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ABSTRACT
A two-server password-based authentication (2PA) protocol
is a special kind of authentication primitive that provides ad-
ditional protection for the user’s password. Through a 2PA
protocol, a user can distribute his low-entropy password be-
tween two authentication servers in the initialization phase
and authenticate himself merely via a matching password in
the login phase. No single server can learn any information
about the user’s password, nor impersonate the legitimate
user to authenticate to the honest server.

In this paper, we first formulate and realize the securi-
ty definition of two-server password-based authentication
in the well-known universal composability (UC) framework,
which thus provides desirable properties such as composable
security. We show that our construction is suitable for the
asymmetric communication model in which one server acts
as the front-end server interacting directly with the user and
the other stays backstage.

Then, we show that our protocol could be easily extend-
ed to more complicate password-based cryptographic pro-
tocols such as two-server password-authenticated key ex-
change (2PAKE) and two-server password-authenticated se-
cret sharing (2PASS), which enjoy stronger security guaran-
tees and better efficiency performances in comparison with
the existing schemes.

CCS Concepts
•Security and privacy→Authentication; Security pro-
tocols; Access control;

Keywords
Universal composability, two-server password-based authen-
tication, key exchange, secret sharing
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1. INTRODUCTION
To date, password-based protocols have already widely

been deployed throughout the network, benefiting from pass-
word’s convenience and low-cost. Without the aid of ad-
ditional auxiliary equipments, participants only share low-
entropy passwords remembered by humans to finish the des-
ignated cryptographic tasks over a hostile communication
environment. However, these protocols are inherently vul-
nerable to the off-line dictionary attack where a passive ad-
versary exhaustively enumerates possible passwords, and at-
tempts to get the matching one to the observed transcripts
of instances. Additionally, the on-line dictionary attack, an
inevitable one by cryptographic ways because of relatively s-
mall dictionary space, allows adversaries to login repeatedly
with various password attempts. Thus, how to resist off-
line attacks and restrict to adversaries eliminating at most
one password per protocol execution, has become the basic
security requirement of password-based protocols.

Although many schemes are carefully designed to avoid
off-line dictionary attacks, they just pay attention to the
situation where the adversary can only attack the commu-
nication link, without considering the security when servers
are corrupted. Indeed, server compromise causes the grow-
ing threat to personal passwords in the real network, and
there’s no sign of let-up [21, 33]. In the single-server sce-
nario, the server always stores the “data file” containing the
secrets of all the clients in the system. An attacker may
obtain all the passwords once the server is compromised. If
unfortunately, even worse, the adversary could freely login
victims’ accounts, and perform other malicious behaviors
with legal status, which inevitably gives rise to further leak-
age of privacy protected by passwords. Even though the
hashed or salted passwords (or other information related to
them) are stored on servers instead [4, 27, 22], the brute-
force attack still helps the adversary to try guesses repeat-
edly for the password and check them against the values
from password files. Since 2012 a computer cluster boast-
ing 25 AMD Radeon graphics cards has already made 350
billion password guesses per second, and all eight-character
passwords fall in hours [29]. Hence, the password cracking
is severe and unavoidable during a data breach.

Distributed Password-Based Authentication (DPA)
addresses this concern effectively. As an economic and prac-
tical solution, it distributes the capability to verify pass-
words and trust over multiple servers. More specifically, it
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makes the password or relevant information split into pieces
and stored on different servers, respectively. Once a user ac-
cesses the target servers, they verify the password attempt
via their corporation so as to authenticate this specified en-
tity. Correlatively, Camenisch et al. [9] provided an efficient
single-round distributed password verification protocol, real-
izing the UC-security [11] against transient corruption. Not
entirely the same as DPA, It emphasises on the security of
the password verification process among servers rather po-
tential disclosure of passwords in the communication chan-
nels between the user and servers. Besides independent in-
terest, DPA can be viewed as an authentication modular of
threshold password-authenticated key exchange [28, 5, 35]
and password-authenticated secret sharing [10, 8, 6].

Threshold Password-Authenticated Key Exchange
was introduced by Ford and Kaliski [19]. In a (t, n) T-PAKE
protocol, a user with a single password suffices to establish
n session keys with n servers separately, if only he possesses
a matching one. Meanwhile, the coalition of no more than t
malicious servers can learn nothing about the password. It
significantly mitigates the damages caused by server com-
promise. Subsequent to their work, a number of efficient
schemes [24, 5, 34, 36] were given. Nevertheless, they all give
no formal proof of security in accepted models. MacKenzie
et al. [28] extended the BPR model [2] into multi-server set-
ting, and put forth the first provably secure scheme under
the derived security model. Later, two-server schemes [26,
35] in the standard model were followed.

Password-Authenticated Secret Sharing (in case of
t-out-of-n) is deemed to allow a user to distribute his secret
protected by a password among n servers, and later, with
a matching password attempt, to reconstruct the secret by
interacting with any t+ 1 servers included in the initial set
of n servers. In real-world applications, PASS protocols can
make private data conveniently synchronized over the cloud
among ones’ personal devices. An earlier way to realize the
functionalities above, such as [19, 24], relies on the Thresh-
old PAKE protocol, and transmits the secrets via the secure
channels they have established. However, the composition of
TPAKE and secure channel is not as efficient and concise as
direct construction of PASS. The real sense of PASS was in-
troduced and formalized by Bagherzandi et al. [1] (which is
called as“PPSS”). The first ideal functionality for two-server
PASS and the concrete proposal in the UC framework were
put forward by Camenisch et al. [10] in the PKI setting,
then followed by the t-out-of-n one [8] and the adaptive-
ly secure one [6]. Afterwards, Jarecki et al.’s protocol [25],
based on Verifiable Oblivious PRF, allowed the construction
of the round-optimal scheme with minimal overhead known,
and achieved the game-based security.

1.1 Our Contributions
Firstly, we suggest a two-server password-based authenti-

cation protocol in the password-only setting (even between
servers) where parties do not have to remember others’ pub-
lic keys, capturing the explicit verification of users’ pass-
words by the threshold way. Our scheme provides explicit
notifications to both servers about the success or failure of
an authentication attempt, and prevents the adversary from
learning the password attempt or honest servers’ shares on
condition that at least one server is honest. Therefore it is
nicely compatible with the throttling mechanism that tem-
porarily blocks user accounts for the sake of protection as

they successively fail several login attempts or some server-
s’ abnormal behaviors are observed. This functionality is
actually of great importance to security and practicability.
Otherwise, without explicit validation, the corrupted server
could possibly treat the other uncorrupted one as a black-
box oracle to check the correctness of attempts—i.e. an on-
line attack without awareness. More realistically, unrestrict-
ed login requests from the adversary in the same username
could exhaust computational resources of servers.

In security respect, we prove that our scheme satisfies UC-
security against the static adversary, based on the decisional
Diffie-Hellman assumption and the random-oracle model [3].
Compared with the game-based security models [2, 28, 1],
the universal composablity framework has conspicuous ad-
vantages in composition property and distribution of pass-
words. Indeed, They mainly arise from the stipulation in
this model that upper entity (known as the “environment”)
of the target session, also as a distinguisher, is capable of
arbitrarily invoking protocol instances, providing private in-
puts to participants. To avoid repetition, more descriptive
details about UC framework are presented in Section 2.4.

In terms of setting, our scheme abandons the PKI assump-
tion, even between servers. It can inherently deter the phish-
ing attack. That is, If, an undesired case, an honest party
obliviously communicates with malicious peers in default of
certified public key, which directly results in the exposure of
confidential information. We instructs the user to encrypt
randomized quotient of passwords instead of plain password
shares. In addition, the PKI seemly provides enough con-
venience to construct protocol schemes. Nevertheless, as a
user wants to communicate with servers, he has to access
to root certification authorities for their public keys, and
explicitly authenticate servers. On the minus side, it adds
to users the burden of checking key validity. For practical
deployment, the design should evade any use of PKI model
in the password-based system. Otherwise, to some degree
the benefits of passwords would be counteracted.

From an architecture perspective, two-server password-
based protocols come in two types: symmetric and asym-
metric. The symmetric type, such as [26, 10, 36, 35, 6],
allows two servers equally to contribute to authentication.
Additionally, and they are both exposed to users or external
adversaries, and this type demands for the synchronization
at the user side due to the simultaneous interactions with
two servers. In the asymmetric type, such as [5, 34], only
the front-end server is public to the user and responsible
for delivering the messages, while the back-end server as a
reserved aider, stays behind the scenes in relatively safe sta-
tus. From a security point of view in the real network, the
latter is obviously superior to the former. Without use of
the PKI assumption, our scheme supports the asymmetric
architecture, and, unlike [34], there no exists unequal lev-
els of trust in both servers. An malicious front-end server
derives no knowledge from illegal behaviors, like imperson-
ating or tampering with messages from the other parties,
but the result of authentication, when communicating with
the honest back-end one.

After proposing the new scheme above, our second main
contribution is considering the 2PA protocol as a core build-
ing block to extend to other contexts, so that we give the
practical yet UC-secure instantiations of 2PAKE and 2PASS
schemes. Incidentally, they also inherit the advantages of
no PKI requirements for any parties. More precisely, by
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virtue of smooth projective hash functions (SPHF) [15], as
implicit proofs of membership for certain languages, our
2PAKE UC-realizes the corresponding ideal functionality we
provide, and it’s the first provably secure one in the UC
framework. We make key establishment materials pass a-
long with authentication information, and bind to them vi-
a simulation-sound NIZK, to achieve that end. And our
2PASS analogously employs SPHF but as proofs of legal
servers rather than session keys of secure channels. That
technique may eliminate the unnecessary utilizations of zero-
knowledge proofs. As far as we know, the resulting protocol
also has a better computation complexity than the other
UC-secure PASS schemes. Comparisons of some existing
schemes are shown in Table 1 and Table 2, respectively.

Table 1: Comparison of two-server PAKE schemes

scheme struc. secur.1 setup msgs2 com.user3 com.sers

KMT+[26] sym game CRS 6 15 70|70
YLW[36] sym none RO 6 4 5|5
YHB[35] sym game ID 7 23 32|32
YDH[34] asym none RO 10 5 6|3
Ours asym UC RO 7 12 20|20
1 The “secur.” column enumerates the accepted security models in
which schemes are proved;

2 The “msgs” column counts the total number of transmitted mes-
sages among parties.

3 The last two columns counts exponentiations in a prime-order group
performed by the client and servers, respectively.

Table 2: Comparison of PASS schemes in RO model

scheme range secur. setting msgs com.user com.sers

BJSL[1] (t, n) game PKI 3 8t+ 17 16
JKK[25] (t, n) game CRS 2 2t+ 3 3
CLLN[8] (t, n) UC CRS 10 14t+ 24 7t+ 28
CLN[10] (1, 2) UC PKI 8 19 26 | 30
Ours (1, 2) UC CRS 8 18 18

2. PRELIMINARIES
In this section, we first briefly recall cryptographic prim-

itives two kinds of public-key encryption schemes, smooth
projective hashing and simulation-sound non-interactive zero-
knowledge proofs used in the construction of our schemes,
and then give a review of the UC framework [11].

2.1 Public-Key Encryption Schemes
A CPA-secure public-key encryption scheme consists of

three algorithms (kg, enc, dec). The key generation algorith-
m kg generates the pair (pk, sk). The encryption algorith-
m takes as input pk, a message m, the randomness w and
outputs a ciphertext C:=encpk(m;w), while the decryption
takes as input sk, a ciphertext C and outputs m:=decsk(C).
We require it to have the indistinguishability under chosen
plaintext attack. The ElGamal cryptosystem [17] that meets
such requirements is needed in this literature.

A labeled CCA2-secure public-key encryption scheme is
also defined by three algorithms (KG,Enc,Dec). Its descrip-
tion of algorithms is similar to CCA2, except that the Enc

and Dec algorithms have an additional input parameter, re-
ferred to as a label, and the Dec consists progress of verify-
ing the ciphertext. More precisely, the Dec will not decrypt
the ciphertext, unless the input label is consistent with one
used in the Enc algorithm, and the ciphertext is verified,
otherwise the algorithm outputs a failure symbol ⊥. For the
CCA2-security, the adversary is allowed to query the de-
cryption oracle on the 2-tuples composed of the ciphertexts
and labels that are different from the challenge pair.

2.2 Smooth Projective Hash Functions
The notion of smooth projective hash functions was in-

troduced by Cramer and Shoup [15]. Here, we focus on our
eventual application, similarly to [23], and show a descrip-
tion based on the ElGamal encryption scheme.

For some ElGamal scheme (kg, enc, dec) with respect to
public key pk, Let X be the range of the encryption algorith-
m, and define the language Lpk,m:={C|∃w : C:=encpk(m;w)}
for a fixed plaintext m ∈ D. Obviously, Lpk,m ⊂ X.

Formally, a smooth projective hash function for the lan-
guage Lpk,m is a keyed family of functions mapping elements
in the ciphertext space X to the set Π, along with a projec-
tion function α: K → S, where K is the hash key space, and
S is the projected key space, satisfying:

1. There exist four algorithms for (1) uniformly sampling
the hash key hk ← K, (2) deriving the projected key
hp := α(hk) for hk ∈ K, (3) computing the hash value
Hash(hk,C,m), for C ∈ X and m ∈ D, and (4) com-
puting the projected hash value ProjHash(hp,C,m,w),
where w is the witness C ∈ Lpk,m.

2. The correctness guarantees that if C ∈ Lpk,m with w
a witness of this membership, then the results giv-
en by these two hash algorithms are equivalent, i.e.,
Hash(hk,C,m) = ProjHash(hp,C,m,w).

3. The smoothness assures that if C /∈ Lpk,m, the follow-
ing two distributions are statistically indistinguishable:
{(hp,H)|hk ← K;hp := α(hk);H := Hash(hk,C,m)},
{(hp,H)|hk ← K;hp := α(hk);H ← Π}.

2.3 Simulation-Sound NIZK
Simulation-sound non-interactive zero-knowledge proofs

introduced by [30, 16], are used to prove some certain rela-
tions among the ciphertexts in this paper. The simulation-
soundness, as the extended property of soundness, guaran-
tees that a malicious prover cannot give a convincing proof
for any new invalid statement, even if it has seen poly-
nomial many simulated proofs of invalid statements of its
choice. Additionally, we need the proof system to be zero-
knowledge that the adversary cannot distinguish the simu-
lated proof from a real one. In our schemes below, we use
NIZK{(w) : (w, v) ∈ RΦ} to denote the proof that a predi-
cate Φ(v) = 1 for a public value v and the corresponding wit-
ness w. Moreover, the label containing the open information
can be appended, on account of a labeled zero-knowledge
proof that is bound to a certain context. The instantiations
of proofs are provided in Section 3.3.

2.4 Universal Composability Framework
Universal composability [11] is the definition of secure

computation that considers an execution of a protocol in the
setting involving an environment Z, an adversary and par-
ties. This framework focuses on two worlds—the real-world
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and the ideal-world. Z’s whose aim is to differentiate be-
tween the two worlds, provides the inputs to the parties and
views their outputs. On one hand, as usual, the real-world
consists of participants of the protocol and an adversary
A who controls the communication channel and potentially
attacks them. On the other hand, in the ideal-world, there
exists an entirely trusted entity F called ideal functionality,
and participates of the protocol simply hand their inputs
to F . The ideal adversary S directly interacts with F , and
their communication essentially models the information it
can obtain and its abilities to attack the protocols. Namely,
the functionality describes the security goals we expect. In-
tuitively, the adversary, with a variety of means of attacks,
should not learn more information than the functionality’s
outputs to it. Thus, security requires that, for any adversary
A attacking a protocol ρ, there exists an ideal adversary S
such that no environment Z can distinguish the case that
it is interacting with A and parties in the real-world, and
the case which it is interacting with S and a functionality
F in the ideal-world. If so, we say that ρ UC-realizes F .
From the point of view of the environment, the real-world
protocol is at least as secure as the ideal-world one.

UC framework brings several fundamental advantages com-
pared with game-based security models [2, 4, 28, 1]. The
widely recognized one is that the executions of UC-secure
protocols remain secure in arbitrary, possibly malicious net-
work environments—essentially what one should expect from
security protocols deployed in the real-world. However, oth-
er security models generally just concern about stand-alone
or non-concurrently settings. Specifically, protocols proven
UC-secure satisfy strong composability properties: (1) they
remain secure even though many and different protocol in-
stances (secure or not) may run concurrently, and (2) the
powerful universal composition theorem guarantees that they
can be securely used as a sub-routine protocol of other UC
protocols. With respect to the case of password-based pro-
tocols, we would get some further benefits from the securi-
ty notions in the UC framework. The stand-alone security
models, such as the BPR model [2], are somewhat limit-
ed in that they assume that passwords are randomly chosen
from some pre-determined, independent and known distribu-
tion, which rarely holds in the real deployment1. More than
that, they fail to depict the cases where the honest partic-
ipants with incorrect but related passwords interacts with
others—when a user obliviously types errors. Rather, the
UC framework can handle arbitrary password distribution,
even if related passwords are used, or peers have different
ones, since their inputs are all up to the environment, which
elegantly captures the requirements of a more realistic scene.

3. TWO-SERVER PASSWORD-BASED AU-
THENTICATION PROTOCOL

In this section, we’ll begin by presenting a detailed de-
scription of the security definitions in the UC framework,
followed by a corresponding scheme to realize it.

3.1 Ideal Functionality
Aiming at formulating a security definition of the two-

server password-based authentication (2PA) that guarantees

1In 2014, Wang et al. [31] had revealed that passwords are
not uniformly distributed but actually follow a Zipf’s law,
and more details can be referred to Fig.3 of [32].

stronger security properties such as protocol composability
and fit for arbitrary password distribution, we present an
ideal functionality for 2PA in the UC framework. Our for-
mulation is inspired by the UC security notions of traditional
PAKE [12, 23] as well as the security properties of existing
distributed password-based protocols [10, 8]. It, denoted as
F2PA, is described in Figure 1.

In the ideal-world, a 2PA protocol operates in a setting
with a user U , two servers P1, P2, an adversary S, the en-
vironment Z, and the ideal functionality F2PA. The session
identifier tuple sid := (username,P1, sid

′) for sid ′ ∈ {0, 1}∗,
with sub-session identifiers ssid mentioned below, is provided
by Z, and imposed to be globally unique so that concurrent
sessions can be distinguished. Note that the sid contains no
information about the identity of P2. This is defined to sup-
port the asymmetric communication model where the user
does not directly connect with the back-end server, or be
aware of him in a protocol instance. In order to avoid the
repeated representation, we assume that the ideal function-
ality only cares about the first query or inputs for each ssid,
and straightly ignores the subsequent ones.

The Initialization query models the process that a user
U with username chooses p′ to create an account on the
front-server P1 and the back-end one P2, and distributive-
ly stores the password shares in two servers. To simplify
descriptions of the ideal functionality, we assume that on-
ly in this initialization phase, are all parties honest, and
the user temporarily knows his peers P1 and P2. Actually,
this idealized simplification hardly impairs the security of
the subsequent protocol execution phase in which we allow
the adversary to attack actively. Once receiving the query
(Initialization, sid ,P1,P2, p

′), F2PA locally takes down this
intact input as a record. Then F2PA shall unhesitatingly
label this record fresh. At last, the functionality generates a
public delayed output2 to both servers.

Though the NewSession queries, these parties begin new
login sessions with the expected ones. On one hand, F2PA

creates a corresponding record for user U ’s password attempt
p (that may not be p′) referred to him, and labels this record
fresh or corrupted according to his current state. In this pa-
per, we just take into account the static corruption—the
adversary S could selectively corrupt some of the partici-
pants, but only prior to the beginning of a protocol execu-
tion, namely, before any one of the NewSession queries from
Z is sent. From corruption on, the adversary will not only
obtain their inputs, but also fully control the rest of their
behaviors. On the other hand, once both servers join the
specified session, F2PA checks up and recovers the Initial-
ization record for the corresponding sid related to them. If
such a record exists, the functionality generates a NewSes-
sion record collectively owned by P1 and P2. Otherwise,
F2PA puts these queries from servers on hold. Note that
F2PA is required to mark it corrupted, only in the case that
they are both corrupted, and it is labeled as fresh in other
cases. It is such defined since we hope that a single dishon-
est server is prevented from learning the knowledge about
the password. And we still try to guarantee that the fresh

2As defined in [11], we say that an ideal functionality F
sends a delayed output v to a party P, if it first sends to the
adversary a message that it is ready to generate an output
to P. If the output is public, then the value v is included in
the message to the adversary. If the output is private, then
v is not mentioned in this message
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Upon input (Initialization, sid ,P1,P2, p
′) from U :

F creates a record (Initialization, sid ,P1,P2, p
′), and labels it fresh. Then it sends a public delayed output

(Initialization, sid ,P1,P2) to P1 and P2, respectively.

Upon input (NewSession, sid , ssid , p) from U :
F sends (NewSession, sid , ssid ,U) to S. Then F creates a record (NewSession, sid , ssid ,U , p), and labels it fresh
for the honest user. If U has been corrupted, F labels the record corrupted instead, and relay this query to S.

Upon input (NewSession, sid , ssid) from Pi:
F notifies S by sending (NewSession, sid , ssid ,Pi). If there’s a fresh record (Initialization, sid ,P1,P2, p

′), it
has received two NewSession queries from servers, and at least one is honest, F creates a fresh record
(NewSession, sid , ssid ,P1,P2, p

′). If both servers are corrupted, it’s marked as corrupted, and sent to S.

Upon receiving (TestPwd, sid , ssid , T , p̂) from S, where T = {P1,P2} or U :
If T = {P1,P2}, there exists a fresh record (NewSession, sid , ssid ,P1,P2, p

′) (resp. (NewSession, sid , ssid ,U , p)
and T = U), then do: If p′ = p̂ (resp. p = p̂), F relabels it compromised and replies to S with “correct guess”.
Otherwise, F relabels it interrupted and replies with “wrong guess”.

Upon receiving (Result, sid , ssid ,R) from S, where R ∈ {U ,P1,P2}:
If there is a stored record for R, then:
• If this record is compromised, then F gives a public delayed output (Result, sid , ssid , succ) to R.
• If his record is interrupted, or the other record (if it exists) is labeled as interrupted or compromised, or p′ 6= p,
then F sends a public delayed output (Result, sid , ssid , fail) to R.
• If there exists the other record, and each record is fresh or corrupted with matching passwords, then F sends
a public delayed output (Result, sid , ssid , succ) to R.
Either way, F marks this record completed.

Figure 1: Ideal functionality F2PA

record with a“defect” can successfully finish the task despite
malicious behaviors from the malicious server—robustness.

In the unauthenticated channel, an adversary should be
capable of delaying or revising the messages from the honest
user or servers, and impersonating them to take part in the
protocol instance with its own attempt. To model that, we
introduce the TestPwd query furnished by S to capture the
adversary’s attack ability from the angles of the disguised
user and servers. Particularly, though only one server is a
fake while the other honestly runs, we still deem it to be a
TestPwd query. A record is relabeled as compromised if the
adversary makes a correct password guess, and it is relabeled
as interrupted instead otherwise. In either case, S explicitly
takes the verification results for granted in our model.

In the end, the adversary S decides at which point the
results of the authentication are delivered to participants
through the Result queries. Upon receiving the queries,
F2PA provides the results to them according to the label-
s of records and the facts that whether the passwords are
matching or not. When one record has been compromised,
i.e. S has a correct guess, F2PA should output a successful
notification succ to the receiver R, so do both records (no
matter each is fresh or corrupted) with matching passwords.
The adversary can always “hijack” the original party query,
and substitute it with its own, which gives rise to failure
of his connection. Hence, one gets a fail result, as long as
the other record has been interrupted or compromised, or his
record has a non-matching password with the other. Once
F2PA sending a Result output to R, his NewSession record
is marked as completed to avoid constant on-line guessing

attacks from S even after the authentication has ended.
Remarkably, in the UC framework, as per the formalism

of [11], assume that multiple protocol instances are running
concurrently. The globally unique session identifiers ssid
are generally used to differentiate among these instances.
As the case in the real-world, multiple execution instances
often invoke the same CRS. Roughly, we have to consider

the multi-session extension F̂2PA through the JUC theorem
[14]. We refer to [12, 10] for more discussions.

3.2 Our Scheme
Now we present our scheme for realizing F̂2PA above, rely-

ing on the common reference string functionality FCRS [13],
the secure message transmission functionality FSMT [11] and
the random oracle model. We illustrate the protocol in Fig-
ure 2. Assume that FCRS describes a cyclic group G of
prime order q and generator g generated through an algo-
rithm of parameters generation by a security parameter κ,
together with two ElGamal public keys h′ and h randomly
sampled from group G for which the corresponding discrete
logarithms are unknown. FSMT (only employed in the ini-
tialization phase) guarantees that the transmission is ideal-
ly authenticated, and in addition that the adversary has no
access to the contents of the transmitted message. As for
random oracles, we only use them to generate SS-NIZKs.

Once activated with the input (Initialization, sid ,P1,P2, p
′)

from the environment Z, where p′ ∈ G, the user U uniformly
chooses p1 from the group G, and splits the password p′ into
p1 and p2 such that p′ := p1p2. Then U sends p1, p2 to the
server P1, P2 through FSMT, respectively. It is understand-
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U(p) P1(p1) P2(p2)

Step 1. r ← Z∗q ;u := gr

u, v
−−−−−−−−−−−−−−−−−−→

v := h′
r
p

Step 2. r1 ← Z∗q ;u1 := gr1

u, v, u1, v1−−−−−−−−−−−−−−−−→
v1 := hr1p1

Step 3. r2 ← Z∗q ;u2 := gr2 ;
u1, v1, u2, v2←−−−−−−−−−−−−−−−−−−

u2, v2←−−−−−−−−−−−−−−−−
v2 := hr2p2

Step 4. s← Z∗q ;A := hs

A,B, π`
−−−−−−−−−−−−−−−−−−−→

B := (v1v2/p)
s

Step 5. if π` fails, abort;
s1 ← Z∗q ;A1 := As1

A,B, π`, A1, B1, π
`1
1−−−−−−−−−−−−−−−−−→

B1 := Bs1A−r1s1

Step 6. if π` or π`11 fails, abort
s2 ← Z∗q ;A2 := As21

B2 := Bs21 A−r2s21

A2, B2, π
`2
2←−−−−−−−−−−−−−−−−

if B2 6= 1, abort

Step 7. if π`22 fails
trancripts(P1,P2)←−−−−−−−−−−−−−−−−−−−

or B2 6= 1, abort

Step 8. Check the transcripts

Figure 2: Two-server password-based authentication protocol

ably assumed that the adversary A learns nothing but that
messages are sent and other indifferent information on the
messages. Pi locally stores (sid ,P1,P2, pi) where i ∈ {1, 2},
and outputs (Initialization, sid ,P1,P2) to Z. The user U ends
the initialization phase with removing all the internal data.

When a protocol instance begins, each party, firstly, visits
FCRS to obtain the public parameters (G, q, g, h′, h). Then
they encrypt their inputs under the ElGamal encryption
scheme, and send them to the specified peers (from Step 1
to Step 3). To capture the asymmetric deployment, P1, as a
front-end server, has to deliver messages between the user U
and the back-end server P2. Without the PKI assumption,
it would not expose the identity of P2. Specifically, after
receiving (NewSession, sid , ssid , p) from Z, where p ∈ G al-
so, the user U under username included in sid, encrypts his
password attempt p with a randomness r drawn from Z∗q ,
so that (u, v) := (gr, h′

r
p) under the public key (g, h′), and

sends it to initiate a session with P1 and an unknown back-
end server. When P1 receives the message, he forwards it
to P2 together with the ciphertext (u1, v1) := (gr1 , hr1p1)
of the password share p1 with a randomness r1 drawn from
Z∗q under (g, h). Similarly, P2 also computes (u2, v2) :=
(gr2 , hr2p2) and replies it to through P1. These parties nat-
urally store their transcripts and temporary internal states.
As can be noticed, U uses a different public key (g, h′) with
the servers. It’s in consideration for separated reductions of
two ElGamal ciphertext in the security proof.

In the next steps, two servers jointly finish threshold de-
cryption for the user’s encryption of password. U selects
a randomness s, and computes an abnormal ElGamal ci-
phertext (A,B) := (hs, (v1v2/p)

s) by help of its homomor-

phic property. Precisely, (A,B):=(hs, (h(r1+r2)s(p1p2/p)
s),

where the cihpertext is essentially an encryption of the ran-

domized quotient of passwords (p1p2/p)
s, and the secret key

is r1 + r2. In addition, U is required to generate a labeled
SS-NIZK proof π` that (A,B) are computed correctly, and
it prevents from trivially using the identity element “1” of
group G as the quotient of passwords. That is,

π`:=NIZK{(r, s):(u, v)=(gr, h′
r
p)∧ (A,B)=(hs, (v1v2/p)

s)},

where ` := (sid, ssid,A,B, u1, v1, u2, v2). Then he hands
the message (A,B, π`) to the front-end servers P1. Then
servers decrypt the ciphertext through cooperation, since
each one only owns a part of the secret key. Once receiving
the message from U , the server P1 verifies the proof π`, and
aborts the protocol if it is invalid. In order to prevent unin-
tentional disclosure of the secret information and guarantee
that the servers provide the correct decryption operations,
P1 randomizes and partially decrypts the ciphertext from
U , and generates the SS-NIZK:

π`11 := NIZK{(s1, r1) : A1=As1 ∧B1=Bs1A−r1s1 ∧ u1=gr1},

where `1 := (sid, ssid,A1, B1). Next he sends the cipher-
text partially decrypted and the proof to P2, along with the
message from U . Upon getting them, the server P2 verifies
the proofs π`, π`11 , and aborts the protocol if either is in-
valid. P2 similarly runs and provides a proof:

π`22 := NIZK{(s2, r2):A2=As21 ∧B2 = Bs21 A−r2s21 ∧ u2=gr2},

where `2 := (sid, ssid,A2, B2). Then, he returns (A2, B2)

and π`22 to P1. If their passwords do match, the final de-
cryption result is B2 = 1 and it’s overwhelmingly a random
group element otherwise. Each server outputs succ or fail ac-

158



cording to B2 = 1 or not. Finally, P1 passes the transcripts
between two servers (denoted as trancripts(P1,P2)) in Step
5 and Step 6 to U , which allows him to inform of the result.

Note that we make U send the ciphertext of the password
as an initiation of a new protocol instance. On the sur-
face, this message is of no use in authentication. However,
without the first round message, the simulation will get s-
tuck in the security proof, i.e. that the protocol does not

realize the F̂2PA in the UC framework. Specially, consider
when the adversary impersonates a user. The simulator S
(the adversary in the ideal-world) has to, on behalf of the
servers, send (u1, v1), (u2, v2) before it receives the cipher-
text (A,B) from the real-world A called by S in the sim-
ulation. However, S cannot extract A’s password attempt
and verify whether it provides a matching guess. Name-
ly, the failed simulation could be easily detected, thwarted
accordingly—the environment may realize the difference re-
sults from ones the functionality outputs. Therefore, the
pre-flow message (u, v) encrypted “to the fly” is necessary to
help S get the password attempt of A via the secret key cor-
responding to (g, h′). Moreover, a labeled simulation-sound
NIZK guarantees that the passwords are consistent, and al-
lows the simulator to give a convincing proof of the false
statement with a dummy password.

3.3 Instantiation and Complexity
Here, we concisely provide the instantiations of the proofs

in our scheme, and make them non-interactive and simulation-
sound by the Fiat-Shamir transformation [18]. It requires
the prover to add the open information into the label, and
includes it as an argument to the random oracle. The fol-
lowing notation is used. PK{(a, b, c) : y = gahb∧ỹ = gahc}
denotes a zero-knowledge proof of knowledge of integers a,
b, c such that y = gahb and ỹ = gahc hold, where y, g, h
and ỹ are from G, and known to the verifier. We refer to [7,
10, 8] for details.

The proof π` by which the user U proves that (u, v) and
(A,B) are associated with the same p is generated in Step
4. Note that (u, v):=(gr, h′

r
p) and (A,B):=(hs, (v1v2/p)

s).

The passwords encrypted thus are vh′
−r

and v1v2B
−s−1

,

respectively. Then rewrite the statement vh′
−r

=v1v2B
−s−1

into B=h′
rs

(v1v2/v)s. By definition β:=rs, it is trivial to
conclude that 1=usg−β . Hence, π` can be realized as:

π`:=PK{(r, s, β):u=gr∧A=hs∧1=usg−β∧B=h′
β
(v1v2/v)s},

where β := rs and ` := (sid, ssid,A,B, u1, v1, u2, v2). It
takes both the prover and the verifier about 4 exponentia-
tions in the group.

The proof π`11 generated by P1 ensures that the cipher-
text (A,B) is honestly randomized with s1, and partially
decrypted with “secret key” r1 that ever used as the ran-
domness to generate (u1, v1). Indeed, the proof just shows
that B1 is the product of B and A−1

1 that are raised to s1

and r1, respectively. It is not hard to be implemented as:

π`11 := PK{(s1, r1) : A1=As1 ∧ B1=Bs1A−r11 ∧ u1=gr1},

where `1 := (sid , hp, h1, A1, B1). Observe that π`11 and π`22

are essentially the same except the indices, and then the
latter can be made analogously. π`11 costs 3 exponentiations

for the prover and the verifier, respectively, so does π`22 .

In computation cost respect, the user U has to compute 14
exponentiations, while each server needs to do 15 exponen-
tiations. The scheme requries 8-round messages altogether,
and four of them are transmitted in the relatively safe and
efficient internal network.

3.4 Security

theorem 1. Under the DDH assumption and in the ran-
dom oracle model, if the proofs involved in the schemes are
labeled simulation-sound NIZK ones, then the two-server
password-based authentication protocol described in Figure

2 securely realizes F̂2PA in the FCRS-FSMT-hybrid model.

We show a concrete analysis of security.

3.4.1 Description of Simulator
In order to make the F̂2PA output the indistinguishable

value to Z, S invokes a copy instance of A and provides it
with a simulated world where S acts as Z and other honest
parties. S honestly forwards all messages between A and Z.
Before providing the process of simulation, we put forward
some notions for simplification purposes. Say that a mes-
sage flow is oracle-generated, if it comes from an honest party
and delivered to the target peer without malicious temper-
ing. Say that it is adversary-generated otherwise, that is,
either if this message results from a vicious party that could
be corrupted or impersonated by A, or if it is sent by an
honest party and modified by A. Except for the initializa-
tion phase, each party may sustain the active attacks from
the adversary, so we take into account several cases. More
simulation details are outlined below.

Initialization. Before the initialization phase, with securi-
ty parameter κ, S generates the ElGamal public keys (g, h),
(g, h′) and the corresponding secret keys a and a′, satisfy-

ing h := ga, h′ := ga
′
. Then S gives (G, q, g, h′, h) to A

as the answers to its queries to FCRS, and privately stores

(a′, a). Once receiving (Initialization, sid ,P1,P2) from F̂2PA,
S chooses dummy shares p1 p2 randomly from G, and then
passes them to P1 and P2, respectively, through FSMT. The
initialization phase ends, after servers store the shares.

Simulating the user. Once the simulator S receives the

query (NewSession, sid , ssid ,U) from F̂2PA, it begins to sim-
ulate the honest user U . S computes the ciphertext (u, v) as
an encryption of a dummy password attempt p, and sends
the message (u, v) on behalf of U to the adversary A who
controls the network. Then S receives a reply (u1, v1, u2, v2)
from A, and one of the following events may happen:

• If neither (u1, v1) nor (u2, v2) is oracle-generated, then S
decrypts the ciphertexts to obtain the adversary’s pass-
word p̂ with secret key a (the product of two pieces of
plaintexts p̂ := p1p2) and sends (TestPwd, sid , ssid ,U , p̂)
to F̂2PA. The following steps have two cases:

– If S gets “correct guess”, it uses p̂ as the true pass-
word to simulate the subsequent execution. Later,
U runs the protocol as specified except for generat-
ing the simulated proof that (u, v) and (A,B) use
the same password. If, in Step 8, the transcripts U
receives from A are successfully verified, S outputs

(Result, sid , ssid ,U) to F̂2PA; otherwise, S aborts.
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– If the reply is “wrong guess”, the simulator randomly
chooses two group elements (A,B) as the ciphertext,
and sends it with other messages. Upon receiving
the final flow from A, S directly aborts the protocol

execution, and outputs (Result, sid , ssid ,R) to F̂2PA.

• If one message is oracle-generated, and the other is not,
where assume that P2’s is adversary-generated, without
loss of generality, S needs to handle the following cases:

– If A just only impersonates P2 and sends faked mes-
sages, S aborts upon receiving (A2, B2, π

`2
2 ), since A

hardly generates an encryption of the correct share
and provides a convincing proof for a false statement
with a non-negligible probability.

– If the message is produced by the corrupted server

P2, and F̂2PA outputs succ to U after S gives the
query (Result, sid , ssid ,U), the simulator randomly
chooses s∗ ∈ Z∗q , and sets the ciphertext (A,B) :=

(gs
∗
, (u1u2)s

∗
), where u1u2 = g(r1+r2). Then S send-

s out (A,B). Afterwards, P1 generates (A1, B1) :=

(gs
∗
1 , u

s∗1
2 ), where u2 = gr2 and s∗1 ∈ Z∗q also.

• If these two messages are oracle-generated from A, then S
continues to use p as the password attempt to compute the
ciphertexts (A,B), and generate the simulated proof π`.
After obtaining the reply from the adversary, S eventually

outputs (Result, sid , ssid ,R) to the functionality F̂2PA.

Simulating both servers. Two honest servers simulated
by S are activated with the incoming message (u, v) from
A. If the ciphertexts received by two servers are different,
S aborts until two servers receive the response of U . After
ruling out the trivial case, we consider these:

• If (u, v) is adversary-generated, S extracts A’s attempt
p̂ from (u, v) and delivers (TestPwd, sid , ssid ,P1,P2, p̂) to

F̂2PA. Upon receiving the response from F̂2PA, the simu-
lator will face one of two scenarios:

– If the reply is “correct guess”, S randomly chooses p1

from G, and sets p2 := p̂/p1. Then, after selecting
two random values r1 and r2 from Z∗q , the simula-
tor honestly encrypts them to generate (u1, v1) and
(u2, v2), and sends them to A, respectively. In the
subsequent steps, S simulates the servers according
to the prescribed procedure. In the end, S sends

(Result, sid , ssid ,R) to F̂2PA, where R ∈ {P1,P2}.
– If the reply is “wrong guess”, S replaces the normal

ciphertexts (u1, v1) and (u2, v2) with encryptions of
dummy values randomly from G. After receiving
messages from U , P1 and P2 respectively selects ran-
dom ciphertexts (A1, B1) and (A2, B2), makes proofs
of the fake statements, and passes them to each other.
With a significant probability, B2 6= 1. Then S sends

(Result, sid , ssid ,R) to F̂2PA, where R ∈ {P1,P2}.

• If this message is oracle-generated and the output from

F̂2PA is succ, S proceeds as if the servers’ inputs were p1

and p2. Especially, P2 sets B2 := 1, while other messages
are randomly chosen, and the proofs are simulated. Then
S sends them to A. If it is fail, S chooses random elements
as ciphertexts, and aborts until it checks that B2 6= 1.

Simulating one server. Without loss of generality, let P2

be honest, while the server P1 is corrupted or impersonated
by A. If the simulated message (u1, v1) from P1 is tampered
by A, S sends the random (A2, B2) and outputs fail, regard-
less of whether the password attempt is correct or not. This
is because A correctly guesses a high-entropy share with a
negligible probability. If the adversary has corrupted P1, S
provides A with the shares p1, and just needs to simulate
the P2’s performance with the dummy share p2. Thus, we
consider the different cases where P1 has been corrupted:

• If (u, v) from the user is adversary-generated, the opera-

tion of S is similar to the case above, except that if F̂2PA

passes “correct guess” to S, it sets p2 := p̂/p1, and hon-
estly executes the protocol following the instructions.

• If they are oracle-generated, as mentioned previously, S
needs to set B2 := 1 when the passwords match. Con-
versely, the simulator randomly chooses dummy values A2

and B2, if F̂2PA returns “wrong guess”.

If P1 is honest, while P2 is not, the performance of S
is similar to except that, when F̂2PA sends “correct guess”,
instead of regular computing (A1, B1), the simulator ran-

domly selects s∗1 from Z∗q , and sets (A1, B1) := (gs
∗
1 , u

s∗1
2 ),

where u2 = gr2 from P2.

3.4.2 Sequence of Games
Here, via a sequence of games Gi, we will prove that the

real-world with the arbitrary A and the ideal-world with

F̂2PA and S as defined above are indistinguishable in the
view of environment Z. This needs to be stressed that, the
simulator S “magically” obtains the inputs of honest parties
provided by Z in the intermediate games, but they are no
longer needed at the end of simulation. Following is the
sequence of concrete games:

Game G0: Let G0 be the real-world game. As we noted
above, S “magically” receives the inputs, and honestly runs
the protocol instance.

Game G1: It is identical to G0, except that we change
the generation of public parameters in the protocol. More
specifically, on one hand, the common random strings are
replaced with the simulated ones, and S knows the secret
keys. On the other hand, whenever the honest parties per-
form the zero-knowledge proofs, S provides the simulated
ones instead. The indistinguishability between them follows
from the zero-knowledge properties of the proof system.

Game G2: S replaces (u, v) from the honest U by an
encryption of the dummy password attempt p. Two games
are indistinguishable due to the semantic security of IND-
CPA encryption schemes.

Game G3: If (u, v) is not oracle-generated, S extracts the
password attempt p̂ using the secret key. In particular, if it
is a “wrong guess”, S halts the protocol until P2 and P1 re-
ceives (A,B, π`, A1, B1, π

`1
1 ) and (A2, B2, π

`2
2 ), respectively.

The major difference between G2 and G3 is that the servers
verify the password attempt depending on (u, v) instead of
(A,B). This change is observable, if in G3, S aborts the
protocol instance in virtue of “wrong guess”, while in G2,
A provides (A,B) containing the “correct guess”. Namely,
(u, v) and (A,B) are encryptions of different values. Howev-
er, it happens with negligible probability. The simulation-
soundness of NIZKs implies that A hardly gives a convincing
proof π`, which ensures two games are indistinguishable.
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Upon receiving (NewKey, sid , ssid ,R, sk∗) from S, where R ∈ {U ,P1,P2}:
If there is a stored NewSession record for R ∈ {U ,P1}, then:
• If it is compromised, or either of two records are corrupted, then F outputs (NewKey, sid , ssid , sk∗) to R.
• When it is labeled as interrupted, or the passwords are not matching with the other record, then F sends a
public delayed output (NewKey, sid , ssid , fail) to R, if R = P1.
• If this record is fresh, the other record with p′ = p is also fresh, and a key sk has been sent, then F outputs
(NewKey, sid , ssid , sk) to R.
• In any other case, F randomly chooses a new key sk, and outputs (NewKey, sid , ssid , sk) to R.
If there is a stored record for R = P2, then:
• If his record is interrupted, or the other one (if it exists) is labeled as interrupted or compromised, or p′ 6= p, then
F gives a public delayed output (NewKey, sid , ssid , fail) to R.
• In other cases, F gives a public delayed output (NewKey, sid , ssid , succ) to R.
Either way, F marks this record completed.

Figure 3: The Newkey query of F2PAKE

Game G4: It follows G3 above. If (u, v) is adversary-
generated and an encryption of a non-matching password,
S computes (u1, v1) and (u2, v2) as encryptions of dummy
shares, rather than the correct ones. As between G1 and G2,
G4 is indistinguishable from G3 by the semantic security of
the ElGamal encryption scheme.

Game G5: Compared with G4, S goes further. When the
ciphertext (u, v) is not oracle-generated and F ’s response
is “wrong guess”, S chooses (A1, B1) and (A2, B2) at ran-
dom from G2. Here, we only prove that the gap brought
by change of the former is indistinguishable under DDH as-
sumption, and the latter is nearly similar.

First, define a hybrid Mix just like G4 except when (u, v)
is adversary-generated and an encryption of a non-matching
password, S just randomly chooses the ciphertext (A1, B1).
Between G4 and Mix, we run a series of hybrid games, and
G4,i are defined as follows. In the first i queries, the cipher-
texts are random as well as in the Mix, and the values are
real for the rest of queries. S can construct such a distin-
guisher D that it can solve the DDH problem by the help of
Z who manages to distinguish between G4,i−1 and G4,i.

Concretely, D obtains a tuple (A,B,X, Y ) that is either
randomly sampled or a DDH tuple, i.e. X := As1 and Y :=
Bs1 . In G4,j, where j = i − 1 or j = i, D sets (A1, B1) :=
(X,Y X−r1) and makes a simulated proof. If this tuple is
random, it is the hybrid G4,i−1, and it is the hybrid G4,i,
otherwise. Finally, D outputs whatever Z outputs.

Thus, we believe that the advantage of D in the DDH
problem is close to the advantage of Z’s distinguishing these
two hybrids. Further, G4 and G5 are indistinguishable.

Game G6: Here, we introduce the modifications to the
previous game. When (u, v) is oracle-generated and it cor-
responds a fail result, S randomly chooses (A1, B1) and
(A2, B2), and two servers abort the protocol after checking
B2 6= 1. As G5, the DDH assumption ensures the changes
are not observable with overwhelming probability. If the
passwords match, P1 randomly selects s∗1 from Z∗q , and sets

the ciphertext (A1, B1) := (gs
∗
1 , u

s∗1
2 ), where u2 = gr2 , while

P2 chooses A2 at random and sets B2 := 1. This syntactic
change has no effect on the distributions of outputs.
Game G7: The modification is as follows. Once the

uncorrupted servers receive the oracle-generated message
(u, v), The correct pieces of password are no longer of use, S

computes (u1, v1), (u2, v2) as encryptions of dummy shares
p1, p2. The indistinguishability follows from the IND-CPA
security of the ElGamal encryption scheme.

Game G8: From this game on, if the ciphertexts (u1, v1),
(u2, v2) and (u, v) are all oracle-generated, S randomly choos-
es the dummy ciphertext (A,B). Note the fact that the
honestly forwarded ciphertexts (u1, v1), (u2, v2) are not en-
cryptions of correct shares. Hence, the DDH assumption
guarantees the indistinguishability between G7 and G8.

Game G9: From this game on, if both (u1, v1) and (u2, v2)
are not adversary-generated, and the passwords do not match,
S randomly chooses two group elements from G as (A,B). In
contrast, if the passwords are equal, the simulator randomly
chooses s∗, and sets the ciphertext (A,B) := (gs

∗
, (u1u2)s

∗
),

where u1u2 = g(r1+r2). This change is nearly undetected,
following the DDH assumption also.

Game G10: When neither (u1, v1) nor (u2, v2) sent to the
honest user is oracle-generated, S extracts p̂ := p1p2. If it
is a matching one, S honestly acts as U with p̂. Otherwise,
(A,B) is set as random values. Similarly, the DDH assump-
tion ensures the indistinguishability between G9 and G10.

Now, we observe that the ideal-world is identical to G10,
except that S no longer owns the specified inputs from Z,

and have capabilities to query F̂2PA to model the active
attacks of A instead. Apparently, the gap is locally syntactic
as well. Thus, the proof of theorem is completed.

4. 2PAKE
We suggest the first formal notions of the ideal function-

ality of two-server password-authenticated key exchange. It
follows the definition of 2PA except that the Result query
is placed with the Newkey query depicted in Figure 3. Nat-
urally, F2PAKE inherits the entity authentication of the us-
er from F2PA. In our model, the front-end server P1 can
share a session key with the user only if the latter own-
s an eligible password attempt, while P2, as the back-end
server, just plays a role in assisting P1 in authenticating U
rather establishing another with him. Hence, he only ob-
tains the result of authentication (succ or fail). It is similar
to the FpwKE of [12], in that if one of NewSession records
is corrupted the adversary is given the ability to fully de-
termine the resulting session key, after passing the query
(NewKey, sid , ssid ,R, sk∗) to F2PAKE. It’s more of a con-
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U(p) P1(p1) P2(p2)

Step 4. s← Z∗q ;A := hs;B := (v1v2/p)
s

hk := (η, θ)← Z∗2q ; hp := gηhθ

H := (u1u2)η(v1v2/p)
θ; sk := H

hp, A,B, π`
−−−−−−−−−−−−−−−−−−−→

Step 5. if π` fails, abort; s1 ← Z∗q
A1 := As1 ;B1 := Bs1A−r1s1

w1 ← Z∗q ;h1 := gw1 ;H1 := hpr1

hp, A,B, π`, h1, A1, B1, π
`1
1−−−−−−−−−−−−−−−−−−−−→

Step 6. if π` or π`11 fails, abort
s2 ← Z∗q ;A2 := As21

B2 := Bs21 A−r2s21

if B2 6= 1, abort; H2 := hpr2

t2 ← Z∗q ;U2 := gt2 ;V2 := ht21 H2

A2, B2, U2, V2, π
`2
2←−−−−−−−−−−−−−−−−−−−−

Step 7. if π`22 fails or B2 6= 1, abort
H2 := V2/U

w1
2 ; sk := H1H2

Figure 4: Step 4 to Step 7 of 2PAKE

venience for the simulation in the security proof than an
important improvement, compared with F2PA.

Next, we extend the 2PA protocol to a 2PAKE scheme to
UC-realize F2PAKE. It follows the same initialization phase
and Step 1 to Step 3 (cf. Figure 2) of our 2PA protocol
scheme in Section 3, and we propose the detailed descrip-
tion of the other steps in Figure 4. Here, we use the s-
mooth projective hash function as a building block. Once U
receives the ElGamal ciphertexts of password shares from
P1 and P2, he produces the abnormal ciphertext (A,B)
as before. Moreover, he uniformly samples hk := (η, θ)
from Z∗2q as the hash key and generates the projection key

hp := gηhθ. Then U computes the hash value on the mul-
tiplicity of the received ciphertexts as the final session key
sk := Hash(hk, u1u2, v1v2, p) = (u1u2)η(v1v2/p)

θ. He pass-
es the projected key hp to P1 together with the cipher-
text (A,B) and the labeled SS-NIZK π`. Its label ` :=
(sid , ssid , hp, A,B) contains hp so that the adversary can-
not replace it with a malicious value to predict the ses-
sion key from the simulation-soundness property. P1 not
only finishes partial decryption and provides π`11 , but al-
so computes H1 := ProjHash(hp, u1u2, v1v2, p1, r1) = hpr1

as a session key material and temporary public key (g, h1)
that is bound with his password share by the label, i.e.
`1 := (sid , ssid , hp, h1 , A1, B2). Similarly, P2 runs as in
in the 2PA protocol but computes the session key material
H2 := ProjHash(hp, u1u2, v1v2, p2, r2) = hpr2 and transmits

it encrypted under (g, h1) to P1, if B2 = 1. The proof π`22

needs an additional guarantee that P2’s valid computation
on ciphertexts of H2. It can be expressed as followed:

π`22 :=NIZK{(s2, r2, t2):A2=As21 ∧B2 = Bs21 A−r2s21 ∧ u2=gr2

∧U2 = gt2 ∧V2 = ht21 hp
r2},

where `2 := (sid , ssid , hp, h1, A2, B2, U2, V2). From the cor-
rectness property of SPHF, when U possesses the correct
password, he will share the same sk with P1. Conversely, if
the passwords are not matching, the smoothness property of

SPHF makes the values calculated by the user independent
from the product of ones the servers obtain statistically.

When our protocol is instantiated using the Fiat-Shamir
transformation [18] to obtain SS-NIZK proofs in the random
oracle model, U has to compute 12 exponentiations, while
each server needs to do 20 exponentiations. Besides that, we
can draw a conclusion below, and have to provide the proof
in the full paper for the limitation of space:

theorem 2. Under the DDH assumption and in the ran-
dom oracle model, if the proofs involved are labeled SS-NIZK
ones, then the two-server password-authenticated key exchange

securely realizes F̂2PAKE in the FCRS-FSMT-hybrid model.

5. 2PASS
The functionality of two-server password-authenticated se-

cret sharing looks like the two-server version of Camenisch et
al.’s in [8], and more concrete descriptions are omitted. For
the sake of comparisons with previous schemes [10, 8], we
draw on the definitions of TPASS in the [8] (for t = 1, and
n = 2) and related terminology with some slight changes.

Here, we apply our 2PA scheme to 2PASS. However, for
compatibility with [8]’s ideal functionality, we abandon the
asymmetric architecture and the sid consists of two servers’
identities. During the initialization phase (corresponding to
[8]’s Setup protocol), U computes shares of password p′ and
secret k′ from G so that p′ := p1p2 and k′ := k1k2, where
p1, k1 are uniformly sampled from G. Then he stores (p1, k1)
and (p2, k2) on P1, P2, respectively, via FSMT. Step 1 to
Step 3 of 2PASS are also inherited from our 2PA scheme,
so we skip them and directly describe Step 4 to Step 8 in
Figure 5. The hash key hk, the projective key hp and the
hash value H generated by U are identical to ones in 2PAKE
above. Additionally, he runs the key generation algorithm
KG(·) of the CCA2 public encryption scheme to get the key
pair (PK,SK)← KG(1κ). Then hp and pk are bound with
the encryption of p via the label of π`. P1 and P2 collabora-
tively decrypt the ciphertext (A,B). If the passwords do not
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U(p) P1(p1, k1) P2(p2, k2)

Step 4. s← Z∗q ;A := hs;B := (v1v2/p)
s

hk := (η, θ)← Z∗2q ; hp := gηhθ

H := (u1u2)η(v1v2/p)
θ

(PK,SK)← KG(1κ)
PK , hp, A,B, π`

−−−−−−−−−−−−−−−−−−−−→
Step 5. if π` fails, abort; s1 ← Z∗q

A1 := As1 ;B1:=Bs1A−r1s1

H1 := hpr1

PK , hp, A,B, π`, , h1, A1, B1, π
`1
1−−−−−−−−−−−−−−−−−−−−−−−−→

Step 6. if π` or π`11 fails, abort
s2 ← Z∗q ;A2 := As21

B2 := Bs21 A−r2s21

if B2 6= 1, abort; H2 := hpr2

E2 := EncL2
PK (k2, H2)

A2, B2, E2, π
`2
2←−−−−−−−−−−−−−−−−−−−−−−

Step 7. if π`22 fails or B2 6= 1, abort

E1 := EncL1
PK (k1, H1)

E1, E2←−−−−−−−−−−−−−−−−−−−
Step 8. (ki, Hi) := DecLi

SK (Ei), i = {1, 2}
if H 6=H1H2, abort
else, output k := k1k2

Figure 5: Step 4 to Step 8 of 2PASS

match, servers will abort subsequent performances. Other-
wise, they encrypt secret shares and hash values under the
CCA2-secure public-key encryption scheme using the user’s
PK and the sid and ssid as labels, so that the recipient will
reconstruct the secret. Thanks to the homomorphism of the
ElGamal encryption and the SPHF on the ciphertexts, U
can always check whether servers possess correct password
shares after decrypting the ciphertexts in Step 8. The proof
of the following theorem, is given in the full paper.

theorem 3. Under the DDH assumption and in the ran-
dom oracle model, if (KG,Enc,Dec) is a labeled CCA2-secure
public-key encryption scheme, and the proofs involved are la-
beled SS-NIZK ones, then the protocol above securely realizes

F̂2PASS in the FCRS-FSMT-hybrid model.

The labeled CCA2-secure encryption scheme is instantiat-
ed using the ElGamal encryption scheme with the Fujisaki-
Okamoto transformation [20], while the labeled SS-NIZK is
as above. Compared with previous UC-secure PASS schemes,
ours relieves the cost of computation in the server side, each
participant needs to do 18 exponentiations.
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