
Inlined Information Flow Monitoring for JavaScript

Andrey Chudnov
Stevens Institute of Technology

Hoboken, NJ 07030 USA
andrey@chudnov.com

David A. Naumann
Stevens Institute of Technology

Hoboken, NJ 07030 USA
naumann@cs.stevens.edu

ABSTRACT
Extant security mechanisms for web apps, notably the“same-
origin policy”, are not sufficient to achieve confidentiality
and integrity goals for the many apps that manipulate sen-
sitive information. The trend in web apps is “mashups”
which integrate JavaScript code from multiple providers in
ways that can undercut existing security mechanisms. Re-
searchers are exploring dynamic information flow controls
(IFC) for JavaScript, but there are many challenges to achiev-
ing strong IFC without excessive performance cost or im-
practical browser modifications. This paper presents an in-
lined IFC monitor for ECMAScript 5 with web support,
using the no-sensitive-upgrade (NSU) technique, together
with experimental evaluation using synthetic mashups and
performance benchmarks. On this basis it should be possi-
ble to conduct experiments at scale to evaluate feasibility of
both NSU and inlined monitoring.

1. INTRODUCTION
Many security issues are raised by web apps, especially

so-called mashups that integrate in a single page code from
multiple providers, including but not limited to third-party
ads. Much of the utility of integrated apps derives from
their manipulation of sensitive information including per-
sonal data and mission-critical data. Individuals and organi-
zations have security requirements including confidentiality
and integrity. Such information flow (IF) requirements pose
challenges both for mathematical modeling and for usable
policy specification techniques. There are also challenges in
policy enforcement, i.e., information flow control (IFC). En-
forcement is the topic of this paper. We assume that policy
is given in the form of security labels attached to inputs and
outputs, interpreted as specifying allowed dependencies, as
formalized in the standard notion of termination-insensitive
non-interference (TINI) [60].

Most client-side app code is written in JavaScript (JS), in
part because of its flexible dynamic features —which exac-
erbate the difficulty of achieving security goals for mashups.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813684.

JS engines are highly engineered for performance, which has
led some researchers to argue for inlined monitoring for IFC.
The main contribution of this paper is an inlined IFC mon-
itor that enforces non-interference for apps written in JS.
We present the main design decisions and rationale, together
with technical highlights and a survey of state of the art al-
ternatives. The tool is evaluated using synthetic case studies
and performance benchmarks.

On IFC. Browsers and other platforms currently provide
isolation mechanisms and access controls. Pure isolation
goes against integration of app code from multiple providers.
Access controls can be more nuanced, but it is well-known
that access control policies are safety properties whereas IF
policies are hyperproperties [19], defined in terms of mul-
tiple executions. For example, TINI specifies information
flow using pairs of executions. Prior work showed that even
simple IF policies serve well to protect against common web
attacks (e.g. [18]), so IFC may be useful without fully solving
the problem of requirements specification. One approach to
IFC is dynamic taint tracking, in which data is tagged with
security labels that are propagated during execution. Taint
tracking is very useful for catching bugs, misfeatures, and
malware, but it does not enforce TINI because it fails to de-
tect implicit flows: state changes that would have happened
if a different branch had been taken. Indeed, information can
also flow via covert channels such as timing and power con-
sumption, but these are relatively difficult to exploit in the
web setting and are outside the scope of this paper. In the
literature, works on taint tracking often use the term “in-
formation flow”, emphasizing the intended purpose rather
than assured properties. In this paper, IF and IFC refer
to TINI. Also, we focus on fine-grained IFC, as opposed to
coarse grained policies which can be enforced by tagging at
the level of processes [55].

One way to enforce TINI is by static analysis, using types,
program dependence graphs, or theorem proving. Static
analysis avoids the performance cost of runtime mechanisms
and has the benefit of detecting insecurities prior to program
execution. A complementary benefit of dynamic enforce-
ment is that it can allow secure runs of a program even if
it has other runs that are insecure. Static analyses can be
excessively restrictive, due to conservative approximation of
heap structure etc., and some require extensive programmer-
supplied annotations. Features of JS, including eval (dy-
namically generated code), make static analysis particularly
difficult. For this reason dynamic IFC is used in most work
on IFC for JS, including this paper.

629

Goals and attack model for dynamic enforcement. The
conventional approach to dynamic IFC builds on tag track-
ing, i.e., instrumenting the execution in such a way that
potential flows can be “observed”. Conceptually, the execu-
tion monitor performs an abstract interpretation of possible
alternate runs, in order to soundly approximate TINI [16].
Another approach, secure multi-execution (SME) [20, 26, 46,
6], achieves non-interference using simultaneous concrete ex-
ecutions of the program, one for each security level, suitably
orchestrated. In the next paragraphs the term “monitor”
refers to any dynamic mechanism.

There are three primary correctness requirements for a
monitored program under a given policy. First, soundness
with respect to TINI: any violation of policy is detected by
the monitor. The second requirement is transparency, which
circumscribes allowed changes to behavior of the program to
be monitored. Some changes are necessary, as the monitor
must raise an alarm or halt execution when the program
is poised to output a value at level incompatible with the
level assigned by policy to that output channel. It may also
halt execution because the mechanism is unable to ensure
TINI even though there may be no actual violation. Such
“mechanism failure” is inevitable for reasons of undecidabil-
ity. Transparency has three aspects. If the monitor does not
detect a violation on a given run, then (1) the outputs are
the same as for the original program (a safety property) and
(2) all outputs do occur (a liveness property). Finally, (3)
if the monitor does detect a potential violation, this is re-
ported. In that case, outputs may be suppressed or altered
to avoid jeapardizing policy; the point is that the monitored
program does not silently differ from the original’s behavior.
We call part (3) frankness. (To formalize TINI, it is conve-
nient to model a monitor as diverging silently when policy
might be violated, but this is seldom desirable in practice;
cf. [31].) The third requirement is permissiveness: to mini-
mize raising the alarm on executions that are semantically
secure.

Formalization of TINI embodies an attack model. Such
formalization is outside the scope of this paper but we sketch
a model of the attacker derived from the gadget attacker
model [1]. (AM0) The attacker does not have any special
network privileges. The only messages that she can read
are the ones directed at her own web server. (AM1) The
attacker can introduce arbitrary JS code in the web-page.
This might happen for one of the three reasons: (1) the user
directed the browser to visit the attacker’s web-site, (2) a
legitimate third-party web-site included a frame or a script
from the attacker’s web-site or (3) the attacker has injected
a script in a legitimate web-site via a cross-site scripting
vulnerability. However, code injected by the attacker should
comply to the standards of ECMAScript and HTML. We do
not support vendor-specific extension. (AM2) The attacker
cannot subvert or compromise the browser. We assume that
the client machine running the browser has not been com-
promised and cannot be influenced by the attacker outside
of injecting JS into pages. The JS engine implements correct
semantics of standards-compliant ECMAScript and does not
have vulnerabilities that allow to break the browser sand-
boxing model, or alter the semantics in any way. (AM3)
The attacker knows the program (so they can learn from
implicit flow), and they know the inliner, so their JS code
may attempt to disable or subvert the monitor. (AM4) The
attacker cannot observe power consumption and has a very

limited view of timing as afforded by the API’s available to
JS programs.

In addition to the correctness requirements, deployability
and performance are important considerations. Despite en-
couraging preliminary results, it is not obvious that SME
scales well to policies with many security levels and to en-
compass APIs for web apps. In the rest of this paper, atten-
tion is focused on the conventional approach based on tag
tracking, for which we henceforth use the term monitor.

Hybrid and NSU monitoring. Monitoring can achieve high
precision, i.e., few false positives, by means of flow sensitiv-
ity, meaning that the security level of a storage location
can change during execution. To achieve soundness, one ap-
proach is hybrid monitoring which depends on static analy-
sis of possible heap locations updated in branches not taken.
Based on such analysis, tags that represent an unbounded
number of such locations may need to be updated at control
flow join points [44, 51, 40]. It is quite difficult to imple-
ment sound static analysis for JS with acceptable precision
and performance —especially for code that uses eval, which
is ubiquitous on the web [50].

A technique that avoids the need for static analysis is no
sensitive upgrade (NSU) [62, 4] which disallows raising the
level of a location due to influences of branch conditions.
In order to track these influences efficiently monitors can
employ a stack of labels [51, 4], which is called a PC label
stack. Each label corresponds to the label of a branch con-
dition that has determined the path the program took to
arrive at the current point. We use this technique, adapted
to non-syntactic control-flow. The key point of NSU is that
it achieves TINI without recourse to static analysis, at the
cost of some restrictiveness (mechanism failures).1 NSU can
be even more restrictive than static analyses (indeed, must
be [51]). Mitigation is possible in the form of explicit up-
grade annotations that cause the monitor to preemptively
raise the level on a location before a branch is taken.

In scenarios where legacy code is not a constraint, NSU-
based monitoring with programmer-provided upgrades has
been found viable in substantial case studies [25, 55] (albeit
for coarse grained policies). Another possibility is to infer
upgrade annotations through program testing [12]. How-
ever, less encouraging experience with an NSU-based JS
monitor [28] led some researchers to devise a form of hybrid
monitoring in which static analysis is used dynamically to
infer upgrades; so correctness rests only on NSU but greater
permissiveness can be achieved [27].

What is not known is the extent to which NSU (with up-
grades) is compatible with existing code on the web. Several
prior works have made advances towards building practical
JS monitors, but considerable infrastructure is needed, e.g.,
to deal with many libraries, browser APIs, and obfuscated
code used in practice. And the language itself is compli-
cated and idiosyncratic. The JS interpreters in wide use
are highly engineered, using in particular complex just-in-
time (JIT) compilation of partial program traces. All JS
IFC tools known to us omit at least one major language fea-
ture, and many lack support for DOM and other standard
libraries. We report here on a new tool that should serve to
evaluate NSU at scale.

1Because raising the level on a location, due to implicit flow,
would be harmless if the location would have been written
on all alternate control paths.

630

Inlining and goals of this project. To date, most imple-
mentations of IFC monitoring either modify a JS interpreter
directly [11, 33, 26, 21, 59] or inject a custom interpreter
with a plug-in [6, 28]. This may facilitate ensuring trans-
parency and soundness, and it offers the potential for spe-
cialized performance optimizations. However, there is an on-
going “arms race” between browsers, with fast development
of highly optimized engines, all based on JIT-compilation.
At best, a modified JS engine is only of use with the associ-
ated browser, and it may be impossible to maintain without
the assistance of the vendor. Some of the cited works on
IFC either turn off JIT compilation (interpreter modifica-
tion) or incur performance penalties by running JS code in-
side a JIT-compiled interpreter (custom interpreter plug-in).
Work that does not harness JIT is doomed to have limited
practical use. We also believe that it is impractical to mod-
ify the JIT compiler directly to generate monitored code.
First, there are often several compilers working side-by-side,
each geared towards different kinds of code. Second, the
complexity of modern tracing JIT compilers is staggering.

Previous works suggest an alternative: inlining a moni-
tor into the source program [17, 38]. In brief, the inliner
turns a JS program into an instrumented program. The in-
strumented program runs in the context of additional JS
programs: the monitor core and API facades explained in
the sequel. Together these constitute a monitored program.

Inlining requires no browser modification. It can be de-
ployed by an external HTML proxy, or at the server, or by
a hook in the JS interpretation/compilation pipeline [36].
An obvious advantage of inlining is portability across JS
engines. Just as importantly, inlined monitoring has the
potential to benefit from JIT compilation. The engineering
and maintenance challenge is proportional to the complexity
of JS rather than the complexity of JIT compilers.

Nonetheless, the challenge is substantial. Unlike inlined
reference monitors for access control policies, IF monitoring
needs to be threaded through every execution step to track
all flows. The interesting challenges include preserving the
order of evaluation, which is important since expressions can
have observable side-effects, and preserving the semantics of
various kinds of references including the scope and prototype
chains in JS. Inlined monitor code is vulnerable to attacks
crafted to thwart the monitor, so the monitor operations,
label storage, etc must be tamper-resistant.

The design of our inlined monitor was guided by the fol-
lowing five primary goals. (1) Soundness and transparency.
(2) Tamper-resistance. (3) Simplicity : the inlining process
and monitored program should be as simple as possible, to
facilitate assurance of soundness, transparency, and tamper-
resistance. Formal proof of correctness is not, however, in
scope for our project. (4) Modularity is important as we
would like to be able to modify aspects of monitoring quickly
and easily for purposes of experimentation (e.g., support
for different response to policy and NSU violations, and
to explore variations on NSU like “permissive upgrade” [5,
10]). (5) JIT-friendliness: the transformed code should be
amenable to efficient JIT compilation. An additional goal
is for the monitored program to retain the structure of the
original, which helps debugging the monitor, monitored pro-
gram, and policy.

These design goals are in support of two main project
goals. First, we are assessing the applicability and effective-
ness NSU for web applications. Second, we are interested in

practical performance of monitoring; our hypothesis is that
it could be achieved by leveraging off-the-shelf JIT compil-
ers, and we investigate whether it is true.

Contributions and outline. The main contribution is an
IFC monitor inliner for almost full ECMAScript 5, with
support for web APIs. We report on experiments with per-
formance benchmarks and also small but realistic mashups,
for which we have built enough API and library infrastruc-
ture. Our system is named JEST, for JS with Embedded
Security Tracking.

Sec. 2 highlights IF issues in JS, only briefly since most
have been described in prior work.

Sec. 3 describes the design and rationale for monitored
programs and the inliner. The inliner handles actual scripts
as found in web pages, handling all the complications of
scripts embedded in HTML and providing support for track-
ing of IF across DOM operations. Although prior work has
identified the main challenges of tracking information flows
in JS, we have to address them in full, in all their guises.
We argue why the design meets our goals.

Sec. 4 presents some experimental results, using an en-
tirely unmodified JS engine. The inliner itself is written
in Haskell and it’s performance is not problemmatic; what
we evaluate is performance of monitored programs. Exper-
iments on benchmarks designed to evaluate JIT compila-
tion exhibit on the order of 200× slowdowns depending on
whether the inliner is configured to prioritize transparency.
The results give some evidence that straightforward inlined
monitoring with NSU can be competitive with the approach
of modifying the JS interpreter, but do not show that our
goal of JIT-friendliness has been achieved completely. We
observe that the monitor core benefits nicely from JIT com-
pilation but the instrumention we add to the monitored pro-
gram prevented JIT compilation in our experiments using
one JS engine.

The experiments also include case studies with mashups
inspired by apps in the wild and which have interesting IF
policies.

Sec. 5 provides further discussion of related work on IFC
for JS. Sec. 6 wraps up with discussion of future prospects.

The JEST software distribution provides infrastructure
for further experimentation and other investigations of IF
in JS: wrappers for DOM API and ECMAScript standard
libraries, and auxiliary open-source libraries and programs
developed to support the inliner and the experiments. The
source code of the inliner, supporting libraries, mashup case
studies are released under an open-source license [15]. De-
tailed technical documentation is available in [14].

In the near term it is unlikely that any IFC monitor will
have acceptable cost/benefit ratio for general client-side use.
Even for taint tracking, prior works report quite significant
slowdowns. Substantial slowdowns also result from code
transformations to support “safe subsets” of JS. See Sec. 5
for some numbers. However, performance numbers includ-
ing our own suggest that inlined monitoring can be prac-
tical for purposes of testing and security auditing (includ-
ing forensics). In testing scenarios, significant performance
degradation can be acceptable. In addition, reproducible
tests can facilitate inference of upgrade annotations. IFC
may also be practical for production use in situations where
a security-sensitive mashup does not require a lot of client-
side computation.

631

JEST supports all of ECMAScript 5.1 non-strict mode,
except the with statement. This version is by far the most
widely used for reasons of browser portability and perfor-
mance. Support for with is possible if targeting a platform
with an implementation of ECMAScript 6 Proxies.

Although this paper focuses on web apps, JS is used ex-
tensively outside of the browser context: many desktop and
most mobile environments allow applications written in JS,
which could benefit from IFC.

2. INFORMATION FLOWS IN JAVASCRIPT

Policies and example. In this paper we confine attention
to policies in a simple, standard form. Policy has two parts.
First, a fixed lattice of levels, where l v l′ means information
at level l is allowed to flow to l′, which may be interpreted to
mean “more secret” or “less integrity” or both. Second, fixed
labels are assigned to input and output channels such as
input forms on a page and network connections. The policy
is interpreted to mean inputs at level l may influence outputs
at level l′ only if l v l′. This noninterference property can
be formalized in terms of two runs, where variation of inputs
above l is allowed to cause variation only for outputs above
l, for all l.

As an example, consider this third-party payment proces-
sor scenario. A web store employs a third party to process
credit card payments. To avoid the need to deal directly with
PCI compliance, it integrates payment processing at client
side. At checkout an external IFrame from the payment
processing provider is loaded which includes a form for the
credit card information; the cost is provided via a postMes-

sage from the main page to the frame. Upon completion of
the credit card transaction, the payment processor returns
a crypto-signed transaction summary (to prevent forgery by
the user) which is sent to the merchant site via XMLHttpRe-

quest to confirm payment. The merchant site should have
no access to the credit card details and the payment pro-
cessor should have no access to the order contents. The
merchant site is allowed to disclose the total, the name and
the zip-code part of the address (for credit card verification).

The merchant has incentives to impose a confidential-
ity policy given using three security levels: M (merchant-
private), P (processor-private) and ⊥ (public), such that
⊥ <M and ⊥ < P;M and P are incomparable. In the pay-
ment IFrame we label the fields of the payment details form
—credit card number, expiration month and year, CVV2—
as P to prevent sending them to the merchant. We label the
URL <processor.domain>/pay as ⊥ so that the payment
confirmation received from that URL or the error message
can be sent to the merchant page. In the merchant checkout
page we label all the fields and page elements as M, except
for the name and zip code form fields which are labeled ⊥.
The other channels in the merchant page are the payment
confirmation <mechant.domain>/payment and order change
submission <merchant.domain/order_change URL’s, both
labeled M.

In our system policies are specified in a declarative lan-
guage (though an investigation of usability of policy speci-
fication is not our goal). The system is modular enough to
allow adding other ways of specifying policies with minimal
changes: a policy is compiled to a JavaScript object with
methods that give labels for locations and create new pub-

lic labels. The policy writer can specify labeling of URI’s,
DOM elements and cookies.

Downgrading is needed for most practical requirements.
In the example above, the individual purchase amounts are
part of the order contents and considered secret, but their to-
tal must be revealed to the payment processor. Prior works
suggest such policies can be specified by means of code an-
notations that designate some expression and program point
where the value of that expression may be downgraded [53].
(Such annotations may be derived from higher level policies
independent from the code; this important issue is beyond
the scope of this paper.) The semantics of downgrading is
subtle [53] but for our purposes adequate semantics is pro-
vided by prior work [7, 3, 58]. A monitor can implement
downgrading by re-labeling, together with appropriate check
for implicit flow. In our system downgrading policies can be
specified in the application code using a call to a declassifi-
cation function.

IFC challenges. In addition to heap locations and dynamic
evaluation, there are other JS features that pose a challenge
to precise tracking of information flows. Most of them have
been studied in detail in [29, 28, 11]. We will remind the
reader of the most interesting ones.

Variables and object fields are not the only storage chan-
nel: the structure of objects, arrays, DOM tree nodes and
lexical environments [29, 52, 2] can store information too.
We discuss a few examples to illustrate the point.

Arrays in JS are objects, with elements being fields with
numeric names. Every array has a length field with inter-
esting semantics: reading it will always give the index of the
highest-numbered array element plus one, writing to it will
cause all the elements that have indices higher or equal than
the new value to be removed. Field names that are not valid
indices do not interact with length. Consider this example:

var a = [1,2];
if (secret ==1) a.length = 1;
output(low , "1" in a);

An array a is initialized with two elements. Depending
on a secret its length is set to 1, which causes the second
element to be deleted. By checking whether the element is
present afterwards the attacker can leak one bit of informa-
tion, which can be magnified.

A taint tracker could propagate labels in order to catch
the indirect flow from secret to a.length. But, in order
to account for the flow from setting length to the outcome
of the "1" in a test, our monitor employs structure and
existence labels on the objects and fields respectively [29].
This applies to arrays, objects and the DOM.

Local variables can be created and deleted too. Condi-
tional creation cannot be done with static var declarations,
because of hoisting. However, conditional creation of vari-
ables can be achieved using eval. For example, if (secret)

eval("var x;"); will create a new variable x if it didn’t ex-
ist before. For this to be a flow channel it needs to be possi-
ble to detect existence as well. Unlike for fields, there are no
built-in operators for enumerating or querying existence of
local variables. However, one can use ReferenceError ex-
ceptions thrown when reading non-existent variables. Here
is an example.

632

public = 1;
if (secret) eval("var x;");
try {x;} catch (e) {public = 0;}
output(low , public);

To prevent these attacks we currently disallow dynamic
evaluation of code that introduces new variables in a high
implicit context.

Another complication is the presence of unstructured con-
trol flow due to break and continue statements and excep-
tions. The presence of such flows means that syntax-driven
analysis, monitoring and transformation rules found in the
literature [38, 5, 29, 54] would miss or over-approximate
implicit flows when applied to JS. There is also branching
control-flow at the expression level. The fact whether a sub-
expression is evaluated might depend on the result of evalu-
ation another sub-expression. In addition to exceptions and
the conditional expression (-?-:-), this occurs due to lazy
evaluation of the logical operators && (and) and || (or).

The ECMAScript standard does not define any input and
output operations. Instead, it has to rely on the hosting
environment —the browser in our case— to expose an API
necessary for performing IO. Additionally, the browser ex-
poses an interface for manipulating the web-page content,
which serves as both IO channel and storage channel (struc-
ture of the document and values of document elements).
Finally, there is the ECMAScript standard library. Some
of these APIs can cause information flows across different
parts of the API (e.g., assigning to the length property of
an array can cause a toString method of another object
be called), or even be invoked implicitly by the semantics.
Implicit flows via exceptions, storage channels via structure
and internal state, and side-effects (e.g., utility methods in
the Array prototype object) are also an issue with the stan-
dard library. In order to maintain soundness information
flows through the use of these API’s need to be accounted
for.

3. MONITOR DESIGN
We focus on the core components and design principles

and discuss how they support our goals, as articulated in
Sec. 1. Due to space limitations we cannot present an in-
depth discussion of the design and implementation of the
monitor and the inliner. More details could be found in [14,
15].

Soundness and transparency rely primarily on that of the
information-flow semantics, which is similar to prior work
[29, 52, 11], so we don’t elaborate it. However, the semantics
relies on the ability to mediate the operations of the under-
lying language semantics and the APIs, which is trivial to
achieve in interpreter-based monitors and hard for inlined.

Performance depends on the scope of program instrumen-
tation and whether JIT compilers generate efficient code for
the monitor.

3.1 Additional challenges due to inlining
Inlined monitors live side-by-side with the monitored pro-

gram. This makes them vulnerable to attacks from the
program that may try to tamper with the monitor state
or implementation. Protection is not easy since the moni-
tored program needs access to the monitor. Another issue
we need to consider is discrepancies between browser imple-
mentations that might expose differing APIs. Fortunately,

addressing these challenges is possible with semantic medi-
ation and API emulation.

As noted in [28, 24, 13], the semantics of ECMAScript and
DOM is full of edge-cases and implicit mutual dependencies:
for example, applying the + operator may cause a call to a
toString function defined in the standard library — or even
to a user-defined one! The monitor must track all these
interactions.

Finally, being implemented in JS itself, the monitor should
play by its rules and neither has access nor can modify the
inner workings of the interpreter and the libraries, such as
the internal algorithms and state, as defined in the specifica-
tion. This complicates achieving mediation while preserving
transparency.

3.2 Principal design choices
The goals and challenges have guided us to make the fol-

lowing design decisions.

Boxes. Association of security labels with values plays an
important role in the monitor design. Previous work has
used shadow variables and fields [54, 17], sparse labeling [11,
4], and boxing [29, 11].2 We argue that boxing is more
appropriate for inlined monitors in JS. Our boxes are objects
with four fields: v for the value, l for the security label, t
for the type tag and m for meta-data.

The primary purpose of boxes is to store values together
with labels. This simplifies storage, eliminating the need
to distinguish between fields and variables as with shadow
locations. It also simplifies reasoning about access to the
labels. It also allows us to adopt an important invariant:
all the transformed (sub-)expressions evaluate to boxes. Fi-
nally, it allows us to store extra meta-data used in precise
modeling of the internal algorithms of both the HTML and
ECMAScript specifications in an efficient way.

On the face of it boxes are a terrible idea because they
require an extra level of indirection to all data accesses and
more storage. Yet, we have observed that they simplify both
the monitor core and the inlining algorithm and, at the same
time, allow for more efficient execution in the JIT.

JavaScript’s dynamism has led modern JIT compilers to
adopt dynamic —instead of static— analysis for optimiz-
ing code generation. The most common approach,3 which
applies to V8 and SpiderMonkey, is dubbed tracing method
JIT compilation. Compilers have two tiers. The first gen-
erates native code for function bodies on their first invoca-
tion and supports all JS features at the price of suboptimal
code. It also inlines a profiler, which collects information
about function invocations: their number and the types of
the arguments and return values. If a function is called of-
ten enough (implementation specific) and with stable types
(the types of arguments are the same across invocations),
the second-tier compiler is invoked. It generates optimized
code for a subset of the language and arguments of specific
types (this is called run-time type specialization [23]). Op-

2The term boxing comes from implementations of dynamic
and functional languages where boxed values are those that
contain additional meta-data.
3This is a simplified account that corresponds to state-of-
the art at the time of writing. JIT compilers are constantly
evolving and precise documentation regarding their architec-
ture is scarce and often outdated. Our experiments, how-
ever, have confirmed the facts described here.

633

timized code can be executed up to 20x faster [23] than the
unoptimized.

Inline caches [30] allow translating field accesses to mem-
ory lookups using constant offsets. This requires dynami-
cally inferring hidden classes, which are akin to structural
types for objects that account for the order of field initializa-
tion. Note that hidden classes are distinct types for the pur-
poses of specialization. Enforcing the box invariant allows
the monitor core and API facades to be compiled into type-
specialized code very early in the execution, which we have
verified experimentally. It is also faster than sparse labeling.
Recall that sparse labeling mandates labels to be attached
to values if the former are non-bottom (e.g., not “public”
for the classic confidentiality policy). But that means that
the monitor is going to operate on many different types of
values: all the JS run-time types in addition to the hidden
class of boxes. This prevents monitoring code to be consid-
ered type-stable and prohibits optimization. Moreover, it
requires additional run-time overhead to determine whether
a given value is boxed or unboxed.

Functional monitor core. The monitor needs to perform
operations like comparing (leq) and joining (join,join2)
levels, tracking implicit flows (enter, exit, update and push),
applying the NSU and structural restrictions (nsuCheck and
nsuxCheck). These operations are part of the monitor core.
They are invoked often, and we’d like them to be fast.

Type stability is a necessary, but not sufficient condition
for optimization: the code should be confined to a single
function, with many compilers imposing restrictions on the
size of its body and requiring it to be declared in and ac-
cessed via a variable (as opposed to an object field). We
design the monitor accordingly: as a collection of small
functions stored in variables. This is good software engi-
neering practice and it simplifies static type checking and
testing too. More importantly, it helps the JIT generate op-
timized code: The functions assume arguments and return
values only of a limited number of types (mostly, boxes) and
avoid costly language features like with or exceptions that
invalidate optimizations. Small size and limited functional-
ity causes the functions to be used often in the instrumented
program and force early specialization, which we have veri-
fied by investigating the tracing logs of JIT compilers.

Keeping the monitor operations as functions also simpli-
fies inlining, e.g., helping preserve the order of expression
evaluation. To give a specific example, consider the expres-
sion e+x. The näıve way to rewrite it, assuming the box
invariant (and ignoring t and m fields), would be as

{ l: e.l t x.l, v: e.v + x.v }

However, what if e has side-effects, e.g., it is y++? It
would be evaluated twice and will cause y to be incremented
twice, yielding an incorrect result. Passing expression argu-
ments to functions is an easy way to force evaluation of
sub-expressions: in this case, the sum would be rewritten as
opadd(e’,x), where e’ is the transformation of e.

Operation emulation. ECMAScript semantics is complex
and relies on internal algorithms that are not visible to the
user and cannot be altered or mediated. Yet, they involve
complex information flows, which must be modeled. For
fine-grained tracking the monitored program must emulate
parts of the semantics explicitly. The emulation models in-

function opadd (l, r) {
’use strict ’;
var pl = ToPrimitiveBox(l),

pr = ToPrimitiveBox(r);
return primbox(pl.v+pr.v,pl.l.join(pr.l))

}

Listing 1: opadd monitor operation

function ToPrimitiveBox (b, hint) {
’use strict ’;
if (IsPrimBox(b)) return b;
else return DefaultValue(b,hint);

}

Listing 2: ToPrimitiveBox monitor operation

ternal behavior and state, allowing more precise reasoning
about control- and information flows.

Using addition as an example, we note that, like many
other operations, it involves dynamic type coercion. If the
type of the first argument is coercible to a string, the opera-
tion acts as concatenation. Otherwise, it works like ordinary
number addition. Now, consider addition of a string to an
object: ""+{}. It would cause the object to be converted to
a string, which is the result of calling a toString method of
the object, normally inherited from the Object prototype.
However, if the user redefines the method, that would be
called instead. There is an issue with this: the user-defined
method is going to be transformed by the inliner and will
operate on boxes. The run-time, which doesn’t know any-
thing about boxes, is going to call the function, providing
an unboxed value for this and treating the return value as
unboxed (not boxed) string.

To address this we perform explicit type conversions of
boxed values and emulate certain aspects of JavaScript se-
mantics and library behavior. Addition is rewritten into a
call to the monitor operation opadd (listing 1), which takes
two boxed values and calls ToPrimitiveBox in order to cap-
ture the possible side effects due to implicit type coercion.
ToPrimitiveBox (listing 2) checks whether the box stores a
primitive value (using the t flag field) and calls Default-

Value if its not.
Readers familiar with the ECMAScript specification will

recognize DefaultValue as the name of an internal opera-
tion; this is modeled by its counterpart in the monitor RTS
(runtime system), including calling toString. We end up
reimplementing certain aspects semantics of ECMAScript,
similar to [28], but unlike them we avoid reimplementing ev-
erything and instead rely the underlying semantics as much
as possible. For instance, opadd does not reimplement the
addition operation in that it does not query and convert
argument types in case they are primitive: it defers to the
actual language run-time by using the native + operator.
This is safe because primitive value conversions are side-
effect free.

A few additional examples of monitor operations are:

• primlow(x) takes a primitive value and boxes it with the
public label,

634

• assignField(rhs,o,f) performs both NSU and structural
checks and provide support for the special semantics of
arrays.

• the three functions invokeFunction(f,...), invokeMethod
(o,f,...) and newObject(c,...) are used to perform calls;
they account for the implicit flow and provide the correct
box to be bound to the special parameter this. The latter
is not possible with native function calls.

API facades. Like language semantics, APIs need to be
mediated too: They often involve complex control flows and
information flows, and they need to be instrumented to work
with boxes.

API’s are exposed as JS objects, functions and computed
fields. Their mediation in inlined access control monitor-
ing has been studied in [42, 37], but also see [35, 45, 22]
for investigation of code isolation. It was found that sim-
ply installing wrappers by redefining object fields is prone
to attacks, like prototype poisoning: the attacker can re-
define a function that is often called implicitly, e.g., Ob-

ject.prototype.toString from our previous example, to
subvert the monitor. Another complication is the fact that
some API components cannot be redefined (read-only fields),
or meaningfully wrapped (like the length field of arrays).

Once again, we opt for either partial or complete emula-
tion of APIs which is implemented in API facades.4 They
are ordinary JS objects, functions and values that implement
box- and information-flow-aware interfaces that mirror the
native ones. Some of the facades rely on the native APIs
for performance, simplicity or IO (e.g., the DOM API). The
common responsibilities of facades are to unbox arguments
for native APIs, box return values with levels that capture
information flows, account for implicit flows due to excep-
tions that might be thrown, apply restrictions to the observ-
able memory side effects, and apply the security policy at
the IO endpoints. Facades never pass boxed values to native
code, which is unaware of box semantics. They unbox the
values in a limited manner: For objects, most API’s either
do not inspect the object graph (the only exception we have
found so far is window.postMessage) or coerce objects to
primitive values anyway. In the latter case we coerce object
boxes to primitives beforehand.

This approach also allows us to avoid dealing with the
differences in browser APIs, which can be significant, and
to mask (for soundness) the APIs that we don’t support
yet. Facades are written in pure JS and rely on the monitor
core, property descriptors and box meta-data to maintain
transparency and enforce mediation.

Script consolidation. In web pages scripts can exist in
multiple places: <script> tags, event handlers and URL-
properties. This makes it impossible to wrap the whole
program in a closure, which we want to do for confinement
(Sec. 3.4). To address this problem we have developed script
consolidation which extracts all the statically known pieces
of JS in the page and puts them in a single inline script, while
preserving the behavior of pages that follow the HTML 5
standard. All occurrences of scripts, including event-handler
properties (e.g., onclick) of HTML elements are subject to

4The term is chosen to avoid confusion with ECMAScript 6
proxies.

consolidation. Dynamic scripts, however, like those to which
eval is applied, are handled separately.

In a few edge cases that involve with deprecated HTML
features, consolidation is not transparent. These features
are deprecated because they enable execution of scripts to
affect the state of the HTML parser. Consolidation is not
transparent for such effects.

Script consolidation simplifies handling of a few things,
such as event handlers. It allows to store the RTS in func-
tion statements instead of properties of the global objects,
which is nice for the JIT. However, it is not a hard require-
ment for making the monitor work. If consolidation was not
used, we could have stored the monitor core and state in
global variables. But those are in the global object and the
for..in statement allows enumerating its properties, which
would make them vulnerable to tampering. We could have
instrumented the statement to skip over our prefixed vari-
ables, or used property descriptors to make the properties
non-enumerable. Both solutions incur extra run-time over-
head; the latter because, at least in some JITs, access to
fields with non-default descriptors is not optimized.

3.3 Principles of implementation
Our goal is to minimize overhead for well-designed and op-

timized programs, while making it possible to run the rest
and maintaining transparency and soundness. Often these
goals are in conflict. The implementation follows a few gen-
eral guidelines to improve performance and aid mediation.

Leveraging fast operations. Type specializing compilers
support only a subset of JS, so leveraging them requires re-
stricting the vocabulary used when implementing the core
and facades. For example, 31-bit integers are known to be
stored unboxed in V8, so we use those as much as possible,
e.g., for the box type tag and the bit-vector label represen-
tation.

We also leverage native variable lookups and scope chains,
as well as native field lookup and prototype chains. An al-
ternative is explicit emulation, which requires costly enu-
meration and recursion.

Laziness. Fast startup is deemed very important for web
applications and is one of the reasons for using dynamic op-
timizations. But it can be challenging for an inlined monitor
that supports a lot of API’s. To aid that, we initialize all
the API components lazily. For example, the Object fa-
cade constructor is not initialized until its first use. And
even then, its prototype fields remain unevaluated. We use
ECMAScript accessors for that.

3.4 Structure of a monitored program
The logical structure of the monitor at run-time is shown

in figure 1. The arrows show flows of control and infor-
mation. DOM API and ECMAScript standard library are
part of the browser (shaded). The instrumented program
is the only component that depends on the original. The
run-time representation of the security policy is generated
from a declarative specification, introduced in section 2.

The syntactic structure of a monitored program is shown
in listing 3. It makes heavy use of anonymous function clo-
sures and local variables. We need to ensure access to the
monitor core and the facades from the instrumented pro-
gram while ensuring they are tamper-proof at a reasonable

635

DOM API Security policy ECMAScript standard lib.

Facade DOM Monitor core Facade standard libr.

Instrumented program

Figure 1: Structure of a monitored program (data
flows)

(function () {
function xxstop (...) {..}
/* monitor declarations */;
var xxpolicy = /*...*/;
var xxglobal = new (function () {

/* global facade constructor */
})();
return (function () {
var /* API lockout variables */;
with (this.v) {/* instrumented prog.*/};

}).call(xxglobal);
})();

Listing 3: Structure of a transformed program
(abbreviated)

cost. This is done by prepending a random prefix to the
name of every monitor variable; here and in the rest of the
text this prefix is xx. We make sure that the prefix does not
clash with the existing program variable names. Because we
mediate all the operations and expose our versions of APIs,
this leaves brute-force guessing as the only option for the at-
tacker. The only way to implement guessing variable names
at run-time is using eval. The prefix can be thought of as
a secret shared between the monitor core and the instru-
mentation. Guessing that secret gives the attacker nothing,
because the only way to refer to it is inside eval, and the
inlining procedure for dynamically evaluated code outlaws
any references to the monitor variable.

For transparency reasons we need to support aliasing of
the properties of the global object facade with global vari-
ables. We use the with construct for this. However, most
JITs don’t optimize function bodies that contain with. We
have an optional optimization for programs that don’t add
properties to the global object and refer to them as vari-
ables. This optimization avoids the use of with and gains a
significant increase in performance due to JIT optimization
(section 4.2).

The lockout variables (Listing 3) are locals with the same
names as those of top level API’s: Object, Array, window
etc. They allow to retain transparency in case the fields of
the global facade exposed via with, are deleted: Without
the lockout variables, the original API’s would have been
exposed. Note that the latter would not jeopardize secu-
rity and isolation, because all the means of accessing the
API’s —field access and function calls— are mediated by
the monitor run-time. Mediated operations invoked on na-
tive API’s would fail with an exception due to the violation
of the boxing invariant. While unpleasant, this is not a se-
curity vulnerability. This also takes care of the cases when
the surface of the browser API is larger than expected by
the inliner.

Finally, this approach allows separating the monitor from
the global scope, which simplifies testing and benchmarking.

3.5 Inlining
The architecture of the inliner is presented in figure 2.

The original program is either a standalone JS program or
it is in a web page. If it is in a web page it first needs to go
through script consolidation to produce a single JS program
equivalent to the multiple scripts (Sec. 3.2).

Policy spec Policy compilation

Monitor options Monitor core linking

Environment Facade constructor

Standalone JavaScript Instrumentation +

HTML page Consolidation monitored

program

scripts
script

policy

monitor

core

global

facade

Figure 2: Inlining algorithm

It is useful to think of the inliner in terms of the tra-
ditional compiler, which has a run-time system (monitor
core and API facades), a front-end, conversion to intermedi-
ate languages (desugaring), a static analysis pass and code-
generation.

Desugaring. We simplify the program slightly to aid es-
tablishing the box invariant. In particular, rewrite func-
tion statements into function expressions and decouple vari-
able declarations from their initialization. Note that both
transformations follow the hoisting procedure dictated by
the ECMAScript specification.

We have chosen not to do more aggressive desugaring in an
attempt to keep the structure of the instrumented program
similar to the original. Moreover it is challenging to correctly
desugar to a small core (see Sec. 5).

Static analysis. We perform control flow and exception
analysis to determine control dependence regions of branch
points. We use the definition of control dependence regions
due to Barthe et al. [8]. The region inference algorithm
works with the intraprocedural control-flow graphs and is
build on top of [43]. Graphs are at expression granularity
(see Sect. 2 for motivation). For each region we identify the
guards, the entry point and exit points. Those are used to
guide the instrumentation to insert operations that manage
PCLS (the PC label set): enter at the entry, exit at the
exits and update/push at the guards.

These operations allow tracking at the expression level by
interleaving stack operations with subexpression evaluation:
e.g. update takes and returns a box, in addition to updating
the guard label, and exit can return the argument box in
addition to discarding the PCLS record for the region.

Our control-flow analysis is intra-procedural because in
the general case it is impossible to construct a precise call
graph for JS programs. Instead, we adopt a dynamic ap-
proximation. We know that the control-dependence region
of the exception source extends to the end of the innermost
catch/finally clause. That point is a conservative approxi-
mation of the merge point of any exception source within the

636

try block. Hence, we can remove the PCLS records repre-
senting the corresponding implicit flows. The complication
is that we don’t know how many elements we need to re-
move, as the corresponding branch points can be in another
function. The following observation helps: The try state-
ment contains all the implicit flows due to exceptions, so the
aggregate level of the PCLS should be the same before and
after it. This invariant allows us to put an easily enforceable
and sound approximation on the control-dependence regions
of inter-procedural exceptions. To this end, in addition to
the operations for adding, removing and updating PCLS
records we have introduced two new ones:remember(id) and
restore(id), where id is a numeric identifier which is syn-
tactically unique for every try-catch statement. The op-
erations allow to save and restore the state of PCLS. Using
these two operations we can transform a try-catch-finally

statement as shown in the listing below.

try {xxremember(<id >); /* try body */}
catch (x) {/* catch body */}
finally{xxrestore(<id >); /* finally body*/}

Program instrumentation. Fig. 3 shows the instrumenta-
tion algorithm. We show a few transformations to give a
flavor of what an instrumented program looks like. The
code in Listing 4 contains a while statement with a variable
assignment, infix expressions, and a conditional expression.
The transformed version (Listing 5) deals with control flow
within expressions and assignments, using the push and pop

monitor functions which both pass values and have effects
on the level stack. Listing 6 shows function declarations and
calls, transformed to Listing 7.

The rewriting rules, defined as a syntax- and annotation-
directed translation, are presented in tables 1 and 2. The
rules should be read as “if an AST node matches the pro-
duction and has, at least, the annotation, then replace it
with output”. Italic denotes arbitrary sub-statements or ex-
pressions. The rules assume rewriting is done in a bottom-
up fashion, so the sub-expressions/statements are already
rewritten.

Accessor properties. Getters and setters are supported by
the monitor. In order to enforce the boxing invariant we do
not rely on the native accessors. We emulate them explicitly,
so we can bind this in getter and setter functions to the ob-
ject box instead of the object as would have been done by the
native semantics. Refboxes are objects with fields "t" with
an appropriate flag, "g" and "s" that store the getter and
setter functions respectively. These functions are invoked in
readField and writeField monitor operations. Refboxes
are stored in properties that would have had accessors de-
fined. The facade for Object.defineProperty takes care of
the conversion between property descriptors and refboxes.

Eval. The eval function allows interpreting a string as a JS
program. Precise tracking of information flows in dynamic
code requires performing inlining on the code before evaluat-
ing it [38]. Previous work implemented the inliner in JS [28,
54], which can be used in eval as well. Our inliner is imple-
mented in Haskell. We support inlining of eval’ed code with
the help of an inlining HTTP proxy server. This suffices for
two of our deployment scenarios: browser and proxy server.
To support the server-side deployment scenario, the inliner

needs to be added to the monitor core. We could achieve
that using a compiler from Haskell to JS [56].

Declassification and upgrade. Another addition to the
environment is a function declassify(e,c), which is al-
lowed in source programs to express policy. In the monitor,
it downgrades the label on e to that of the channel c while
enforcing robust declassification [41]: it is a violation if the
PC level is higher than the initial label on e. The explicit
label upgrade operation is also exposed in the API.

4. EXPERIMENTS
We are interested in practical yet sound information flow

enforcement. The two longstanding questions for NSU-based
monitoring are whether it can achieve adequate permissive-
ness and performance without sacrificing soundness or trans-
parency. We believe these questions don’t have a satisfac-
tory answer in the literature. We don’t claim to have the
ultimate answer, but instead offer additional evidence that
this approach is moving towards practicality.

For permissiveness assessment to be conclusive one needs
to study existing applications and provide comprehensive
policies that account for all the legitimate flows. This is a
daunting task, as modern web applications are very large,
often using multiple JS libraries, a wide variety of browser
API’s, and they are often obfuscated. That’s why we have
opted to create our own mashups to serve as case studies,
but inspired by the mashups we have seen “in the wild”. The
mashups we have developed are only mock-ups in a sense
that they include only the bare minimum to demonstrate
the patterns of mashup component interaction (using the
currently recommended APIs) and create possibilities for
both legal and illegal IF.

We have covered a variety of different programming idioms
when implementing the mashups. For example, attaching
event handlers by specifying the corresponding attributes
of HTML tags versus using addEventListener in the JS
program itself; different ways of mashing up content: using
IFrames or script tags; using inline scripts versus external
scripts (e.g., using the “src” attribute). Every example ap-
plication has one security policy and multiple versions of
components, some of which conform to policy, while others
do not.

4.1 Securing mashup applications
We focus on web applications with interesting IF policies.

Most are mashups combining two or more JS programs from
different service providers on one page. From an IF per-
spective mashups are the most interesting: the providers
are often mutually distrusting or have a legal obligation not
to disclose information to a third party —yet certain flows
should be allowed in order for the application to be of use.

Third-party payment processor. This was discussed
in Sec. 1. A malicious version of the merchant page sends
order details together with the final price to the processor.
The malicious processor sends payment information to the
merchant.

Advertisements. An Internet radio service, similar to
Grooveshark, Last.fm or Pandora, hosts ads from a ticket
vendor, e.g., Ticketmaster, that list upcoming shows. Sim-
ilar to how most ads are hosted nowadays, the service in-
cludes a third party script. The script crawls the page and
creates a new script tag with a URL that contains keywords.

637

Declaration hoisting Function declaration elimination Desugaring

Native errors Label sets Lexical scope

Control-flow graph Control-dependence regions

Optimization Implicit flow rewriting Syntax/annot.-directed rewriting Rewriting

Analysis

Figure 3: Instrumentation algorithm

Production Annotation Output

"abcde" xxprimlow("abcde")
function f (x, . . . , z) {ss} xxfunlow(function f (x, . . . , z) {ss})
x OuterFunRef xxfunlow(x)
x ∅ x
o.f xxreadField(o, xxprimlow("f"))
o[f] xxreadField(o, f)
o[f](e1, . . . , en) xxinvokeMethod(o,f,[e1, . . . , en]))
f(e1, . . . , en) xxinvokeFunction(f,[e1, . . . , en])
new C(e1, . . . , en) xxnewObject(C,[e1, . . . , en])
void e void e
!e xxoplnot(e)
e1||e2 (function (x){return

xxToBooleanBox(x).v ? x : xxjoin2(e2, x.l);})(e1)
e1&&e2 (function (x){return

xxToBooleanBox(x).v ? xxjoin2(e2, x.l) : x;})(e1)
e1+e2 xxopadd(e1, e2)
x++ xxvarpostfixinc(x)
x = e NotDeclared xxassignVar((function () {try {return x}

catch (ex) {return xxglobal.x=xxinitVar()}})) e)
x = e ∅ xxassignVar(x, e)
o[f] = e xxassignField(x, f, e)
e1, . . . , en e1, . . . , en

Table 1: Selected rewriting rules for expressions

Production Annotation Output

if (g) t else e GuardIndex(n) if (xxToBooleanBox(xxupdate(n, g)).v) t else e
while (g) ss GuardIndex(n) while (xxToBooleanBox(xxupdate(n, g)).v) ss
for (i; t; p) ss GuardIndex(n) for (i; (xxupdate(n, t)).v; p) ss
for (x in o) ss GuardIndex(n) for (xxtemp = (xxupdate(n, o)).v) {x = xxprimlow(xxtemp); ss}
var x, . . . , z var x=xxinitVar(), . . . , z=xxinitVar()
with (o) ss with (xxadaptForWith(o)) ss
s CDREntry(n) xxenter(n); s

Table 2: Selected rewriting rules for statements

Suite Benchmark Mean run-time Mean run-time Optimized Slowdown
of the original of the monitored

SunSpider 1.0.2 Access Binary Trees 0.0027s 0.9267s No 342×
SunSpider 1.0.2 Access Fannkuch 0.0532s 6.143s No 116×
SunSpider 1.0.2 Bitops 3 Bit Bits in Byte 0.0043s 1.355s No 315×
SunSpider 1.0.2 Math partial sums 0.0077s 0.7866s No 101×
Kraken 1.1 JSON Parse Financial 0.0645s 0.5132s No 8×
SunSpider 1.0.2 Access Binary Trees 0.0025s 0.5949s Yes 231×
Kraken 1.1 JSON Parse Financial 0.0661s 0.5057s Yes 7.6×

Table 3: Selected benchmark results

638

while (a > 10) {a -= b * 0.1; b = b > 10 ? b : --b;}

Listing 4: Original

xxenter (1);
while (xxToBooleanBox(xxupdate(0, xxopgt(a, xxprimlow (10)))).v) {

xxassignVarOp(xxopsub , a, xxopmul(b,xxprimlow (0.1)));
xxassignVar(b, xxexit(xxToBooleanBox(xxpush(xxopgt(b, xxprimlow (10)))).v ? b :

xxprefixdec(b)));
}
xxexit ();

Listing 5: Transformed from Listing 4

function f (x){x(1);}; f(function g (y){alert(y); g(y);});

Listing 6: Original

var f = xxinitVar ();
xxassignVar(f, xxfunlow(function (x) {xxinvokeFunction(x, xxprimlow (1));}));
xxinvokeFunction(f, xxfunlow(function g (y){xxinvokeFunction(alert , y);

xxinvokeFunction(xxfunlow(g), y);}));

Listing 7: Transformed from Listing 6

This second script contains a declaration of a variable con-
taining the list of upcoming shows, which is read by the
crawler script, rendered as HTML and included in the web
page. The policy is that, for better targeting, the crawler
script is allowed to read the user’s playlist and history, as
well the Zip-code. However, for privacy and security reasons,
the crawlers should not read the user’s name, authentication
credentials or any other sensitive information.

Such a policy might be provided by the radio service in
hopes to distingish itself as more privacy-aware than others.
Perhaps more likely is that a hardened browser designed
to meet requirements of some government agency may have
default policies concerning authentication credentials. It is
not our aim in this work to solve the problem of motivating
organizations to specify policies.

Third-party authentication service. A 3rd-party au-
thentication provider gives the ability to integrate a login
form via an IFrame. It verifies the authentication creden-
tials with an asynchronous request to the auth server. The
server returns an authentication token, which is, in turn,
communicated back to the hosting page via postMessage. A
web-site that would like to authenticate a user is not allowed
to see the authentication credentials.

Currency converter. This web-based currency con-
verter is not a mashup, but still has an IF policy. The
conversion is done on the client side. But, in an effort to
be timely, it pulls the conversion rates from the server each
time. The policy is that neither the original, nor the result-
ing amounts are disclosed to the server — and the malicious
version does just that.

Experiment setup. We accessed the mashups —both
the benign and malicious versions— in the browser through
an inlining proxy. The proxy inlined the monitor that en-
forced the intended policies for the applications. We then
interacted with the applications and observed their behavior
and whether there were any security violations.

Findings. The monitor could run the benign versions
of case-studies with one declassification (payment) and up-
grade (ads) annotation each. The attacks from malicious
versions were all successfully stopped. This is consistent
with earlier findings in [28]. We have not found any new
kinds of vulnerabilities.

4.2 Performance benchmarks
Synthetic performance benchmarks are the common way

of measuring performance of JS run-times. At the time of
writing SunSpider, Octane and Kraken were the most widely
recognized and used. Yet, such benchmarks are also con-
tentious [48] because they focus on numerical computations
and algorithms on data-structures. Automatic construction
of benchmarks from widely used websites has been proposed
as an alternative [49], but we opted out of using it due to
heavy use of eval for implementation which complicates
reliable performance measurements in our implementation.
Also, use of eval disables optimization in all the JIT com-
pilers we’ve studied.

We still wanted to get a sense of performance overheads,
so we’ve chosen SunSpider and Kraken, which could be run
stand-alone easily. In addition, we use them as an extra
test of transparency, since they check correctness of results.
We recognize that these benchmarks are not representative
of web apps —particularly the security critical ones— and
constitute the worst-case scenario for the monitor.

We select a subset of SunSpider and Kraken in an at-
tempt to maximize diversity, but minimize the additional
API support required. SunSpider tests are heavy on math-
ematical computations, bitwise operations and string pro-
cessing, while most of Kraken is about signal processing and
cryptography, along with an implementation of A∗ and two
JSON-related benchmarks. We perform two kinds of mea-
surements. First, we use the Benchmark.js library to mea-
sure performance accurately, factoring out interpreter and
RTS startup times and fluctuations in the execution time

639

due to garbage collection, JIT compilation etc. We compare
the running time of benchmark code instrumented with the
monitor following a trivial policy to the uninstrumented one.
We observed 101−364× slowdown in the mean running time
depending on the benchmark and the inlining optimization.
We have a mode that trades off some transparency for up to
40% speedup by omitting the with statement in the monitor
structure (Sec. 3.4). See table 3, as well as [15, 14] for more
details.

We also compare our performance to the closest related
work, JSFlow [28], which is discussed in section 5. It was im-
possible to use the benchmarking library with JSFlow with-
out invasive modifications. Instead we used the Unix time

command to measure one run of the benchmark without in-
strumentation, with our monitor and with JSFlow. This ap-
proach does not account for measurements fluctuations (ob-
served to be about 1%) and includes the interpreter startup
time. In this test the inlined monitor exhibits a 15.6× slow-
down and JSFlow is 1680× slower compared to the original.
Detailed data as well as instructions on how to reproduce the
experiments is available in [15, 14]. The numbers for JSFlow
are consistent with the authors’ observations reported in [28]
and private communication.

All measurements were done in Node.js v0.10.25 with all
the performance optimizations enabled.

While the performance results look uninspiring, let us
put them in perspective. First, the results are from run-
ning synthetic, computationally intensive benchmarks on a
state-of-the-art JIT compiler that was designed to run these
particular benchmarks fast. Second, the performance analy-
ses in closely related work either report overheads for hard-
to-reproduce “macro benchmarks” or compare performance
slowdown against interpreters that don’t use JIT.

Due to reactive nature of our case-study applications reli-
able measurement of performance requires additional infras-
tructure. One promising approach would be to adapt them,
as well as examples from previous work, for performance
testing by removing reactivity.

5. RELATED WORK
Fragoso-Santos and Rezk implement an inlined NSU-based

monitor for a subset of ECMAScript 3rd edition and a small
but challenging subset of the DOM API [54, 2] including
“live collections”. No data on performance is provided. The
JS subset is very small, omitting non-syntactic control-flow,
exceptions, the with and for-in statements, the in and new

operators, as well as flow via the standard library and im-
plicit type conversions. Thus there are relatively few possi-
bilities for an attack on the monitor, and fewer peculiarities
of the IF semantics. This allows for inlining to use “shadow”
variables and fields to store labels, which is relatively sim-
ple and should cater for performance. The authors provide
formal proofs of soundness and transparency.

The complexities of JS and of IF strongly motivate for-
mal verification for assurance of monitors. Several lines of
work on JS IFC monitoring provide proofs of soundness (and
transparency in some cases). However, these proofs are all
for formalizations that idealize (in varying degrees) from the
implemented systems. We are aware of no verified imple-
mentation of an information flow monitor for JS. To make
verification more tractable, it is attractive to minimize the
complexities of JS by distilling to a small core. This is dif-
ficult to achieve for full JS, as discussed in detail by [24].

Just et al [33] have added an IF monitor to the WebKit
JS interpreter. The monitor appears to use the NSU ap-
proach and includes full JS support including eval. The
authors appear to be the first to recognize the importance
of using control-flow graphs for accurate and sound track-
ing of implicit flows due to unstructured control flow (break,
continue, return, exceptions). Implicit flows due to element
existence are also discussed. Although exceptions are dis-
cussed, the static analysis does not deal with exceptions;
in fact the authors question whether the approach using
control-flow graphs will work with exceptions. Performance
tests using synthetic benchmarks have been performed re-
porting 2× to 3× slowdown compared with a non-JIT inter-
preter. A qualitative experiment with a short JS program
that didn’t use the browser API has been performed as well.

Building on [33], Bichhawat et al [11] modify the JS byte-
code interpreter to track IF, handling implicit flows using
immediate post-dominator analysis of intra-procedural con-
trol flow graphs built on-the-fly. Semantics of the bytecode
is formalized and used to give a formal proof of soundness.
The monitor implements permissive upgrade [5], including
its non-trivial extension to arbitrary security lattices [10]. It
is also the only one to implement sparse labeling [4]. With
sparse labeling, they report 0 to 125% run-time overhead in
synthetic benchmarks (SunSpider) with the average being
45%, and 7 to 42% overheads in macro benchmarks (web
sites), with the average of 29%. The overheads are calcu-
lated for an unmodified interpreter that does not use JIT
compilation. The JIT compiler is much faster on synthetic
benchmarks. However the JIT shows about the same perfor-
mance as the interpreter on macro benchmarks (web sites),
chosen by the authors. Rajani et al [47] extend the system
to support the full DOM API as well as flows via event han-
dling. These extensions are formalized and proved sound.

Magazinius et al [38] were the first to point out in print
that an inlined monitor can deal with eval by applying the
inlining transformation to each string passed to eval. They
prove soundness of the inlining transformation for a small
imperative language with eval but lacking objects, excep-
tions, lambdas, dynamic access to the runtime environment,
or other challenging JS features. Lack of unstructured con-
trol allows them to track PC level elegantly using lexically-
scoped let-expressions rather than an explicit stack. They
experiment with manual transformation of programs that
use eval, and they implement automatic transformation for
a small subset of JS. In their experiments doing the inlining
manually, the inlined monitor adds an overhead of 20%–
1700% depending on the browser.

Hedin and Sabelfeld [29] formalize an NSU monitor for
a core subset of ECMAScript 5 and discuss IF for its vari-
ous features including references, object structure, eval, and
exceptions. They prove that monitoring ensures TINI and
they prove the partial-correctness form of transparency: if
a monitored program terminates without IF exception, then
erasing security labels from its final state yields the out-
come that would have been obtained by running the pro-
gram without monitor. The monitor is later extended with
support for browser APIs and implemented [28], though no
formalization of the extension is provided. The implementa-
tion, JSFlow, is a custom JS interpreter written in JS. Like
ours it can be used without modifying the browser and is
comparable in language and API support. The treatment
of control-flow is coarse-grained. Hedin et al [27] improve

640

the monitor by runtime static analysis to predict potential
write targets, for which the monitor upgrades labels. They
prove soundness, a key point being that the monitor relies
on NSU for soundness. They demonstrate, for the chosen
static analysis, increases in permissiveness. The monitor is
also in a position to upgrade labels at the right time, which
sidesteps a complication (delayed upgrades [12]) with up-
grades as code annotations.

Optimization of programs in JavaScript is tricky: even
employing sophisticated program specialization techniques
yields modest results. In [57] Thiemann reports that special-
izing JSFlow for the input, essentially yielding a compiler,
gains only 1.8× speedup compared to the original.

De Groef et al [26] have built a modification of the Firefox
web browser that features SME [20]. An advantage of SME
is that avoids the restrictions of NSU. However, in order to
avoid multiple executions of the entire software stack, the
tool considers any use of web API as IO, thus treating DOM
flow-insensitively. Performance overhead has been shown to
be as low as 20% in IO-intensive applications (and as high
as 200% on synthetic tests for a simple two-level policy),
while the average memory overhead was 88%. The overhead
is compared to the unmodified version of Firefox. Austin
and Flanagan’s SME approach has also been implemented
for JS, as Firefox add-on [6]. They present a performance
result, using one of the SunSpider benchmarks, that com-
pares favorably with other SME and do not suffer as much
degradation when the number of security levels increases.
Soundness for these variations has been proved in [20, 6]
and also in [46] which also proves transparency.

Jang et al [32] implement taint tracking for JS in web
pages and use it for a large-scale empirical study of pri-
vacy violations. The monitor is implemented by rewriting
and resembles ours in some respect, such as boxing and a
stack of levels for indirect flow (not implicit). As the au-
thors point out, the monitor does not track implicit flow
and thus misses some information flows. They report slow-
downs of 3×-8× compared to the original, depending on op-
timizations. Dhawan and Ganapathy [21] implement taint
tracking in JS browser extensions.

Recent work has shown that taint tracking can be made
sufficiently performant for use in production scenarios, of-
fering an average of 25% overhead [39],

Complementing work on JS, Bauer et al [9] formalize and
implement coarse grained taint tracking end-to-end in the
Chromium browser.

Yip et al [61] implement a reference monitor called BFlow
as a plug-in for Firefox. The monitor tracks levels of data
at the grain of protection zones which are groups of frames
where data has the same sensitivity. The data labels need
to arrive from a BFlow web server. Tracking of information
labels is very coarse-grained and restrictive: once a script
in a frame has accessed data with a certain label, all data
originating from that frame will be assigned at least that
label. Consequently, no frame can handle both sensitive and
public information at the same time, which prevents most
useful applications and policies.

Li et al implement Mash-IF [34], an add-on for Firefox
that uses a combination of a static data-flow analysis of
a subset of JS and run-time reference monitoring of calls
to DOM API to enforce information-flow policies in web
mashups. This approach is less coarse-grained than BFlow,
but implicit flows are not accounted for, and no soundness

or security argument is made. The authors have reported
that among the 10 client mashups studied, they have found
no false positives and no false negatives. Policies in Mash-IF
are specified by the user, utilizing a graphical interface to
designate sensitivity of form elements.

Chugh et al [18] implement a hybrid monitor for JS IF
tracking. To deal with dynamic code evaluation, they de-
vise a constraint-based static analysis that applies to code
with “holes” representing code that will only be determined
at run time. The idea is to generate constraints on that
code, to be checked at runtime before applying eval. The
static analysis is based on a transformation that introduces
taint-tracking instrumentation that is analyzed but not ex-
ecuted. Their staged IF verifier achieves a relatively low
false positive rate of 33% in experiments on the Alexa top
100 sites, for simple but useful policies (cookies are secret,
address bar is untainted, relative to the hole in which third-
party code is plugged). Some important JS features are not
supported (call, apply, with).

Sandboxing and object capability transformations are sim-
ilar, though less intricate, to those of our inliner. For exam-
ple, it transforms reads and writes into function calls to a
run-time system as well. Performance has been reported
for Caja (http://code.google.com/p/google-caja/wiki/
Performance). In the Valija mode, which is aimed at sup-
porting legacy ES3 code (i.e., a subset of thereof), it features
slowdowns of 5× to 163×.

6. DISCUSSION
Despite decades of research on IFC, and a spate of recent

work that specifically targets JS, no definitive solution has
emerged. It may be that carefully engineered taint tracking
will turn out to be a good compromise for general use, but
there will continue to be scenarios where the assurance of
strong IFC is worth its cost. In this paper we report on
progress in evaluating two ideas that seem among the most
promising approaches to IFC for client-side JS, namely in-
lining and the no-sensitive-update rule. In this paper we
focus on ECMAScript 5 and parts of the Web API needed
for interesting mashups and policies.

Our current prototype has too high performance overhead
for many usage scenarios. However, compared with other ap-
proaches like interpreter modification [11, 33], custom meta-
circular interpreters[28] or SME [26], inlined monitoring has
promising paths for improving performance, notably sparse
inlining and extended JIT support. Sparse inlining has been
hinted at in previous work [17] and aims at reducing the
amount of program instrumentation based on a static IF
analysis performed ahead of inlining. The observation is
that well-engineered JS programs feature substantial code
fragments for which flows of information can be inferred
statically. Those fragments can then remain unchanged and
the rest of the program is instrumented accounting for the
inferred flows. This differs from sparse labeling: in addition
to allowing unlabeled values at run-time, it disables their
monitoring as well. The boxing invariant still holds: the
monitor core is only called from instrumented parts of code
which operate on labeled/boxed values only.

In our experiments, the monitor core and API facades
benefit from efficient JIT compilation, but the instrumented
program itself does not. One of the likely culprits is the
abundance of function calls that the program makes to the
core. Many of these functions are small, pure and amenable

641

http://code.google.com/p/google-caja/wiki/Performance
http://code.google.com/p/google-caja/wiki/Performance

optimization. However, it appears that the calls themselves
are not optimized — especially in the recursive case. We
believe it could be possible to extend the JITs with effi-
cient support for the functional programming styles. There
are precedents: asm.js and other fast JS subsets now have
specialized compilers in many browsers. This could have
a better chance of becoming a part of the mainstream en-
gines due to the limited scope of the changes (as opposed to
information-flow tracking modifications) and potential im-
pact beyond that of our monitor. For example, it will likely
benefit functional languages that have JS backends: Clojure,
Haskell, Elm and others.

We build on prior works that include correctness proofs
for their designs. We do not present proofs of soundness
or transparency for our implementation, due to the com-
plexity of the language and API’s we are supporting. Such
effort would be on the scale of a compiler verification and
will be better motivated once IFC technology matures in
terms of applicability and performance. However, we be-
lieve the modular structure of the inliner as well as prior
work opens up interesting possibilities to simplify assurance.
The rewriting rules are quite simple and the properties of
the transformed program rely on those of the RTS functions
as well as the isolation, confinement and mediation proper-
ties of API facades. One might formalize transparency and
noninterference for the instrumented program in the mech-
anized framework of [13] and using the mechanized DOM
formalization of [47]. To prove isolation properties of the
transformed code one might leverage the existing work on
verifying secure subsets of JavaScript [45]. The proof would
rely on precise specifications for the RTS, which would in-
clude bisimulation-style properties for both noninterference
and transparency; these could either be verified or tested.

What we really want to do is investigate NSU by experi-
ments on sizeable existing web sites. This requires substan-
tial additional work, to (a) implement API facades for var-
ious libraries encountered, (b) devise effective means of ex-
perimentation under realistic workloads, (c) develop precise
policies for these applications, and (d) automate checking of
transparency, soundness, and permissiveness.

7. ACKNOWLEDGMENTS
This work was partially supported by NSF award CNS-

1228930 and by Department of Homeland Security under
contract 11027-202037-DS to HRL Laboratories.

8. REFERENCES
[1] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and

D. Song. Towards a formal foundation of web security.
In IEEE CSF, 2010.

[2] A. Almeida-Matos, J. Fragoso Santos, and T. Rezk. A
secure information flow monitor for a core of DOM. In
TGC, 2014.

[3] A. Askarov and A. Sabelfeld. Tight enforcement of
information-release policies for dynamic languages. In
IEEE CSF, 2009.

[4] T. H. Austin and C. Flanagan. Efficient purely
dynamic information flow analysis. In ACM PLAS,
2009.

[5] T. H. Austin and C. Flanagan. Permissive dynamic
information flow analysis. In ACM PLAS, 2010.

[6] T. H. Austin and C. Flanagan. Multiple facets for
dynamic information flow. In ACM POPL, 2012.

[7] A. Banerjee, D. A. Naumann, and S. Rosenberg.
Expressive declassification policies and modular static
enforcement. In IEEE Symp. Sec. & Priv., 2008.

[8] G. Barthe, D. Pichardie, and T. Rezk. A certified
lightweight non-interference java bytecode verifier. In
ESOP, 2007.

[9] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken,
and Y. Tian. Run-time monitoring and formal analysis
of information flows in Chromium. In NDSS, 2015.

[10] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer.
Generalizing permissive-upgrade in dynamic
information flow analysis. In ACM PLAS, 2014.

[11] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer.
Information flow control in WebKit’s JavaScript
bytecode. In Prin. of Sec. and Trust (POST), 2014.

[12] A. Birgisson, D. Hedin, and A. Sabelfeld. Boosting the
permissiveness of dynamic information-flow tracking
by testing. In ESORICS, 2012.

[13] M. Bodin et al. A trusted mechanised JavaSript
specification. In ACM POPL, 2014.

[14] A. Chudnov. Inlined Information Flow Monitoring for
Web Applications in JavaScript. PhD thesis, Stevens
Institute of Technology, 2015.

[15] A. Chudnov. JEST. http://chudnov.com/jest, 2015.

[16] A. Chudnov, G. Kuan, and D. A. Naumann.
Information flow monitoring as abstract interpretation
for relational logic. In IEEE CSF, 2014.

[17] A. Chudnov and D. A. Naumann. Information flow
monitor inlining. In IEEE CSF, 2010.

[18] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged information flow for JavaScript. In PLDI, 2009.

[19] M. R. Clarkson and F. B. Schneider. Hyperproperties.
Journal of Computer Security, 18(6), 2010.

[20] D. Devriese and F. Piessens. Noninterference through
secure multi-execution. In IEEE Symp. Sec. & Priv.,
2010.

[21] M. Dhawan and V. Ganapathy. Analyzing information
flow in JavaScript-based browser extensions. In
ACSAC, 2009.

[22] C. Fournet, N. Swamy, J. Chen, P.-É. Dagand, P.-Y.
Strub, and B. Livshits. Fully abstract compilation to
JavaScript. In ACM POPL, 2013.

[23] A. Gal et al. Trace-based just-in-time type
specialization for dynamic languages. In ACM PLAS,
2009.

[24] P. Gardner, S. Maffeis, and G. D. Smith. Towards a
program logic for JavaScript. In ACM POPL, 2012.

[25] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo. Hails: Protecting data
privacy in untrusted web applications. In SOSP, 2012.

[26] W. D. Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. FlowFox: a web browser with flexible and
precise information flow control. In ACM CCS, 2012.

[27] D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive
hybrid information flow control for a JavaScript-like
language. In IEEE CSF, 2015.

[28] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld.
JSFlow: tracking information flow in JavaScript and
its APIs. In ACM SAC, 2014.

642

http://chudnov.com/jest

[29] D. Hedin and A. Sabelfeld. Information-flow security
for a core of JavaScript. In IEEE CSF, 2012.

[30] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In ECOOP, 1991.

[31] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett. All your IFCException are belong to us.
In IEEE Symp. Sec. & Priv., 2013.

[32] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An
empirical study of privacy-violating information flows
in JavaScript web applications. In ACM CCS, 2010.

[33] S. Just, A. Cleary, B. Shirley, and C. Hammer.
Information flow analysis for JavaScript. In PLASTIC,
2011.

[34] Z. Li, K. Zhang, and X. Wang. Mash-if: Practical
information-flow control within client-side mashups. In
DSN, 2010.

[35] S. Maffeis, J. C. Mitchell, and A. Taly. Object
capabilities and isolation of untrusted web
applications. In IEEE Symp. Sec. & Priv., 2010.

[36] J. Magazinius, D. Hedin, and A. Sabelfeld.
Architectures for inlining security monitors in web
applications. In ESSoS, 2014.

[37] J. Magazinius, P. H. Phung, and D. Sands. Safe
wrappers and sane policies for self protecting
javascript. In NordSec, 2010.

[38] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly
inlining of dynamic security monitors. In SEC, 2010.

[39] P. Marchenko, U. Erlingsson, and B. Karp. Keeping
sensitive data in browsers safe with ScriptPolice. Univ.
College London report RN/13/20, also HCSS’13.

[40] S. Moore and S. Chong. Static analysis for efficient
hybrid information-flow control. In IEEE CSF, 2011.

[41] A. C. Myers, A. Sabelfeld, and S. Zdancewic.
Enforcing robust declassification and qualified
robustness. J. of Computer Security, 14(2), 2006.

[42] P. H. Phung, D. Sands, and A. Chudnov. Lightweight
self-protecting JavaScript. In ASIACCS, 2009.

[43] K. Pingali and G. Bilardi. Optimal control dependence
computation and the roman chariots problem. ACM
TOPLAS, 1997.

[44] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond
stack inspection: A unified access-control and
information-flow security model. In IEEE Symp. Sec.
& Priv., 2007.

[45] J. G. Politz, S. A. Eliopoulos, A. Guha, and
S. Krishnamurthi. ADsafety: Type-based verification
of JavaScript sandboxing. In USENIX Security, 2011.

[46] W. Rafnsson and A. Sabelfeld. Secure multi-execution:
Fine-grained, declassification-aware, and transparent.
In IEEE CSF, 2013.

[47] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer.
Information flow control for event handling and the
DOM in web browsers. In IEEE CSF, 2015.

[48] P. Ratanaworabhan, B. Livshits, and B. Zorn.
JSMeter: Comparing the behavior of JavaScript
benchmarks with real Web applications. In USENIX
WebApps, 2010.

[49] G. Richards, A. Gal, B. Eich, and J. Vitek.
Automated construction of JavaScript benchmarks. In
OOPSLA, 2011.

[50] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do - a large-scale study of the use of
eval in JavaScript applications. In ECOOP, 2011.

[51] A. Russo and A. Sabelfeld. Dynamic vs. static
flow-sensitive security analysis. In IEEE CSF, 2010.

[52] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking
information flow in dynamic tree structures. In
ESORICS, 2009.

[53] A. Sabelfeld and D. Sands. Dimensions and principles
of declassification. J. Computer Security, 17(5), 2009.

[54] J. Santos and T. Rezk. An information flow
monitor-inlining compiler for securing a core of
JavaScript. In ICT Systems Security and Privacy
Protection, volume 428 of Advances in Information
and Communication Technology. IFIP, 2014.

[55] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo,
D. Herman, B. Karp, and D. Mazières. Protecting
users by confining JavaScript with COWL. In OSDI,
2014.

[56] L. Stegeman, H. Mackenzie, et al. GHCJS: a Haskell
to JavaScript compiler.
https://github.com/ghcjs/ghcjs. Accessed August
2015.

[57] P. Thiemann. Towards specializing JavaScript
programs. In PSI, volume 8974 of LNCS, 2014.

[58] J. A. Vaughan and S. Chong. Inference of expressive
declassification policies. In IEEE Symp. Sec. & Priv.,
2011.

[59] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Krügel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static
analysis. In NDSS, 2007.

[60] D. M. Volpano, C. E. Irvine, and G. Smith. A sound
type system for secure flow analysis. Journal of
Computer Security, 4(2/3), 1996.

[61] A. Yip, N. Narula, M. N. Krohn, and R. Morris.
Privacy-preserving browser-side scripting with BFlow.
In EuroSys, 2009.

[62] S. A. Zdancewic. Programming languages for
information security. PhD Diss., Cornell Univ., 2002.

643

https://github.com/ghcjs/ghcjs

	Introduction
	Information flows in JavaScript
	Monitor design
	Additional challenges due to inlining
	Principal design choices
	Principles of implementation
	Structure of a monitored program
	Inlining

	Experiments
	Securing mashup applications
	Performance benchmarks

	Related Work
	Discussion
	Acknowledgments
	References

