
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tor number. Otherwise, if the file does not exist, open() re-
turns -1. Using the system call, the library checks whether
an su binary exists in the predictable path and whether root-
related apps’ APK files are stored (e.g., /system/app/superuser.apk,
/data/app/com.noshufou.android.su-2.apk).
Lib2, Lib3. Similar to Lib1, Lib2 and Lib3 try to open the su
binary and root apps’ APK files using the open() system call.
Lib4. Lib4 employs various methods to examine the platform’s
integrity in addition to checking root-related apps and binaries,
such as other libraries. First, the library finds the system property
ro.kernel.qemu’s value. If the value is one, the method considers
that the app runs in an emulator. Second, the library searches every
file under the root directory recursively except for some unimpor-
tant directories, such as /sdcard/ and /mnt/. To evaluate every file,
the library calls opendir(), readdir(), and chdir(). If the
library finds a file whose name is “su” or that contains a string like
“noshufou” or “supersu,” it concludes that the platform has been
tampered with.

How the libraries check app integrity.
The libraries use a methodology similar to that described in Sec-

tion 4.2 to check an app’s integrity; they take the app’s APK file
path, read the file, calculate the hash value, and compare the value
with the one stored in an external server. Even if the libraries are
written in native code, they always obtain the APK file path using
Android APIs because the path varies by device.
Lib2. To check app integrity, Lib2 reads the app’s APK file and
library file. The library takes the files’ paths as string-type argu-
ments. The library first checks whether the APK file’s path is valid,
i.e., the file is stored in either /data/app/, /data/app-private/, or /m-
nt/asec, and the file’s name starts with the app’s package name.
The library then reads the files, calculates the hash values, and
sends them to the app developer’s server for the validation of app
integrity.
Lib3. Similar to Lib2, Lib3 examines the app’s integrity by reading
the app’s APK file and computing its hash value. The library then
sends the data to the app developer’s private server.
Lib4. Lib4 takes a Context object as an argument. The
library then gains the app’s APK file path from Con-
text.getApplicationInfo().sourceDir and computes
the hash value of the file. The library sends the hash value to the
app developer’s private server to check the app’s integrity.

How an app finds out whether the self-defense mecha-
nism had been called.

Although the libraries use various methods to check device root-
ing and app integrity, almost none of the apps or libraries verify af-
ter the checks that the checks were performed. We find that AppL,
which has integrated Lib2, uses an external server to probe whether
the self-defense mechanism has been called. So, if we skip the
checks, then the app can get the signal from the server. Therefore,
simply rewriting the native method’s declaration to a Java method
does not work for AppL, and we used a different bypass attack in
this case.

How the libraries terminate an app running in an un-
safe environment.

If a self-defense mechanism finds that the device is rooted or the
app has been tampered with, the security library stops the app’s
execution. The security libraries, except Lib3, return the checking
result to a Java method instead of directly showing an alert dialog.

Lib3. Lib3 has characteristics different from the other libraries in
terms of how it terminates the app when the checks fail. If the li-
brary judges that the app is running under unsafe conditions, unlike
other libraries, it does not return and terminates the app using the
exit() system call. To store the method call records before termi-
nation, we had to register a wrap-up function using the atexit()
function, which registers a function that should be called in normal
process termination [13].

How the libraries return the result and how we by-
passed.

The libraries use diverse techniques to check device rooting and
app integrity, and to prevent apps from executing in unsafe envi-
ronments. However, the techniques do not deviate from those de-
scribed in Section 4.2, so they cannot prevent attackers from by-
passing checks.
Lib0. If the device is not rooted, Lib0’s native method returns zero.
Otherwise, the method returns -1. We bypass the check by chang-
ing the native method’s declaration to a Java method that returns
zero.
Lib1. Lib1’s native method for a device rooting check returns a
string “0” when the device is not rooted. Otherwise, the method
returns “1.” We bypass the check by changing the native method’s
declaration to a Java method that returns “0.”
Lib2. If the device is not rooted and the app has not been tampered
with, Lib2’s native method returns zero. Otherwise, the method re-
turns an error number as an integer. Normally, we can bypass the
checks by editing the native method’s declaration to a Java method,
which returns zero. Exceptionally, we modify the library file and
the APK file path instead of changing the native method’s declara-
tion for AppL.
Lib3. When a device rooting check and an app tempering check
pass, Lib3’s native method returns a string “0000.” If they do not,
the library terminates the app immediately or returns a four-digit
number as a string, such as “9002” when the device is rooted, or
“9001” when the app has been tampered with. In both cases, we
bypass the checks by editing the native method’s declaration to a
Java method, which returns “0000.”
Lib4. Because Lib4’s native method returns a byte array, it is hard
to predict the return value when an app runs in an untampered en-
vironment. Therefore, we cannot rewrite the method’s declaration
to a Java method. Instead, we modify the native library file to by-
pass the device rooting check and use FakeContext, as described in
Section 4.2.2, to bypass the app integrity check.

4.4 Summary
We have shown that the apps and libraries use diverse Android

APIs and system calls to detect evidence of tampering, but they
mainly focus on only a few characteristics of tampered systems
and apps. For example, to check device rooting, apps and libraries
try to find binaries and apps related to device rooting using known
file paths and app names. To check app integrity, they compute
the app package file’s hash value and compare it with the correct
value. These checks are done in the app itself, which makes it easy
to bypass the self-defense mechanisms. We have shown that the
strategies we put together for bypass attacks are effective against
these apps and libraries. Additionally, we found that some libraries
leverage characteristics that other apps or libraries do not consider.
For example, Lib0 checks a system process’s user ID and Lib4 in-
vestigate all files and directories in the system to check device root-
ing. We also found that one app checks whether the self-defense
mechanism has been bypassed, during runtime. However, these at-
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tempts are still made in the app, so they cannot completely prevent
the bypass attacks. From the findings, we conclude that the cur-
rently implemented self-defense mechanisms are ineffective, and
thus platform-level verification is required to ensure the integrity
of the platform and the apps.

5. MERCIDroid EFFECTIVENESS AND
LIMITATIONS

This section describes the effectiveness and limitations of MER-
CIDroid.

5.1 Effectiveness of MERCIDroid
We investigate the effectiveness of MERCIDroid in two aspects.

We first evaluate the number of apps for which MERCIDroid can
generate SDMGraphs. SDMGraphs are generated when an SDM-
Graph contains both an environment information provider(s) and
an execution terminator. MERCIDroid constructs SDMGraphs for
67 out of 73 apps that check device rooting and 39 out of 44 apps
that check app integrity. Overall, MERCIDroid constructs SDM-
Graphs for 130 out of 140 self-defense mechanisms, which means
that at least 130 self-defense mechanisms follow the self-defense
mechanism structure described in Section 2.

We also evaluate the effectiveness of our tool in narrowing the
scope of the methods we should analyze. For each self-defense
mechanism for which we can generate an SDMGraph, we count
the number of the methods in the SDMGraph. We compare this
number with the total number of methods in the execution trace of
each self-defense mechanism. On average, the number of meth-
ods in each app is approximately 30,894. The number of methods
that are called at least once in the execution trace of running a self-
defense mechanism for analysis is approximately 1,079, except An-
droid APIs. Finally, the number of methods in the SDMGraph for
self-defense mechanisms is around 40. This means that we need
to consider only 3.7% of the methods in each execution trace and
0.13% of the methods in each app to analyze the robustness of the
self-defense mechanisms. The SDMGraphs for 130 self-defense
mechanisms show that the control flows of 88 of them contain indi-
rect relationships among threads and Android components. With-
out identifying the indirect relationships, we may only be able to
analyze 32% of the self-defense mechanisms.

5.2 Limitations of MERCIDroid
MERCIDroid identified more than 92% of self-defense mecha-

nisms in our target apps, but it has a few limitations. As described
in Section 2, MERCIDroid relies on some assumptions regarding
the typical structure of a self-defense mechanism. For example, we
assume that an alert message in an execution termination contains
some keywords such as “root” or “forged.” We also assume that
there is a common ancestor between environment investigation and
execution termination. Most self-defense mechanisms can be spot-
ted with such assumptions, but there are some self-defense mecha-
nisms that do not follow the assumptions and thus are not identified
by MERCIDroid (Limit_Cases 1, 2). Also, MERCIDroid has some
implementation limitations (Limit_Cases 1, 3, 4). Table 4 shows
the number of apps included in Limit_Cases 1 to 3.
Limit_Case_1. An environment investigation and an execu-
tion termination are called from different entry points. MER-
CIDroid cannot find a relationship between an environment inves-
tigation and an execution termination when they are called from
different entry points. In Android, every app component (e.g., Ac-
tivity, Service, ContentProvider, BroadcastReceiver) can be an en-
try point to be used in the Android system [4]. Therefore, an en-

vironment investigation and an execution termination can be called
from different entry points and exchange checking results through
a class’ member variable. Then, MERCIDroid cannot find their
common ancestor because it is located in the Android system pro-
cess, where MERCIDroid is unable to trace the control flow. We
found three apps where this case holds. To overcome this limita-
tion, MERCIDroid should trace the control flow between an app
and the Android system.
Limit_Case_2. An app uses WebView. MERCIDroid cannot ana-
lyze three apps that use WebView to provide the apps’ services. The
apps display an execution termination using a website instead of
the Android APIs mentioned in Table 3. Therefore, MERCIDroid
cannot trace the execution termination part.
Limit_Case_3. A native method uses multi-threads. MER-
CIDroid can trace multi-threads at the Java level but not at the na-
tive level. If we want to trace a new thread executed by the target
thread, we should use strace with the -f option. However, in MER-
CIDroid, the option makes strace sleep. Therefore, MERCIDroid
cannot trace system calls from the new thread. Five apps belong to
this category. We can solve this limitation by making MERCIDroid
trace the native level inside a process instead of using an external
process such as strace.

6. DISCUSSION
It is security critical to ensure that financial Android apps only

run on a non-rooted platform. With the lack of a platform-level
support, we find that many financial apps employ various checks
themselves, which are ineffective as shown by our analysis. We
first discuss a few existing platform-level approaches that can ben-
efit apps which need to ensure platform integrity before execut-
ing security critical functions. We then discuss the limitations that
make these approaches impractical.

It is not uncommon for users to root their device. They may de-
cide to install benign apps that require rooting without fully un-
derstanding security risks. They may get tricked into installing
a root-kit that results in a compromised platform. To help those
users avoid further harm, it is desirable for financial apps to have
the capability to abort security sensitive functions if the platform
is deemed compromised. However, since an app runs under the
control of the platform, an app alone is fundamentally insufficient
to determine the integrity of the platform. One option is to lever-
age a hardware capability called remote attestation introduced by
Trusted Computing Group [17]. Nauman et al. [43] discuss ways
that an Android platform can integrate remote attestation. If a
trusted third-party service validates the attestation value, the ser-
vice end involved with an app can determine whether to continue
the transaction from a particular device. This approach, however,
requires hardware changes, new services for validating attestation,
and new protocols to orchestrate a somewhat complicated flow be-
tween a device, a financial app, a service, and the server end of the
financial app.

Another approach is adding a barrier to prevent tampering of
the boot chain and critical system components. Verified boot, also
known as trusted boot or secure boot, is a technique that ensures
that only authorized boot loaders and kernel modules are loaded
into a device [18, 19]. Android 4.4 and later support verified boot
for device manufacturers [20]. However, verified boot is an op-
tional solution for device manufacturers, thus there is no guarantee
that a financial app runs on a device that uses verified boot. Google
provides SafetyNet API [6] as part of Google Play services for apps
to query whether the device running the app has passed the Android
compatibility testing. Although SafetyNet seems to collect vari-
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ous information, fundamentally, it shares the same limitation with
other cases shown in this paper as long as a compromised platform
finds ways to present fake data that make it appear unchanged when
probed by SafetyNet.

7. RELATED WORK

Financial security.
There are several studies related to the security-level of finan-

cial services on various platforms such as mobile apps and web
browsers. Recent studies investigated the security of branchless
banking apps, an emerging financial service [36, 47]. Joel et al.
showed that security images, which prevent phishing attacks on on-
line banking systems, are ineffective due to user negligence [39].
To improve the security of financial services, many studies have
proposed more practical solutions. Several works propose a multi-
factor authentication scheme such as a one-time password [46,48],
or a location-based authentication solution [40, 45]. Managing a
secret key for a cryptography algorithm is another important issue
for financial security. A secret key hard-coded in an app or care-
lessly managed in the memory can incapacitate the cryptography
algorithm no matter how strong the algorithm is. White-box cryp-
tography technology reduces this concern by hiding the secret key
in the transformed cryptography algorithm [23]. Recent security
solutions for mobile financial apps use the white-box cryptography
to protect user’s private information the apps hold [3,14]. While the
existing works analyze the already well-known security factors, our
work focuses on the self-defense mechanisms of mobile financial
apps, of which a very little is known.

Android app security.
Enck et al. analyzed various Android apps and uncovered several

pervasive misuses of personal information, as well as instances of
deep penetration from advertising networks [29]. Many researchers
have examined Android interactions and identified security risks
within permission systems and communication systems [26,31,32].
Several other studies have investigated SSL/TLS security, or the
lack thereof, in Android apps [30, 33, 44]. Egele et al. studied the
misuse of cryptographic APIs, which secure data such as passwords
and personal information [27]. Chen et al. studied data leakage in
a third-party input method editor (IME) app, which can be config-
ured as a system keyboard [25]. UIPicker [42] and SUPOR [37]
are static analysis tools that automatically identify sensitive infor-
mation among input data entered via the UI. Our research analyzed
how mobile financial apps protect themselves from attacks using
root permission or app tampering, and how we can bypass these
checks, which is a security aspect missed out in other research.

There has been much research on Android security that adopts
taint tracking methodologies; taint tracking taints important infor-
mation and tracks it to trace sensitive data or analyze malware
[21, 28, 38, 51]. However, this approach is not effective for analyz-
ing self-defense mechanisms, because it cannot locate an environ-
ment investigation and an execution termination at once. A com-
mon ancestor normally uses the return value of the environment in-
formation provider as a condition for an if-else statement, thus the
taint tag is not propagated through the statement. To overcome this
limitation, the taint tracking system should support the control flow
propagation. However, according to the TaintDroid research [28],
developing such a mechanism for Android apps is difficult because
Dalvik bytecode does not maintain the branch structure. Therefore,
we conclude to trace the control flow of an app by enhancing the
Android platform instead of using the taint tracking methodology.

Tool for tracking control flow.
Our research also contributes to the creation of a tool to track the

control flow of Android apps. Cao et al. [24] propose EdgeMiner to
detect indirect control flow transitions, such as registering and exe-
cuting callback methods, in static analysis. However, EdgeMiner’s
limitation is that it cannot use information which can be acquired
only during runtime. Compac [50] and the Method Trace function
in Android Monitor [34] both present an idea for modifying the
Dalvik VM to record method calls, but they do not consider indi-
rect control flows. MERCIDroid overcomes their deficiencies by
tracking the indirect relationships between threads or components
using the runtime information.

8. CONCLUSION
In this paper, we presented an analysis of 76 Android financial

apps to investigate their self-defense mechanisms, the extra secu-
rity measures that aim to protect the apps. To analyze self-defense
mechanisms, we built MERCIDroid, an enhanced Android plat-
form that traces the control flow within a thread, across threads,
and across Android components. MERCIDroid constructs a mini-
mal control flow graph that joins an environment investigation and
an execution termination. Using MERCIDroid, we have shown that
we can locate self-defense mechanisms efficiently. Our analysis
of the self-defense mechanisms shows that apps use various tech-
niques to detect that the execution environment has been tampered
with. However, the mechanisms are ineffective because they rely
on only a few characteristics of the rooted platform and tampered
apps and are executed inside the apps. Finally, we have shown that
self-defense mechanisms are easy to bypass by rewriting a small
portion of app code in many cases. Thus, self-defense mechanisms
employed in Android financial apps are not effective. Our work
calls for security mechanisms to ensure platform and app integrity
for Android financial apps.
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APPENDIX
A. LIST OF INDIRECT CALLER–CALLEE

RELATIONSHIPS

Activity
onCreate()

Activity
performCreate()

Instrumentation
callActivityOnCreate()

ActivityThread
performLaunchActivity()

Context
startActivity()

BroadcastReceiver
onReceive()

Handler
handleCallBack()

Handler
dispatchMessage()

InnerReceiver
performReceive()

Context
sendBroadcast()

Service
onStart()

Service
onStartCommand()

ActivityThread
handleServiceArgs()

Context
startService()

(d) Launch a new 

activity

(e) Send a 

broadcast message

(f) Start a new 

service

Thread
run()

Thread
start()

Handler
handleMessage()

Handler
dispatchMessage()

Handler
enqueueMessage()

Handler
sendMessage()

AsyncTask
doInBackground()

WorkerRunnable
call()

AsyncTask
executeOnExecutor()

AsyncTask
execute()

(a) Start a new 

thread

(b) Communicate 

with another thread

(c) Execute a new task 

in the background

Thread

Message AsyncTask

Intent Intent Intent

Message

Figure 5: Indirect caller–callee relationships.

Figure 5 illustrates many types of indirect caller–callee relation-
ships that we need to track. The first three cases in the figure
correspond to typical call graphs representing interactions between
threads. The last three cases show communications between An-
droid components (Activity, BroadcastReceiver, Service). Those
relationships are not connected by direct method calls because the
Android system mediates the communication.

B. SDMGRAPH CONSTRUCTION PRO-
CESS WITH AN EXAMPLE

In this section, we describe the SDMGraph construction process
in detail. To find the common ancestor, the call graph generator
described in Section 3.2.2 first recursively checks the environment

information provider(s) that are flagged at runtime and their ances-
tors. Then, it tracks the ancestors of the execution terminator, until
the generator finds the one that has been already flagged. The first
flagged ancestor node encountered during this backtracking step
from the execution terminator is the closest common ancestor. It
then constructs this SDMGraph using graphviz [9].

Figure 6 shows an example SDMGraph of a device root-
ing check performed by AppZ. The app uses Process-
Manager.exec() as an environment information provider
and AlertDialog$Builder.setMessage() as an execu-
tion terminator. To find the common ancestor of the two
method calls, the script runs the following steps. First, it
checks ProcessManager.exec(), already flagged at run-
time, and its ancestors (Figure 6(a)). Second, it tracks the
ancestors of AlertDialog$Builder.setMessage() (Fig-
ure 6(b)). Finally, it constructs a graph in which the root
node is MainActivity$1$1.run(), the first flagged ances-
tor node. By considering methods only under the common
ancestor, MainActivity$1$1.run(), we can identify the
relationship between the environment information provider and
the execution terminator. As shown in the figure, the Interac-
tion ID connects Handler.enqueueMessage() and Han-
dler.dispatchMessage() (Figure 6(c)).

C. FLOWCHARTS FOR BYPASSING
SELF-DEFENSE MECHANISMS

Figures 7 and 8 show flowcharts for bypassing device rooting
checks and app integrity checks. We constructed the flowcharts
based on our sample data and our trial and error experience. We
first try an easier technique to bypass an identified self-defense
mechanism. If the technique fails, we progressively try more dif-
ficult techniques. In each step, we rewrite the app using the tech-
niques described in Section 4.2. If we succeed in bypassing a self-
defense mechanism, we place the app in a corresponding success
group.

Figure 7 shows the strategies used to bypass device root-
ing checks. We first identify whether the marked method is
an Android API or a native method. If the method is an
Android API, we modify the return value or the argument
of the method (R_Group_API). Otherwise, we fix the return
value of the native method (R_Group_Native_Predictable_Return).
If both fail, we patch some bytes in a native library
(R_Group_Native_Unpredictable_Return).

Figure 8 shows the steps that must be followed to bypass app
integrity checks. Contrary to the device rooting check, when the
marked method is an Android API, we first attempt to fix its
caller’s return value before modifying the API’s argument or re-
turn value. This is because the Android APIs used by app in-
tegrity checks handle an APK file path or an app’s signature (see
Table 2). These values are app-specific, so we should gener-
ate the values for the unmodified apps to modify the values. In
many cases, predicting and fixing the caller’s return value is easier
than handling an APK file path or an app’s signature, so we first
try the prediction. When the marked method is a native method,
we try to change its declaration to a Java method that returns a
fixed value (I_Group_Predictable_Return). When we are unable
to fix the return value of the method, we modify the app’s signa-
ture (I_Group_Signature) or APK file path (I_Group_APK_Path,
I_Group_APK_Path_Context) to an unmodified app’s signature or
APK file path.
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Figure 6: An SDMGraph of the device rooting check of AppZ. We omitted, simplified, and renamed the methods.

Start bypassing a 
device rooting 

check

What kind of 
method does it 

belong to?

Change the method to a Java 
method that returns a fixed 

value.

Modify the return value 
or the argument of the 

Android API

Bypass success
R_Group_API

Bypassed?

Modify the native 
library.

Bypass success
R_Group_Native_
Preditable_Return

Bypass success 
R_Group_Native_

Unpredictable_Return

Yes

No

Native method

Android 

API

Figure 7: A flowchart for bypassing device rooting checks.
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Figure 8: A flowchart for bypassing app integrity checks.
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