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ABSTRACT
Nowadays, attacking and defending Android apps has be-
come an arms race between black hats and white hats. In
this paper, we explore a new hacking technique called the
App Confusion Attack, which allows hackers to take full con-
trol of benign apps and their resources without device root-
ing or privilege escalation. Conceptually, an App Confusion
Attack hijacks the launching process of each benign app, and
forces it to run in a virtual execution context controlled by
hackers, instead of the native one provided by the Android
Application Framework. This attack is furtive but has dan-
gerous consequences. When a user clicks on a benign app,
the malicious alternative can be loaded and executed with
an indistinguishable user interface. As a result, hackers can
manipulate the communication between the benign app and
the OS, including kernel and system services, and manip-
ulate the code and data at will. To demonstrate this at-
tack, we build DroidPill, a framework for malware creation
that employs the app virtualization technique and the de-
sign flaws in Android to achieve such attacks with free apps.
Our evaluation results and case studies show that Droid-
Pill is practical and effective. Lastly, we conclude this work
with several possible countermeasures to the App Confusion
Attack.

Categories and Subject Descriptors
I.3.2 [Security and Privacy]: Intrusion/Anomaly Detec-
tion and Malware Mitigation—Social Engineering Attacks

Keywords
Mobile System Security; Android Malware; App Confusion
Attack; App Virtualization

1. INTRODUCTION
Android is the most popular mobile platform in terms of

the number of users [1]. Google Play hosts over 2.5 mil-
lion Android applications (apps) [2]. Therefore, it is not
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surprising that this open-source software stack for mobile
devices experiences the largest number of malware threats,
as evidenced by the report that about 97% of smartphone
malware is related to Android [3].

According to [4] [5] [6], Android malware in the wild can
be classified into four categories: (1) data theft (e.g., spy-
ware), (2) extortion (e.g., ransomware, and SMS fraud), (3)
privilege escalation, and (4) remote control. Except for the
last one, which is used for network attacks (e.g., botnet), the
first three categories may require malware to exploit other
benign apps and their data on devices. For example, ran-
somware can blackmail victims by locking other apps from
being launched, or encrypting valuable data on SD cards [7]
[8] [9].

To date, various techniques for hacking Android apps
(e.g., vulnerability exploitation, and phishing attack) have
been studied and reported [11] [12] [13]. However, these at-
tacks are either unable to access benign apps’ internal data,
or targeted to a specific app version. More importantly, it is
difficult for these techniques to pass through scanning ser-
vices deployed by app stores. In this paper, we introduce
a new attack into the Android malware families, called the
App Confusion Attack. In this attack, a malicious app hi-
jacks a user’s entry to a benign app, and forces the app to
run in the virtual execution context under the control of the
malware, which is transparent to the user. By sandboxing
the benign app, the malware can abuse its code and data
arbitrarily.

In order to instantiate the attack, we built DroidPill, a
framework for malware creation based on app virtualization.
The app virtualization technique, which we classify into two
categories (i.e., inclusive and exclusive) in this paper, encap-
sulates an app (guest app) in a restricted execution environ-
ment within the context of another app (sandbox app). The
virtual execution context is carefully crafted such that it is
oblivious to the app or app user, while maintaining com-
patibility with the native context provided by the Android
Application Framework. Also, DroidPill uses two different
attack vectors, app shortcut manipulation and top activity
preemption, to realize the App Confusion Attack unobserv-
able to users.

There are two distinct characteristics when using Droid-
Pill. First, DroidPill can simultaneously attack multiple be-
nign apps on a device without carrying their code and data.
Hackers can utilize this feature to precisely profile users by
monitoring their daily app usage. For example, based on the
in-app observation of a user’s emails, social activities and
browsing history, a malware can uncover numerous pieces
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of private information (e.g., job, social circle, and personal
interests) and build the user’s profile. Second, using Droid-
Pill to compromise security-sensitive apps at the application
layer could lead to system-wide attacks. For example, a mal-
ware can capture the entire network traffic by attacking a
VPN app on the device.

To sum up, our contributions include:

• We propose the App Confusion Attack, which hijacks
the launching process of each benign app into a virtual
environment context controlled by a sandbox app, and
takes full control of those benign apps and their re-
sources without device rooting or privilege escalation.

• We implement DroidPill, which uses the app virtual-
ization technique, to launch the App Confusion At-
tacks with multiple benign apps simultaneously on a
device. To our best knowledge, this is the first paper
using app virtualization from the hacker’s perspective.

• We introduce five use cases with DroidPill, which
range from intercepting network traffic to steal-
ing ad revenue, and demonstrates the sever-
ity of such attacks for both mobile users and
app developers. The demo videos are available
at: https://www.youtube.com/channel/UCRCTTU-
bGVpd3o9pmm5THTg

The rest of this paper is structured as follows. We com-
pare and contrast different attack models, including the App
Confusion Attack, and then elaborate the kernel technique
for DroidPill, app virtualization, in Section 2. Afterwards,
Section 3 details DroidPill’s system design and implementa-
tion, and Section 4 presents two attack vectors we use. In
Section 5, we evaluate DroidPill’s performance and itemize
several attack cases. While the limitations and the coun-
termeasures are discussed in Section 6, we overview a few
related work in Section 7 and conclude the paper in Sec-
tion 8.

2. CONCEPTS
In this section, we explain two notions that will be fre-

quently used for the rest of this paper: (1) app attacks,
which include the App Confusion Attack, and (2) app vir-
tualization, which is used for implementing DroidPill.

2.1 App Attacks
We study how hackers exploit benign apps with an in-

stalled malware by comparing and contrasting the existing
attack schemes and our App Confusion Attack.

2.1.1 Existing Attacks
Generally, hackers may take one of the following four ap-

proaches: (1) ask for dangerous Android permissions (e.g.,
READ SMS, and READ CONTACTS), with which a mal-
ware can “legitimately” acquire sensitive data from other
apps via the Android framework API calls [4] [5], (2) attack
a benign app by exploiting its vulnerabilities (e.g., weak au-
thentication, and SQL injection [13] [14]), (3) apply the UI1

confusion attacks (e.g., phishing, and tapjacking) to spoof
user communications for designated actions (e.g., type in
password on a fake login page [15] [16] [17]), and (4) mas-
querade as a target app by repackaging it with a malicious
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payload, and lure victim users to install the repackaged app
[18]. However, each approach has its limitation.

First, Android does not expose most apps’ internal data,
so merely requiring the permissions does not guarantee that
a malware can obtain the desired data from its target app.
For example, a malware can read a user’s browser his-
tory by requesting the READ HISTORY BOOKMARKS
permission, but it cannot access the cookies saved in the
browser’s internal storage. Furthermore, if the user browses
websites in incognito mode, then the URLs and cookies are
not even stored on disk, thus unavailable to the malware as
well.

Second, people treat software vulnerabilities more and
more seriously these days. Google’s bug bounty program re-
wards bug hunters for discovering vulnerabilities in Android
OS, system apps, and regular Google apps [19]. In addition,
several tools (e.g., [20]) have been developed to help people
automatically scan app vulnerabilities. For critical vulnera-
bilities in Android, OEMs can push the patches to devices
over the air. Meanwhile, developers can also patch their
apps via the app update mechanisms. As a result, many
exploits, that are available in old versions of Android OSes
or apps, are often blocked in newer versions.

Third, in current UI confusion attacks, malware tricks
users into taking a single-step action (e.g., click a button),
which restrains the impact of these attacks. For example,
such an attack cannot monitor a sequence of users’ interac-
tions with a target app, or exploit app functionalities which
require multi-step actions (e.g., transfer money from one ac-
count to another).

Last, most users tend to install apps from a trusted mar-
ketplace, which may deploy the scanning service (e.g., app-
clone detection [6]) to detect malware. Consequently, hack-
ers may not be able to publish their repackaged apps there.
Moreover, the app repackaging approach cannot attack the
pre-installed apps (e.g., Chrome) on a device.

2.1.2 App Confusion Attack
In the App Confusion Attack, the malware hijacks a be-

nign app’s launching procedure via such techniques as app
shortcut manipulation and top activity preemption. Thus,
when the user attempts to start the benign app (e.g., click
the app icon), the malware is triggered to steal the screen
focus by creating a virtual execution context and forcing the
benign app to be executed within it. More importantly, the
malware should be carefully designed such that the victim
user cannot visually distinguish the two situations: (1) the
benign app’s executions in the virtual execution context,
and (2) the native execution context provided by the An-
droid Application Framework. In this way, the malware can
perform malicious tasks without awareness at the user level.

The App Confusion Attack is close to the App Masque
Attack found in iOS 8.1 and earlier versions [21]. In the app
masque attack, the malicious repackaged app can silently re-
place a benign app installed on a device, even though they
are signed by different developers’ certificates. The two at-
tacks are similar in the sense that the malware hides its ma-
licious activities by acting on behalf of the guest app, which
is transparent to users. However, the app masque attack
does not work for Android, because its app update mech-
anism follows the same origin policy that forbids patching
apps by different developers.
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Table 1: App Attacks

Code&Data
App

Version
App-Clone
Detection

Permission
Request

Weak N/A N/A

Vulnerability
Exploitation

N/A Weak N/A

UI
Confusion

Weak N/A N/A

App
Repackaging

Strong Strong Weak

App
Confusion

Strong Strong Strong

In comparison with the existing app attack schemes, the
App Confusion Attack has three appealing characteristics to
hackers. First, this attack scheme gives the malware com-
plete control over a guest app’s code and data inside the
virtual context, which may lead to the system-wide security
breaches. This overcomes the shortcomings of permission
request attacks and UI confusion attacks. Second, the App
Confusion Attack occurs at the application layer, and does
not require exploiting vulnerabilities in the kernel or sys-
tem apps; therefore, it is possible to attack a wide range of
the apps running on various Android versions. Actually, the
App Confusion Attack can be used as plan B for hackers
when their efforts of escalating privileges are failed. Last,
in an App Confusion Attack, the malware does not need
to carry a guest app’s code and data; therefore, it has lit-
tle footprints to app-clone scanners. Compared with the
repackaged apps, it has a better chance to survive the app-
clone detection run by app stores. Table 1 compares the
App Confusion Attack and the other schemes.

2.2 App Virtualization

2.2.1 Classification
In Android, app virtualization is a technique that allows a

sandbox app to create a virtual execution context, in which
a guest app can be loaded and executed in the same way
as it runs in the native execution context provided by An-
droid OS. Sandbox apps are actually regular Android apps
that do not have any system privilege. Functionally, app
virtualization consists of OS service virtualization and stor-
age virtualization. While OS service virtualization converts
virtual OS services used by guest apps to physical OS ser-
vices used by sandbox apps, storage virtualization translates
virtual storage used by guest apps to physical storage used
by sandbox apps.

In OS service virtualization, the sandbox app plays the
role of a broker: to the guest app, it acts on behalf of the
Android system services and provide the same service in-
terfaces. Whereas, to Android system services, it hides the
guest app’s identity and issues its service requests. In such a
situation, an identity gap exists between the guest app and
the Android system services: While the guest app claims
that “I am Alice”, Android system services say that “You
are Bob”. In storage virtualization, the similar identity gap

Table 2: App Virtualizations

Inclusive Exclusive
Guest App Yes No

System Services
Emulation

Yes No

App Object
Translation

Yes Yes

exists between the guest app and the OS storage system. In
sandbox apps, virtualization logic should be designed and
implemented at discretion to fill such identity gaps; oth-
erwise, it will result in run-time exceptions or unpredicted
program behaviors.

App virtualization can be classified into two catogories:
inclusive app virtualization and exclusive app virtualization.
In an inclusive app virtualization system, the sandbox app is
designed to virtualize any non-system app, and it can create
a workspace to manage and execute multiple guest apps at
the same time. Whereas, in an exclusive app virtualization
system, the sandbox app is exclusively constructed for vir-
tualizing a predefined group of guest apps. It cannot work
with any app outside the group.

For inclusive app virtualization, the sandbox app needs to
emulate several core system services (e.g., PackageManager,
and ActivityManager), which facilitate the tasks of man-
aging multiple guest apps (e.g., IPC communications be-
tween guest apps or their components). App Object Trans-
lation (AOT) is used to achieve the virtualization. Specif-
ically, when the sandbox app is installed, it registers a list
of dummy app objects (e.g., components) via the Android-
Manifest file. Afterwards, when a guest app is started within
the sandbox app, the latter creates an app object map that
associates app objects of the guest app with the registered
dummy ones, which have not been mapped yet. When the
guest app is actually executed, the sandbox app uses the
app object map to perform object translation between dif-
ferent components. Once the guest app is killed, the cor-
responding dummy app objects are freed and available for
the use by other guest apps. On the contrary, an exclu-
sive virtualization system does not need to emulate any core
system service, and the sandbox app and its guest apps are
installed simultaneously. Although it also uses AOT to im-
plement virtualization logic, the app object maps are gener-
ated at creation of the sandbox apps, and remain unchanged
at runtime. Table 2 compares the two app virtualizations.

2.2.2 Existing Solutions
Boxify [22] and NJAS [23] are two existing app virtualiza-

tion systems that sandbox unmodified and untrusted apps
in stock Android. In their implementations, a sandbox app
contains at least two functional components: sandbox ser-
vice and broker. While the former is mainly responsible
for virtual context setup and initialization (e.g., install the
hooking code), the latter performs virtualization logic and
enforces security policies.

Boxify is an inclusive virtualization system that leverages
the “isolated process” feature to create a tamper-proof app
sandboxing system. In Android, an app running in an iso-
lated process cannot conduct any operation which requires
Android permissions (e.g., access data on SD card). In Box-
ify, the sandbox app’s broker runs in a normal process, and
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Figure 1: System Architecture (Boxify)

the guest apps run in different isolated processes along with
the sandbox service. At start time, the sandbox service in-
stalls the GOT2 hooks, called Shim, that can redirect the
Binder IPC and the guest app’s system-level calls to the
broker. After the guest app is loaded, the broker monitors
references and performs virtualization logic. Figure 1 dis-
plays the system architecture of Boxify.

NJAS is an exclusive virtualization system that builds its
sandbox system on top of the ptrace mechanism. Unlike
Boxify, NJAS sets up the broker and a guest app in sepa-
rated processes that have the same app privileges. It relies
on the ptrace system call to ensure that the broker can in-
tercept and inspect system calls made by the guest app,
including adverse ptrace calls’ prevention. NJAS suffers two
limitations, that lead to an unfledged app virtualization sys-
tem: First, its sandbox app can only run one guest app; Sec-
ond, it does not have sufficient AOT and misses translating
a number of app object types. Figure 2 depicts the system
architecture of NJAS.

3. DESIGN AND IMPLEMENTATION

3.1 Design Rationale
DroidPill, as an offense system, has distinct security re-

quirements from Boxify and NJAS, which are designed for
defensive purposes. First, Boxify and NJAS must strictly
adhere to the “reference monitor” properties (i.e., complete
mediation and tamper proof [24]), which are not mandatory
for DroidPill. Second, DroidPill should meet the UI In-
tegrity requirement, under which a user cannot visually tell
whether a guest app runs in the native or virtual execution
context.

Without worrying about the security requirements of ref-
erence monitors, we decide to move the sandbox app’s broker
into the same process space as the guest app. By hooking
DVM and patching native libraries’ GOTs, the broker can
mediate both application-level and system-level API calls
made by the guest app. In addition, the broker can access
the abundant Java API semantics to overcome semantic gap
between the system-level view and the application-level view
for app data [25] and enable more flexible attacks.

Ideally, DroidPill should use inclusive app virtualization,
which permits a sandbox app to virtualize non-system apps.
However, inclusive app virtualization breaks the UI Integrity
requirement for the majority of Android devices. Android
overview screen is the system-level UI that displays running
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Figure 2: System Architecture (NJAS)

activities and tasks on a device. Users often use it to switch
or kill running apps by clicking or swiping out the app icons.
For Android 4.4 and older versions, which still account for
about 47% of the total Android devices using Google play
store as of October 2016 [26], an activity’s icon and label
defined in AndroidManifest are registered at app installa-
tion, and they cannot be changed at runtime. For those
devices, a dummy activity is always displayed with a fixed
icon and label on the overview screen, which is not visually
aligned with the mapped activity of a guest app. This is
not acceptable to DroidPill, because a user can easily detect
the visual anomaly of a virtual guest app on the overview
screen. Another design concern about inclusive app virtual-
ization is that a sandbox app needs to acquire a large num-
ber of Android permissions in order to work with a variety of
guest apps, which instantly exposes the DroidPill malware
to scrutiny by security scanners on devices or at app stores
[27].

Therefore, DroidPill adopts exclusive app virtualization,
since sandbox apps are built based on the APK files of prede-
fined guest apps, and original icons of the guest apps can be
added to the sandbox apps and statically registered to An-
droid at app installation. Unlike NJAS, DroidPill is able to
virtualize multiple guest apps simultaneously. As a result,
one DroidPill malware can reliably mount attacks against
multiple benign apps on a device.

3.2 System Architecture
In DroidPill, a sandbox app consists of three parts: bait,

constructor and broker. Bait is mainly used for luring users
to install and execute sandbox apps (malware), and it should
provide the functionalities as advertised to users. In addi-
tion, bait contains attack vectors that hijack guest apps’
launch sequences. Similar to Boxify’s sandbox service, con-
structor is responsible for installing broker and loading guest
apps. Broker is in charge of virtualization and attacks
against guest apps by mediating communications between
a guest app and the OS (i.e., kernel and system services).
The constructor and the broker work together to build a
virtual execution context for loading and running a guest
app. Figure 3 shows the system architecture of DroidPill, in
which we exclude the bait and the constructor to compare
with Boxify and NJAS.

DroidPill enforces the process segmentation of guest apps.
Each guest app runs inside its own process space along with
the constructor and the broker, and the bait has its own
standalone process. The design is motivated by the Chrome
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Figure 3: System Architecture (DroidPill)

browser, in which tabs are executed in separated processes,
and the exception of one tab does not crash other tabs. Like-
wise, the process segmentation assures that a guest app is
protected from crashes incurred by errors from another guest
app. We solve this problem by taking advantage of the An-
droid feature that allows an app to customize the process
name for each component. Specifically, a custom process
name for a component can be defined in the “process” at-
tribute of the component tag in AndroidManifest. When the
first app component of a process is to be executed, the activ-
ity manager spawns a new process from the zygote process
and names it using the process name defined in Android-
Manifest. In DroidPill, the AndroidManifest file of a sand-
box app contains not only a set of the bait’s components
but also the sets of dummy components corresponding to
the guest apps. By manipulating the “process” attributes of
the component tags, we can assign the bait and the guest
apps to different processes at runtime.

Further, when a new process of the sandbox app is created,
it can use process names to determine whether to execute
the bait or a correspondings guest app, and load the app
code to the process’ memory space. In implementation, we
build a custom android.app.Application class and define it
in a sandbox app’s manifest file. Android ensures this cus-
tom Application class is initialized ahead of any other app
code at runtime. Each time a sandbox app’s new process
is started, the initialization function of this custom Appli-
cation class selects an app and loads its code based on the
current process name. Unlike NJAS that only supports vir-
tualization for a single guest app in a sandbox app, DroidPill
has two additional features (i.e., process segmentation, and
selective app loading process).

3.3 Constructor
The constructor’s task is to install the broker and load

guest apps, which is mainly implemented in the initialization
function of the custom Application class. The constructor
can load the native library where the broker is encapsulated
via calling System.loadLibrary(). Here we will explain how
to load a guest app into the virtual execution context.

3.3.1 Guest App Loading
According to [28], Android allows an app to load the

code and data of another app in its own process space
via the Context.createPackageContext() framework API,
even though they come from different developers. Note
this API only works for free apps, because the apk
files of paid apps are not readable from a non-paid one.

Figure 4: Virtual Execution Context for Guest Apps

In DroidPill, the constructor invokes this API at run-
time with the CONTEXT INCLUDE CODE and CON-
TEXT IGNORE SECURITY flags to load a guest app,
without containing any data and resources from guest apps
in the sandbox app.

3.3.2 Virtual Execution Context
Android provides a variety of framework classes to weave

the execution contexts for apps. Among them, two
classes are critical (i.e., android.app.LoadedApk and an-
droid.app.ContextImpl). When a new app process is gen-
erated and its apk file is load, a LoadedApk object is cre-
ated to store the metadata for the apk, which includes
package name, code loader, resource, and app data paths.
During this process, both app code and data (e.g., refer-
ences) are loaded to the memory, and they are referenced by
the code loader object (i.e., java.lang.ClassLoader) and re-
source objects (e.g., android.content.res.Resources and an-
droid.content.res.AssetManager). Therefore, the app data
and resources of the apk file can be accessed via the host-
ing LoadedApk object. Moreover, ContextImpl provides the
major interface for an app to interact with the rest of world.
Through this interface, the app can connect to the Android
system services, launch the activities and services, and visit
the package data. To build the execution context for a new
app component, Android creates a new ContextImpl object,
and attaches the object to the component. As the Con-
textImpl object includes a LoadedApk object, the compo-
nent can retrieve the app resources via the resource objects
inside the LoadedApk object. Here, each component has its
own ContextImpl object, but the app has only one Load-
edApk object.

In DroidPill, the virtual execution context of a guest app
and its components is composed of two layers (i.e., the native
layer and the virtualization layer). The guest app is directly
run over the native layer, and the virtualization layer dwells
underneath. The native layer is the native execution con-
text of the guest app, and it contains the ContextImpl and
the LoadedApk objects of the guest app, which are created
when the constructor calls Context.createPackageContext()
to load the guest app. The virtualization layer intervenes
the data transferred between the native layer and the OS,
and carries out the virtualization logic. The virtualization
layer is generated when the constructor loads the broker’s
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native library to the memory. Figure 4 depicts a guest app’s
virtualization execution context.

3.4 Broker
The broker intercepts the guest apps’ application-level and

system-level API calls by instrumenting DVM and native
system libraries, which empowers DroidPill to perform vir-
tualization logic.

3.4.1 Public App Objects
In Android, apps should claim and use the system-wide

unique IDs for some app objects at installation or runtime
(e.g., components whose ID is the combination of the app
name and component name). This assists the system ser-
vices (e.g., ActivityManager) in mediating the inter-app and
inter-component communication, and also centrally manag-
ing the global resources (e.g., online account credentials).
If an app violates this rule and attempts to use the dupli-
cate object IDs, it can result in the installation’s rejection or
broken functionality. For example, an authority is used for
uniquely identifying the data store associated with a content
provider, and its value should be globally distinctive. The
Android installer automatically rejects any app that declares
a duplicate authority in the manifest file.

While we refer to an app object that must have a system-
wide unique ID as a public app object, five types of public app
objects (i.e., Component, Authority, Account Type, Custom
Permission, and Intent Action) are identified. These public
app objects are defined in AndroidManifest or an xml re-
source file and registered to the package manager or other
system services for handling the runtime operations related
to the apps. Table 3 displays a list of public app object
types that includes their names, definitions in AndroidMan-
ifest and duplication penalties.

In addition to Component and Authority, we give a brief
explanation of the other public app objects. (1) The Android
account manager uses Account Type provided by an app to
uniquely represent an online account service, and to help
the app perform authentication with backend servers. The
account manager always rejects a duplicate Account Type,
leading to an app’s malfunction. (2) Custom Permissions
are app-defined permissions that guide system services to
enforce the fine-grained access control over app data. If two
apps from different developers define an identical signature-
level permission, then the late-installed app may not have
the permission granted and may lose the access to its app
data. (3) Intent Actions are defined in the intent filters
by either system or user apps. When receiving an implicit
intent without a component name, activity manager uses
its intent action to decide which app to send. If multiple
apps register this intent action for their activities, activity
manager displays a picker dialogue that shows all apps that
accept this intent action, and the user needs to manually
choose the one to process the intent. With DroidPill, a user
may see the duplicate component icons and labels, one from
the guest app and the other from the sandbox app, in the
picker dialogue, which breaks the UI Integrity requirement
in an event of duplicate actions. Intent Actions in other
components do not have this issue.

3.4.2 Virtualization Logic
Droidpill fulfills OS service virtualization in two steps. (1)

A sandbox app creates the virtual names for public app

Table 3: Public App Objects

Type Declaration Penalty

Component

<manifest> -
“package” attribute &

component -
“android:name”

Installation
Reflection

Authority
<provider> -

“android:authorities”
Installation
Reflection

Account
Type

Any in Authenticator
and SyncAdapter’s

config.xml files -
“android:accountType”

Broken
Functionality

Custom
Permission

<permission> and
<uses-permission> -

“android:name” & Any
- “android:permission”

Broken
Functionality

Intent
Action

<action> -
“action:name”

UI Integrity
Violation

objects claimed by a guest app in AndroidManifest, and
registers them to the package manager at app installation.
An app object map is generated in this step that records
the mappings between the real object names defined by the
guest app and their virtual names defined by the sandbox
app. (2) The sandbox app’s broker uses the app object map
to conduct the AOT at runtime. Specifically, for an outgo-
ing public app object, the broker renames it from the real
name to the corresponding virtual name, while for an in-
coming public app object, the broker translates it from the
virtual name to its real name.

We instrument the Binder IPC APIs that interact with the
system services (e.g., activity manager, and account man-
ager). In this way, the broker is able to inspect and modify
the public app objects located in parameters or return values
of the hooked APIs exchanged between the guest app and
the system services. Comparing with NJAS, which performs
AOT over only one of the public app object types, Droid-
Pill’s AOT covers five types of public app object, which
makes it a more mature system. For example, while the
translation of Intent Action allows DroidPill to support in-
voking an app component via implicit intents within the app,
NJAS does not. In our implementation, we hooked over 100
Android framework APIs to gain a sufficient service virtual-
ization.

To achieve storage virtualization, the broker hooks the
low-level I/O functions in native libraries to redirect the file
accesses from a guest app’s storage to the sandbox app’s
storage. Without this, the access to the guest app’s internal
data storage will be blocked by Android in that the guest
app and the sandbox app have different UIDs. Another task
of the broker is to hide the sandbox app in the query results
returned from the package manager to the guest app, which
can be done by hooking the Binder API calls to the package
manager.

3.4.3 An Illustrative Example
Here, we use an example to demonstrate the complex-

ity of the AOT operations. In Android, account manager
is designed to facilitate apps’ authentication with backend
servers, which benefits to app developers. For example,
one copy of authentication code can be shared by multi-
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Figure 5: Code Snippets

ple apps connecting to the same backend server. Therefore,
apps usually create customized authenticator services to
handle related tasks, including storing the credentials (e.g.,
usernames, and passwords), authenticating with backend
servers, and caching authentication tokens. An app registers
the authenticator service in AndroidManifest via the key-
word of android.accounts.AccountAuthenticator within the
“action” and “meta-data” tags, for which Android can locate
in an xml resource file that defines account types and other
configuration data. Moreover, account manager maintains
a list of registered authenticator services indexed by their
account types at runtime, and the app can interact with
the account manager to indirectly access these authentica-
tor services via Binder.

Consider a victim app, whose package is named
com.victim.android, attempts to acquire a valid authenti-
cation token to pull out user data from a backend server
and displays them on the home page when the app starts. If
there is no valid authentication token due to the first use or
the token expiration, a logon page is displayed to ask for user
credentials. In particular, the victim app has a home page
activity called VictimWelcomeActivity, and its onCreate()
function contains the code using a hard-coded account type,
com.victim.android.account, to query the account manager
with getAuthentication() for a valid authentication token. In
addition, the victim app implements its authenticator ser-
vice’s core functionalities in the VictimAccountAuthentica-
tor class. As a result, the account manager can redirect
the getAuthentication() call made by VictimWelcomeAc-
tivity to VictimAccountAuthenticator ’s getAuthentication(),
which generates the intent for launching VictimLogonActiv-
ity in that no valid authentication token exists. The relevant
code snippets of VictimWelcomeActivity and VictimAccoun-
tAuthenticator are shown in Figure 5.

In order to virtualize the victim app, DroidPill’s sand-
box app registers a virtual authenticator service with a
virtual account type named com.droidpill.android.account,
and a virtual logon activity named DroidpillLogonActiv-
ity, via its manifest file. When the victim app runs on
top of the sandbox app and invokes getAuthToken() in-

side VictimWelcomeActivity ’s onCreate() function, the bro-
ker of sandbox app first intercepts the corresponding Binder
call, IAccountManager$Stub$Proxy.getAuthToken() and its
account parameters containing account type. After then,
DroidPill conducts AOT and changes account type from
the real one (i.e., com.victim.android.account) to the vir-
tual one (i.e., com.droidpill.android.account). While the
account manager uses the virtual account type to retrieve
the virtual authenticator service in cache and invoke its
getAuthToken() via Binder, the broker captures the cor-
responding Binder call (i.e., AbstractAccountAuthentica-
tor$Transport.getAuthToken()) from the app side, and then
reverses the account type. After VictimAccountAuthentica-
tor.getAuthToken() is executed by the victim app, it gener-
ates a bundle object that encapsulates the intent of launch-
ing VictimLogonActivity. Then, the bundle object is passed
to the account manager via another Binder call (i.e., IAc-
countAuthenticatorResponse$Stub$Proxy.onResult()). The
broker intercepts this call and performs AOT over both ac-
count type and activity name from the real ones to vir-
tual ones. Later, the account manager uses a Binder
call to transfer the modified bundle object to the frame-
work’s AccountManager$AmsTask object inside the sand-
box app process to launches the logon activity. The bro-
ker captures the corresponding Binder call, AccountMan-
ager$AmsTask$Response.onResult(), from the app side, and
then reverses the account type and the logon activity name.
To sum up, four AOT operations are conducted to get au-
thentication tokens from VictimWelcomeActivity during the
entire app vitualization process, as depicted in Figure 6.

4. ATTACK VECTORS
In this section, we focus on how to use DroidPill to launch

the attack. But, before getting into the details, let’s assume
that a DroidPill malware has been successfully installed on a
device, and the device user treats the malware as a regular
app with the bait’s functionalities. In order to attack a
benign app, DroidPill needs to hijack the user’s entrance
to a benign app, and force the app to run in the virtual
execution context built by the malware. Two methods (i.e.,
app shortcut manipulation and top activity preemption) are
employed to launch the attack.

4.1 App Shortcut Manipulation
Since Android API level 19 (Kitkat), two new permissions

INSTALL SHORTCUT and UNINSTALL SHORTCUT are
added to AOSP. After acquiring these permissions, an app
is able to create and remove shortcuts from the home screen
for any free app on the same device, even those with different
UIDs. With these two permissions, the DroidPill malware
can stealthily substitute the shortcut of a benign app with
its own shortcut that has the same icon and label, which is
not noticed by the user. As a matter of fact, it has been
reported that other Android malware may take advantage
of this weakness to mount phishing attacks [5]. However,
this method may become ineffective if the user starts the
app from another entry point (e.g., app manager, and noti-
fication center).

4.2 Top Activity Preemption
According to [11], a technique that allows an app

to promptly cover a target activity with another one,
when the target activity is brought to the foreground
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Figure 6: Function Call Flows of the Example (Dotted functions are hooked to perform the AOT operations)

on the screen, is widely used by app lockers. There
are three ways for the malware to learn what the on-
top activity is: (1) read the system log, (2) run the
android.app.AcitivityManager.getRunningTasks() API, and
(3) perform side-channel attacks via accessing the proc file
system [10] [12]. While the first two are blocked in Android
4.1 and 5.0, respectively, as far as we know, the last one is
still effective for all Android versions.

In order to attack the on-top activity of a benign app
launched by a user, the DroidPill malware can employ side-
channel attacks to start the same activity in its sandbox to
occupy the top activity position, and block the user’s view
to the original activity running in the native context. Note
that the attack should take place quickly such that the user
would not see the UI anomaly (e.g., one activity UI showing
up twice). However, after this attack, two duplicate activity
icons could be displayed in the overview screen, and it breaks
UI Integrity. To address this, we leverage the task hijacking
attack to remove the duplicated icon [9]. For example, in the
DroidPill prototype, we manipulate the “taskAffinity”, “al-
lowTaskReparenting” and “exclueFromeRecents” attributes
of the guest app’s activities in the sandbox app’s Android-
Manifest in the way such that Android places the native
activity and the sandboxed one in the same activity task,
and the former is on top of the later in the activity stack.
Moreover, android.app.Activity.onBackPressed() is hooked
to ensure that the native activity’s UI is skipped when the
“Back”button is clicked. Note that a malware built based on
the inclusive app virtualization cannot overcome the dupli-
cate activity icons in the overview screen, because a sandbox
app cannot programmatically change the “taskAffinity” at-
tribute of its dummy activities.

Table 4: Quadrant Test Result

CPU MEM I/O 2D 3D
DroidPill 4.76% 1.54% 12.54% 1.25% 6.01%
NJAS 6.87% 0.47% 112.32% 0.00% 9.90%

5. EVALUATION
After implementing DroidPill with 3365 lines of C++ code

and 2536 lines of Java code in Android 4.4, we compare its
performance with that of NJAS, and then use the prototype
to launch five attacks in different scenarios.

5.1 Performance
In order to look into the impact of app virtualization to

the performance of apps with DroidPill, we conducted an
experiment on a Samsung Note 2 running Android 4.4.4
with two versions of Quadrant (i.e., v1.1.1, and v2.1.1) sand-
boxed with a DroidPill malware. Quadrant is a benchmark
app tailored for testing the performance of Android devices
in various aspects, including CPU time, memory speed, I/O
operation speed and graphic rendering time. We ran the test
app ten times and took the average with a small variance.
Becuase NJAS and Boxify reported their performance evalu-
ation results over Quandrant v1.1.1 and v2.1.1 respectively,
this allowed us to compare the DroidPill’s performance with
theirs directly.

Table 4 compares the results of DroidPill from the tests we
ran and the publicly available results of NJAS, and demon-
strates that the I/O penalty in DroidPill is much lower
than that in NJAS. For the reason that, the I/O operations
in NJAS trigger the ptrace system calls, and generate the
context switches between the parent and child processes.
Whereas, DroidPill’s performance is not substantially pe-
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Figure 7: Steal Credit Card Information on Chrome

nalized in that guest apps and its broker run in the same
process, and no additional switch occurs for each I/O oper-
ation. For Quadrant v2.1.1, DroidPill’s performance penalty
is 4.5% in contrast to Boxify’s 3.6%. Overall, it can be ob-
served that the results are comparable to NJAS and Boxify,
since most of the framework APIs that DroidPill hook are
related to Binder calls and should not cause significant over-
heads for CPU, memory, I/O and display. Throughout the
experiments with real-world apps, our DroidPill malware did
not encounter any noticeable performance hit. Nonetheless,
there is room to improve our current DroidPill implemen-
tation. For example, the current AOT operations are writ-
ten in Java, which incurs execution overhead when switch-
ing between native code and Java bytecode within hooking
functions at runtime. Such an issue can be eliminated by
implementing AOT in C/C++. All in all, we believe that
DroidPill’s performance falls into an acceptable range for a
malware system.

5.2 Case Studies
In order to demonstrate DroidPill’s effectiveness, we

present five attack examples against real-world apps. Specif-
ically, we implemented the DroidPill malware and tested
them on a non-rooted Google Nexus 7. The malware dis-
plays a simple welcome activity as the bait, and utilizes the
getRunningTasks() API to detect and preempt the guest
apps’ top activities. During each test of the UI Integrity
requirement, the overview screen is opened up to show that
the icons and labels of sandboxed activities are identical to
that of native ones. In the experiments, we didn’t publish
the malware to any app market due to the legal concern,
so we just installed the malware locally. In the future, we
would like to work with app market vendors to evaluate the
market-level defense against the DroidPill attacks.

5.2.1 Browser Spyware
In this attack, a DroidPill malware was created to attack

the Chrome browser app (version 48.0.2564.95) and steal all
a victim user’s searching and browsing history in both nor-
mal and private modes. Moreover, it could steal the login
credentials and financial information typed in by the user, as
shown in Figure 7. In this experiment, we hooked a number

Figure 8: Encrypt a User’s File on Dropbox (left)
and Hijack an App Installation from Mi Store (right)

of methods from the Android framework and chrome classes
(e.g., android.view.inputmethod.BaseInputConnection and
org.chromium.chrome.browser.tab.Tap) that handle the key-
board inputs and load URLs. Note these are the application-
level APIs that the malware intercepted. We believe that
further instrumentations at this layer could reveal more
browsing contents (e.g., encrypted web traffic). Merely
hooking the low-level APIs will not give us such visibility
to the encryption-protected browsing data.

5.2.2 Cloud Storage Ransonware
We used a DroidPill malware to attack the Dropbox app

(version 2.4.5.10) with the system-level I/O functions (e.g.,
open(), and write()) which monitor what files are down-
loaded and stored to the local cache. The malware is in-
structed to silently download all files to the local cache, and
encrypt them all. By taking advantage of Dropbox’s auto-
sync mechanism, file encryption is automatically propagated
to cloud servers and other client devices. Thus, all files in
the Dropbox account will be unreadable to the victim user.
If the user pays off a ransom, the malware could decrypt
the files. Although Dropbox can automatically back up the
user’s files and allow the user to revert the files to previous
versions, a DroidPill ransomware could bypass the recovery
mechanism by encrypting the files multiple times to over-
write all plaintext versions. Figure 8 (left) depicts that a
Dropbox malware encrypts a text file.

5.2.3 App Store Client Abuser
We built a DroidPill malware to hack the Xiaomi Market

app (version R.1.4.2), which is the default app store client
for Xiaomi phones. In this experiment, the malware abuses
the Xiaomi Market app’s installing process, and uses a fake
app to replace a genuine app downloaded from the Xiaomai
app market. In this experiment, we use a Google Nexus
7 to install the market app as a regular app without sys-
tem permissions through the Android package installer. We
hooked the ActivityManagerProxy.startActivity() API to in-
tercept the intents that the market app sent to the installer.
These intents were characterized with the MIME type of
“application/vnd.android.package-archive”. Our malware
modifies the URIs in the intents that pointed to the apk
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Figure 9: Intercept VPN traffic on Betternet

file of a fake app. Therefore, when the market app attempts
to install an app from its online store, only the fake one
could be installed, as depicted in Figure 8 (right). Note
that Google Play client is not vulnerable to App Confusion
Attack, because DroidPill is not assumed to have system
permissions.

5.2.4 VPN Traffic Sniffer
Betternet is a free VPN proxy app with over 10 million

downloads from Google Play. In order to use the VPN func-
tionality, Android needs users to explicitly grant the permis-
sion to the app via a confirmation dialog showing the VPN
app’s icon and label. It’s challenging for DroidPill, since
when the malware’s sandbox app icon and label are dis-
played in the dialog instead of the Betternet’s, which breaks
the UI Integrity requirement in the App Confusion Attack.
However, according to [16], those dialogs suffer from tapjack-
ing attacks, we combined the App Confusion Attack with the
tapjacking attack to exploit this VPN app.

In our experiment, the Betternet app (version 2.6.2)
spawns a child process to run a customized Linux-style ex-
ecutable to perform the VPN task, and the sandbox app’s
code (i.e., the constructor and the broker) are not loaded
and executed in that child process, so DroidPill’s existing
sandboxing mechanism does not intercept VPN traffic in
that child process. Finally, to address this issue, we use
ptrace for the DroidPill malware to inject a hooking library
to the child process, which hooks the system-level I/O func-
tion (i.e., read()) to capture and view all VPN traffic on the
test device. See Figure 9.

5.2.5 Ad Revenue Stealer
We demonstrate that DroidPill is able to exploit the An-

droid ads system and steal the ads revenue from benign apps.
However, in order to stay away from legal liability, we do not
disclose app names and ad networks that we tested. Let’s
call them app X and ad network Y. The ad network Y as-
signs ad unit IDs to app developers when including Y’s SDK
in their apps. When displaying ads, an app supplies its ad
unit ID to Y’s ad server, which helps Y map ads to the devel-
oper account. In the experiment, we signed up a developer
account and acquired an ad unit ID from Y. A DroidPill
malware was created for app X. By interposing an API in
Y’s SDK, the malware was able to replace the X’s ad unit ID
with the one that Y assigned to us. After displaying/clicking
ads in the hacked X for a few days, we found that our de-
veloper account received a small amount of money from Y.

6. DISCUSSION
In this section, we mainly answer two questions: (1) What

are the limitations of our DroidPill prototype? (2) Are
there any possible countermeasures to the App Confusion
Attacks?

6.1 Limitations
Although we have successfully launched the attacks with

DroidPill, we envision six restrictions, either external or in-
ternal, that thwart the current prototype to expand to all
app types.

The external restrictions are more or less related to our
implementation, which include:

Android Versions The current implementation of
DroidPill uses DVM to hook the application-level APIs, and
thus only works with Android 4.4 and older versions. For-
tunately, the researchers have proposed the ART hooking
techniques recently [29] [30], which allows us to transport
DroidPill to Lollipop and newer version. Therefore, Droid-
Pill may be extended to support all Android versions. Also,
since Android 5.0, apps can better control which entries they
generate on the overview screen. For example, Chrome uses
this feature to display every tab as a separate app on the
overview screen by default. Therefore, an inclusive app vir-
tualization system can take advantage of this feature to es-
tablish the UI Integrity requirement, although it cannot uti-
lize top activity preemption to launch the attack.

Monetization Strategies Since the apk files of paid
apps and system apps are not accessible for a free app, we
can only use DroidPill to launch the attacks for free apps.
However a DroidPill malware can download a target paid
app’s apk file from a hacker-controlled server to instantiate
an attack. In such a situation, we cannot reply on Con-
text.createPackageContext() to load the guest app to the
virtual execution context. Instead, DexClassLoader can be
used to directly load the guest app’s apk file.

The internal restrictions are unavoidable, which include:
Android Permissions In order to successfully launch

the attack, a DroidPill malware needs to request the same
permissions as the guest app. However, the malware does
not carry the same code and data, and thus it may violate
the least privilege principle. If the malware excessively re-
quest the “dangerous” permissions, it may be susceptible to
the detection of anti-virus scanners.

System UIs DroidPill malware cannot completely pre-
vent a guest app from running and interacting with sys-
tem services in its native execution context. Simultane-
ous executions of a guest app in native and virtual envi-
ronment contexts may generate duplicate app icons and la-
bels in the system UIs (e.g., notifications in notification cen-
ter, and shortcuts on home screen). Unlike the overview
screen for Android 4.4 and older versions, these system
UIs are designed to permit showing duplicate items. For
example, notification center allows two same notifications
from the same app, or launcher apps allow users/apps to
manually/programmatically create multiple shortcuts on the
home screen. For our design choice, the DroidPill malware
can optionally turn off notifications and shortcuts posted to
the system UIs by guest apps.

App Activities In Android, app activities could be
launched by other system apps with parameters having a
launching intent that affect their UIs. For example, a news
app may push a news notification with a URL, when a user
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reacts to the notification, the app viewer can use the URL
to download and display the online news on the device.
In such situations, if the news notification is generated by
the original app running in the native environment context,
the DroidPill malware cannot intercept the “viewer” activity
which launchess the intent and the URL, so the victim user
cannot see the news in the UI of the sandboxed “viewer”
activity.

App State In Android, apps’ local storage can be used to
save users’ state data (e.g., login credentials), and restore the
previous app state for next time. However, as a benign app’s
state data are usually stored in its internal local storage, the
DroidPill alternative cannot access them. Therefore, when a
sandboxed guest app is started for the first time, it has to run
from the initial state. However, users may only need to save
its state data once. In fact, the same situation happens on
benign apps as well due to reasons such as software update
and implementation errors. Therefore, we expect that users
may not be aware of the inconvenience is actually caused by
our DroidPill malware.

6.2 Countermeasures
In order to mitigate the App Confusion Attacks, we envi-

sion the following countermeasures from either of two places:
(1) the OS level, and (2) the marketplace level.

At the OS level, in order to defeat the App Confusion
Attacks, we can take the following defense strategy: assure
that the identity that an app protrays to its user is the same
identity that it is seen by the Android OS. Antonio [11] bor-
rows this idea from the anti-phishing solutions in web secu-
rity, and adds a security indicator to the system navigation
bar. This security indicator reveals the real identity of the
front-end app to the user, including app name, company
name and secure image. Unfortunately, it needs modify the
Android OS and framework. An effective and lightweight
solution without OS support is still an open problem.

At the marketplace level, the Google Play licensing service
provides a practical solution to address the App Confusion
Attacks [31]. A developer can split her app in two parts:
one boot loader app and one heavy library. The boot loader
app is installed on devices, and the library is uploaded to
Google’s license server. Major functionalities of this app
are implemented in the library. To run the app properly,
the boot loader app needs to successfully authenticate itself
to the license server, and then download and execute the
library. During the license authentication process, the boot
loader app submits its app name to Google Play client via
the Binder API call. To verify the caller’s identity, Google
Play client invokes Binder.getCallingUid() to get the caller’s
UID and app name from the PackageManager service, then
compares it with the app name submitted by the caller. In
this way, DroidPill’s sandbox app cannot hide its identity
and spoof the Google Play client. The license authentication
fails. Unfortunately, most free apps do not use this service
currently. In addition, the approach cannot protect the apps
in other app stores that do not offer the licensing service.

7. RELATED WORK
Invisible Rootkits In the domain of desktop and server,

researchers used Virtual Machine Monitor (VMM) to cre-
ate invisible rootkits [32] [33] [34]. The VMM rootkits are
powerful because of the possession of the strong reference
monotoring properties (i.e., complete mediation, and tam-

per proof) as well as the UI Integrity requirement. Unfor-
tunately, the technique suffers from two weaknesses: (1) It
is highly hardware-dependent and thus difficult to migrate
among different CPU architectures, and (2) It is challenging
to find attack vectors for installing the VMM rootkits into
target machines. In contrast, DroidPill is an application-
level software and thus easier for hackers to lure innocents.

App Sandboxing Studies in app sandboxing and secu-
rity enforcement can be classified into three types in views of
different layers: (1) The use of Inline Reference Monitoring
directly inserts the reference code to target apps’ bytecode
[35] [36] [37]. (2) Similar to DroidPill, [25] and [38] instru-
ment DVM and native libraries to enforce policies via the
hooking code. (3) [39] places reference code outside of target
apps’ processes, which is close to what Boxify [22] and NJAS
[23] do. However, regarding to defensive systesms, they are
either requied to modify the OS or lack of the strong refer-
ence monitoring properties.

App Repackaging In fact, DroidPill can be thought of
a technique that a malware dynamically repackages target
apps at runtime without need to carry the code and data.
Although app repacking detection has been extensively stud-
ied in academia [40] [41] [42] [43], most focused on the detec-
tions based on static analysis, which is ineffective to screen
DroidPill malware due to its lack of the code and data from
target apps.

8. CONCLUSION
In this paper, we propose the App Confusion Attack, a

more stealthy application-level attack than the existing mal-
ware schemes. It can simultaneously force multiple benign
apps on a device to run in a virtual execution context con-
trolled by the DroidPill malware using an exclusive app vir-
tualization technique, instead of the native execution con-
text provided by the Android Application Framework. Af-
terwards, we demonstrate five examples of how DroidPill can
practically and effectively attack mobile users or app devel-
opers with two different attack vectors. Finally, we conclude
with possible countermeasures to the App Confusion Attack.
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