
POSTER: ConcurORAM: High-Throughput Parallel
Multi-Client ORAM

Anrin Chakraborti
Stony Brook University

anchakrabort@cs.stonybrook.edu

Radu Sion
Stony Brook University

sion@cs.stonybrook.edu

ABSTRACT

Oblivious RAM (ORAM)mechanisms have improved rapidly
in recent years as increasing amounts of data are outsourced.
Although several tree-based ORAMs such as PathORAM [8]
and RingORAM [6] have achieved near-optimal bandwidth
for single client scenarios, their low overall throughput due
to high latency of access – as clients need to wait for or know
about and coordinate with each other, lest privacy is lost –
reduces their applicability for multi-client scenarios.

In this paper, we propose ConcurORAM , a multi-client
concurrent ORAM that eliminates waiting for concurrent
clients and significantly increases overall throughput. Con-
curORAM works by securely allowing multiple clients to
asynchronously access the data set in between eviction rounds
by judiciously storing ORAM position map data in a smaller
parallel de-amortized pyramid ORAM [10] of higher com-
plexity. In effect ConcurORAM reaps the benefits of paral-
lelism at a lower O(log(N)) overall complexity by identifying
and securely accessing the absolute critical data structures
that require parallel access with privacy (position map) and
designing everything else using append-only data structures
that can be then merged securely in a separate eviction step.

1. INTRODUCTION

As increasing amounts of confidential data are outsourced
in today’s cloud-centric environments, providing confiden-
tiality and privacy becomes critical. To ensure confidential-
ity, all data and associated meta-data can be encrypted at
client-side, before being stored on the server. The data re-
mains encrypted throughout its lifetime on the server and is
decrypted by the client upon retrieval.

However, simply encrypting the data is not enough for
ensuring privacy [4]. Even on encrypted data, the sequence
of locations read and written leaks information regarding
the user’s access pattern and the stored data.

Oblivious RAM (ORAM) allows a client to hide data ac-
cess patterns from an untrusted server hosting the data.
Informally, the ORAM adversarial model ensures indistin-

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2989062

guishability between multiple equal-length client query se-
quences. Since the original ORAM construction by Goldre-
ich and Ostrovsky [3], a large volume of literature [6, 8, 10]
has been dedicated to developing more efficient ORAMs.

Of these, for a client with O(n) storage (and small con-
stants), PathORAM [8], based on the original binary tree
ORAM construction by Shi et al.[7] is widely accepted as the
asymptotically the most bandwidth efficient ORAM. RingO-
RAM [6] further optimizes PathORAM [8] for practical de-
ployment by reducing the bandwidth complexity constants.

Problem Definition. Although, recent tree-based ORAM
designs have achieved near-optimal bandwidth for single-client
scenarios, one critical challenge, yet to be fully addressed, is
to provide these ORAMs with the ability to accommodate
multiple concurrent clients.

Note that it is relatively straight-forward to deploy ex-
isting ORAM mechanisms to support multiple clients by
sharing ORAM credentials and storing related data struc-
tures (e.g., the stash and the position map in the case of
a tree-based ORAM) on the storage server to ensure state
consistency. In this setup, for privacy, only one client at a
time can be allowed to access the server-hosted data struc-
tures. This reduces the overall throughput and increases the
query response time by a factor of the number of concurrent
clients. A client (in the worst case) might need to wait for
all other clients to finish before retrieving the required data
item. Since ORAMs often have non-trivial latencies of ac-
cess (e.g., due to multiple round trips of O(logN) accesses),
a client may need to wait a significant amount of time before
being able to proceed with the query.

Existing Parallel Constructions. Recent work on obliv-
ious parallel RAM (OPRAM) constructions [1, 9] achieve
parallelism at no additional bandwidth cost but under the
assumption of constant inter-client awareness and commu-
nication. Although a step forward, this assumption poses
impracticality barriers often times difficult to handle in real
scenarios. In contrast, our aim is to achieve parallelism that
works without explicit inter-client communication.

Taostore [5] is another interesting parallel ORAM which
allows concurrent client queries for an undrlying PathO-
RAM [8] instance, through a trusted proxy client. All client
queries are redirected to the trusted proxy which then queries
for the corresponding paths from the PathORAM data tree.
Further, the proxy runs a secure scheduler to ensure that
the multiple paths read do not overlap and leak correlations
in the underlying queries. Although, Taostore [5] achieves
a significant throughput increase, it can support only a lim-
ited number of parallel clients before the throughput reaches

1754

Figure 1: Overview of a query. Steps 1-5 can pro-

ceed concurrently. In step 6, clients wait for pre-

vious clients to finish before downloading the data

result log which is enforced through a server “bar-

rier” for synchronization.

a maximum and the query response time starts increasing.
As mentioned in [5], this is because the proxy needs to fetch
(and write-back) an equivalent number of paths per access
from the data tree as the number of parallel clients in the
system. The network traffic is however constrained by the
bandwidth, and hence increasing parallel clients increases
overall throughput only until the network bandwidth does
not limit the benefits of fetching multiple paths of O(logN)
data blocks. In contrast, we achieve parallelism while allow-
ing clients to query independently (without the need for a
proxy) and thus support a higher number of parallel clients.

2. PROPOSED SOLUTION

ConcurORAM provides a simple construction for achiev-
ing parallelism without additional bandwidth requirements
and inter-client communication. Below we detail the main
insights for ConcurORAM .

Position map access concurrency. Tree-based ORAMs
use a special “position map” data structure mapping logical
data item IDs to IDs of tree leafs defining a corresponding
path from the root “within”which the data items are placed.
Specifically, a data item “mapped” to leaf ID l can reside in
any of the nodes along the path from the root to leaf l.
In a single-client scenario, the position map can be stored
client-side. This however is not an option in a multi-client
scenario, lest inter-client consistency is lost.

[7] shows how to store the position map server-sides, by di-
viding it into fixed sizes blocks and storing them recursively
in smaller ORAMs. In this case, an access requires reading
the position map from the smaller ORAMs (and recursively
their position map ORAMs in turn) to obtain the leaf ID for
the required data item and then reading the corresponding
path to retrieve the data item. Storing the position map
recursively however presents a security problem in a multi-
client scenario where clients access the position map blocks
concurrently. Clients accessing the same position map block
concurrently, – especially before random ORAM remapping

Figure 2: High level description of the eviction pro-

cess. Eviction steps, data items and locations, are

randomized and independent of the client queries or

data values.

can de-couple item locations – may leak information and
show inter-query correlation.

To mitigate this, ConcurORAM stores the smaller posi-
tion map in PD-ORAM [10], a concurrent level-based pyra-
mid ORAM ([3]) which is asymptotically more expensive.
Interestingly, the small size of the position map ensures that
the overall asymptotic complexity of accessing the position
map from PD-ORAM [10] is no worse than accessing the
recursive position map ORAMs in [8].

Asynchronous operations. Tree-based ORAMs feature
two different classes of accesses to the server: (i) fetching
data (reading a root-to-leaf path) and eviction (writing back
some of the previously read data items to the root-to-leaf
path). Some ORAMs couple evictions with queries [2, 8].
Even if a multi-client design can be envisioned in which
metadata is stored on the server – for consistency, this cou-
pling forces a synchronous design where only one client is in
charge at any given time.

This prevents multi-client concurrency. For concurrency,
the fetching and eviction steps must be decoupled. Fortu-
nately, RingORAM [6] can be used to securely fetch multiple
times before an eviction – a client queries for a fixed number
of blocks and writes them to a local stash before evicting
the blocks to a deterministically chosen path on the tree.
ConcurORAM partially deploys parts of the overall RingO-
RAM design. In ConcurORAM , multiple concurrent client
data queries are followed by an eviction step performed by
a single client.

Server Side Access Logs. A security challenge for all
parallel ORAM constructions is to prevent overlapping queries
from different clients accessing the same data block. The
OPRAM model [1, 9] achieves this through inter-client com-
munication while Taostore [5] uses a trusted proxy to sched-
ule queries securely to the server. Both these mechanisms
have practical limitations as described before – inter-client
communication maybe prohibitive in many practical scenar-
ios while fetching data for multiple parallel queries at the
same time through a single proxy is subject to the perfor-
mance limitation enforced by the network bandwidth.

1755

Instead, ConcurORAM solves this problem through a set
of encrypted server side logs – a query log to record all on-
going transactions, a PM result log to record position map
items that have already been accessed, and a data result log
containing data blocks previously read from the data tree.
The logs are maintained by the server as per client requests.

Solution Intuition. Clients use the query log to check for
overlapping accesses (accesses to the same data block). Be-
fore a client proceeds with a query, it appends an encrypted
entry to the query log for the data block it is querying for.
Then, the client downloads the query log and checks for
overlaps with previous ongoing queries. In the case of an
overlap, the client issues a fake query instead.

The PM result log and the data result log effectively per-
form the function of a server-side cache. Once a client fin-
ishes access for an item (data block/ position map item),
the most updated value of the item is appended to the cor-
responding log. By downloading the logs as a whole, clients
can thus access items which have been previously accessed
by other parallel clients, without leaking privacy. Since the
logs are append only and maintained by the server, clients
do not need to wait for updating the logs.

Figure 1 provides a high level description of the query
protocol in ConcurORAM. In step 6 a client requests for
the data result log. The server responds with the data re-
sult log only after all previous clients have finished accesses.
The server enforces this synchronization on the basis of the
order of appends to the query log. More specifically, if client
i appends an entry to the query log before client j, it receives
the data result log before j. Also, client j receives the data
result log only after i has finished step 8 in the query pro-
tocol. The intuition behind this is as follows: consider that
i and j overlap for the same data block. In this case, since
i appends an entry to the query log before j, j proceeds
with a fake query for step 2-5. After i finishes access, it
appends the latest value of the data block to the data result
log. Thus, j can now retrieve the data block from the data
result log in step 7 without leaking privacy.

Further, the logs are merged and cleared in an eviction
step (Figure 2) after a fixed number of accesses which bounds
the size of the logs. The eviction tries to greedily place all
the blocks from the data result log to the data tree (similar
to [6]) while accommodating all blocks that could not be
placed in the tree in a fixed sized server-side stash. Con-
curORAM locks all server-side data structures during an
eviction to ensure consistency.

Clearly, the actual size of the logs and the stash affects
performance since clients need to download the logs per ac-
cess. Note that maximum size of the logs depends on how
often an eviction takes place. In fact, an estimation on the
basis of empirical numbers reported in [6], the total size of
all the logs can be bound to O(logN) while supporting par-
allelism for upto O(logN) clients without additional band-
width requirements.

Evaluation. A prototype implementation for ConcurO-
RAM in Java JDK 1.7 has been tested locally for upto 8
parallel clients and shows an almost proportional increase
in throughput with increase in the number of clients. The
eviction frequency was set equal to the number of parallel
clients in the system. We expect the throughput to achieve
a maximum with increasing clients due to the proportional
increase in the log sizes – this is subject to further experi-
mentation in the future.

3. CONCLUSION

In this paper, we propose the design for ConcurORAM, a
multi-client concurrent ORAM based on the idea of identi-
fying and securely accessing the absolute critical data struc-
tures that require parallel access with privacy and designing
everything else using append-only data structures that can
be then merged securely in a separate eviction step.

We plan to further test ConcurORAM and compare it
with existing parallel constructions on real cloud settings.
Also, a formal bound on log sizes and their impact on per-
formance will be analyzed in future.

4. ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion through awards 1161541, 1318572, 1526102, and 152670.

5. REFERENCES

[1] E. Boyle, K.-M. Chung, and R. Pass. Oblivious
parallel ram and applications. Cryptology ePrint
Archive, Report 2014/594, 2014.
http://eprint.iacr.org/.

[2] K. Chung, Z. Liu, and R. Pass. Statistically-secure
ORAM with $\tilde{O}(\logˆ2 n)$ overhead. CoRR,
abs/1307.3699, 2013.

[3] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. Journal of the
ACM, 43:431–473, 1996.

[4] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access
pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In in Network
and Distributed System Security Symposium (NDSS,
2012.

[5] C. S. V. Z. A. E. A. H. R. Lin and S. Tessaro.
Taostore: Overcoming asynchronicity in oblivious data
storage. IEEE Security and Privacy(Oakland), 2016.

[6] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi,
M. van Dijk, and S. Devadas. Constants count:
Practical improvements to oblivious ram. In 24th
USENIX Security Symposium (USENIX Security 15),
pages 415–430, Washington, D.C., Aug. 2015.
USENIX Association.

[7] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li.
Oblivious ram with o((logn)3) worst-case cost. In
ASIACRYPT, 2011.

[8] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path oram: An extremely
simple oblivious ram protocol. In Proceedings of the
2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 299–310,
New York, NY, USA, 2013. ACM.

[9] B. C. H. L. S. Tessaro. Oblivious parallel ram:
Improved efficiency and generic constructions.
Cryptology ePrint Archive, Report 2015/1053, 2015.
http://eprint.iacr.org/.

[10] P. Williams, R. Sion, and A. Tomescu. Privatefs: A
parallel oblivious file system. In Proceedings of the
2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 977–988,
New York, NY, USA, 2012. ACM.

1756

