
Server-Aided Signatures Verification
Secure against Collusion Attack

Sherman S. M. Chow
University of Waterloo

Ontario, Canada
smchow@uwaterloo.ca

Man Ho Au
University of Wollongong

Australia
aau@uow.edu.au

Willy Susilo
University of Wollongong

Australia
wsusilo@uow.edu.au

ABSTRACT
Wireless handheld devices which support e-mail and web
browsing are increasingly popular. The authenticity of the
information received is important, especially for business us-
es. In server-aided verification (SAV), a substantial part
of the verification computation can be offloaded to a pow-
erful but possibly untrusted server. This allows resource-
constrained devices to enjoy the security guarantees provid-
ed by cryptographic schemes, such as pairing-based signa-
tures, which may be too heavyweight to verify otherwise.
To gain unfair advantage, an adversary may bribe the

server to launch various kinds of attacks – to convince that
an invalid signature held by a client is a valid one (say for
providing false information or repudiable commitment) or to
claim that a valid signature is invalid (say for spoiling the
offer provided by an opponent). However, these concerns
are not properly captured by existing security models.
In this paper, we provide a generic pairing-based SAV pro-

tocol. Compared with the protocol of Girault and Lefranc
in Asiacrypt ’05, ours provides a higher level of security
yet applicable to a much wider class of pairing-based cryp-
tosystems. In particular, it suggests SAV protocols for short
signatures in the standard model and aggregate signatures
which have not been studied before.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribut-
ed Systems; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection

General Terms
Security

Keywords
server-aided computation, collusion attack, authenticity, sig-
natures, pairings, delegation, weak computational device

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

Keywords
server-aided computation; pairings; signatures; delegation;

1. INTRODUCTION
Server-aided computation protocols are protocols in which

a device, also called the client, offloads the computation to a
server. Nowadays, there are many computation devices with
relatively limited power, e.g., smart card, RFID tag, but
need to perform cryptographic operations which are both
time and power consuming. Server-aided computation pro-
tocols are particularly useful since these devices often have
access to a more powerful device which can act as the server.

1.1 Server-Aided Computation of Pairing
Bilinear pairing is an enabling technology for construct-

ing next-generation cryptosystems. On one hand, it al-
lows the construction of novel cryptographic application-
s that are otherwise difficult or impossible to build based
on other primitives. On the other hand, it also facilitates
the construction of some highly efficient cryptographic solu-
tions which are particularly appealing for computationally-
limited devices. Pairing is currently instantiated on ellip-
tic curves. The use of elliptic curves leads to a shorter-
representation of the cryptographic group elements, so many
pairing-based schemes can be made space-efficient. An ever
increasing number of protocols have been appearing in the
literature since its introduction in constructing cryptograph-
ic schemes. Some of which have a very simple design (e.g.,
[3] and [2]) when compared with non-pairing constructions.
While these schemes may offer high efficiency in terms of
bandwidth or storage requirement, they often require rela-
tively heavyweight cryptographic operations. To enjoy the
features made possible by cryptography, one may resorting
to a symmetric-key solution instead of a public-key one (e.g.,
[7]), or employ tricks such as precomputation (e.g., [5]). In
this paper, we study the approach of server-aided computa-
tion, with focus in signature verification.

1.2 Collusion Attack
Server-aided computation should not introduce new vul-

nerability to the application. This is true if the server is
fully-trusted and there exists a secure channel between it
and the client. In this case the client can simply offload
the computation to the server. Unfortunately, this trust
assumption is not realistic. In reality, the client could be
facing a malicious server, or the client cannot establish an
authenticated connection with a trusted server easily. (Au-
thenticated connection can be established by cryptographic

401

means, which leads to a chicken-and-egg situation). More-
over, concerns with confidentiality arise when the operation
involves some private information from the client (e.g., de-
cryption or signing which uses the client’s private key) or
when the operation result gives the basis for the client to
make a decision whether the integrity of some information
(e.g., via digital signature) has been tampered or not.
Wireless handheld devices which support push e-mail, tex-

t messaging, and web browsing are increasingly popular for
business uses. For examples, roaming employees can re-
sponse quickly to their colleagues, and traders can always
get update information of the exchange market. In these
scenarios, it is important to verify the authenticity of the
messages received. It is also undesirable if a malicious serv-
er can falsely claim that a valid signature is an invalid one,
which effectively denies the client from receiving legitimate
message. This attack may be motivated by a unfair prof-
it gain, say a bid from a competitor of an attacker can be
“made” invalid and now this attacker can supply another
bid.

1.3 Existing Work
In the work of Girault and Lefranc [9], some security re-

quirements of server-aided verification are formalized. T-
wo existing protocols are then analyzed in their model and
a new one for a limited class of pairing-based signature
schemes has been introduced (specifically, schemes where
the verification requires only comparisons against a fixed
element ê(g, g)). In their model, a malicious server is not
allowed to collude with the signer. In particular, the secu-
rity of the protocol relies that the malicious server is not
given any valid signature on that message. Subsequently,
Wu et al. [13] proposed a SAV protocol for Boneh-Lynn-
Shacham signature [3] since it is not covered in the previous
semi-generic construction. Wu et al. also observed that the
security model of Girault and Lefranc [9] does not allow an
adversary to interact with the client via the aided verifica-
tion protocol, and consequently devised an attack of their
protocol by exploiting this weakness. However, this attack
actually assumes the server to be deviated from the speci-
fication of the aided verification protocol, which is different
from the models considered in [9, 13]. On the other hand,
Wu et al. [13] proposed a security model aimed to capture
the collusion of the signer with the server. Recently, [12]
criticized the model of [13] and proposed a new one. We
found that these two models may not model the collusion
attack well. In particular, they do not address the situation
when the attacker is in fact in possession of the private key
of the signer. For example, a malicious signer, after created
an invalid signature, may collude with the server and try
to convince the client to accept this maliciously generated
signature.

2. PRELIMINARIES
For a finite set S, x ∈R S means choosing an element x

uniformly at random from S. For algorithms A1 and A2, we

use out
$← A1(in) to denote that out is the result of running

A1 on input in, and out1 ← A1(in1) ↔ A2(in2) to denote
that out1 is the final output of algorithm A1 with local input
in1 after interacting with algorithm A2 with local input in2.

2.1 Framework for Server-Aided Verification

Definition 1. A signature scheme (Setup,KeyGen, Sign,
Verify) with server-aided verification is one equipped with a
VStetup algorithm and an AidedVerify protocol.

• VStetup is a probabilistic algorithm executed by a ver-
ifier which takes a security parameter 1λ and outputs
some verification parameter VString.

• AidedVerify is an interactive protocol between a veri-
fier and a server. The input of the verifier includes
VString generated by VStetup, a message/signature
pair (m,σ) obtained from a signer and the public key
pk of the signer. As a result of the protocol, the verifier
outputs ⊤ iff σ is a valid signature on m under pk, ⊥
otherwise. The server has no local output.

In this paper we give a more fine-grained definition.

Definition 2. Our definition of algorithms for server-
aided verification are refined as below.

1. VString can be partitioned into private/public verifi-

cation parameters (τ,Γ), i.e., (τ,Γ)
$← VStetup(1λ).

2. AidedVerify is split into a pair of interacting multi-
stage algorithms AidedVerifyc and AidedVerifys, which
denotes the respective part of the AidedVerify protocol
executed by a client and a server.

Definition 3. Correctness of a signature scheme with
server-aided verification requires that for all λ ∈ N, all Param
given by Setup(1λ), all (sk, pk) given by KeyGen(), and al-
l VString given by VStetup(1λ), we have Verify(pk, σ,m) =
AidedVerifyc(m

∗, σ∗, pk, VString)↔ AidedVerifys(Γ) holds for
all m in the message space and σ in the signature space.

2.2 Existential Unforgeability
The work of Wu et al. [13] gives two security definition.

The first one is an extension of the existential unforgeability
against adaptive chosen message attack of a standard sig-
nature scheme. Below gives our definition of unforgeability
that will be used throughout this paper. This is based on the
definition of Wu et al. with adjustments to be elaborated.

Definition 4. A server-aided verification of signatures
protocol is (t, qs, qv)-existentially unforgeable under adaptive
chosen message and verification attacks (EUF-CMVA) if
for all probabilistic polynomial time adversary A which runs
within time t wins the following game with negligible proba-
bility in a security parameter λ.

Setup. The challenger C runs the algorithms Setup, KeyGen
and VStetup to obtain the system parameter Param, a
key pair (sk, pk) and the verification private/public pa-
rameter VString = (τ,Γ) respectively. The adversary
A is given Param, pk and Γ, while τ and sk are with-
held from A.

Query. A can adaptively make at most qs OSign queries
and at most qv OAidedVer queries.

• In an OSign query, A supplies a message m. C
puts m into a setM and responses with Sign(sk,m).

• In an OAidedVer query, A starts by supplying a
message/signature pair (m,σ) to C. C then initi-
ates the AidedVerify protocol as a client, and the
adversary A responses as the server.

402

Schemes Sign Verify

BLS σ = H0(m)x ê(g, σ)
?
=

ê(pk,H0(m))

ZSS σ = g
1

(H1(m)+x) ê(g, g)
?
=

ê(σ, gH1(m) · pk)
BB (σ1, σ2) = ê(g, g)

?
=

(g
1

H1(m)+x+yr , r) ê(σ1, g
H1(m) · pkX · pk

σ2
Y)

BGLS σi = H0(mi)
xi ê(g, σ)

?
=

σ =
∏k

i=1 σi

∏k
i=1 ê(pki, H0(mi))

Table 1: Concise Review of Four Signature Schemes

Output. A outputs a message/signature pair (m∗, σ∗) to
C. A is considered to win the game if m∗ /∈ M and
⊤ ← AidedVerifyc(m

∗, σ∗, pk, (τ,Γ))↔ AidedVerifys(Γ).

2.3 Review of Pairing-based Signatures
Table 1 gives a concise review of a few selected short signa-

ture schemes and an aggregate signature scheme. H0,H1 are
cryptographic (collision resistant) hash functions which map
arbitrary bit-strings to G and Zp respectively. The private
signing key is a random element x ∈R Zp; any additional
component which may be required is denoted by y ∈R Zp.
BB is provably secure in the standard model.

3. OUR SECURITY DEFINITION
We propose a better model of the security of a SAV scheme

against collusion between the server and the signer.

Definition 5. A server-aided verification protocol is (t, qv)-
sound against adaptive chosen verification attacks under col-
lusion if for all probabilistic polynomial time adversary A
which runs within time t wins the following game with neg-
ligible probability in a security parameter λ.

Setup. The challenger C runs the algorithms Setup, KeyGen
and VStetup to obtain the system parameter Param, a
key pair (sk, pk) and the private/public verification pa-
rameter VString = (τ,Γ) respectively. The adversary
A is given Param, (sk, pk) and Γ, but not τ .

Query. A can adaptively make at most qv OAidedVer queries,
as defined in Definition 4. A can maintain some state
information state throughout all these queries.

Output. With state, A outputs a message m∗ and a
signature σ∗ to C. Let b0 ← Verify(pk, σ∗,m∗) and
b1 ← AidedVerifyc(m

∗,σ∗,pk, VString) ↔ A(state).
We say that A wins if b0 ̸= b1.

An alternative definition can be given by assigning b0 ←
AidedVerifyc(m

∗, σ∗, pk, VString)↔ AidedVerifys(Γ) instead.
It is equivalent to the above definition by the correctness of
a SAV protocol (Definition 3).

4. OUR SOLUTION
The basic idea of our protocol is similar to the generic

protocol of Girault and Lefranc [9]. Let f be a scheme-
specific public function which takes (Param, pk, m, σ) as
input. Their protocol assumes the predicate is in the for-
m of ê(g, g) = ê(σ′, f(Param, pk,m, r)), where σ = (σ′, r),

σ′ is the group element in σ and r is the other part of the
signature, if any1. Hence the application is rather limited,
e.g., it cannot be applied on schemes which involve predi-
cates not based on ê(g, g) [3, 2]. In contrast, our protocol
works with predicate which is based on the comparisons be-
tween elements in GT or products of them. This generalizes
the predicate class of [9] and effectively covers nearly all
pairing-based verification algorithms, in particular, signa-
ture schemes such as [2, 3, 6] studied in [8].

4.1 Our Generic Protocol
We first establish some notations. Let F be a scheme-

specific function which takes (Param, pk, m, σ) as input and
let Fagg be a function that is specific to an aggregate sig-
nature scheme which takes Param, {pki}, {mi}, σ as input.
In the basic form, the output of F or Fagg only consists
of a set of group-G elements {Ci}i∈[1,ν] for a positive in-
teger ν. A more general definition F ′ or F ′

agg allows the
output to be pairs of a group-G element and an exponen-
t in Zp, {(Ci, vi)}i∈[1,ν]. Let V be a predicate in the form

of
∏

(i,j)∈X ê(Ci, Cj)
?
=

∏
(k,l)∈Y ê(Ck, Cl) for some subsets

X ,Y ⊆ {1, · · · , ν} × {1, · · · , ν}. Similarly, corresponding to
the more general definition F ′ or F ′, let V ′ be a predicate

in the form of
∏

(i,j)∈X ê(Cvi
i , C

vj
j)

?
=

∏
(k,l)∈Y ê(C

vk
k , C

vl
l)

for some subsets X ,Y ⊆ {1, · · · , ν} × {1, · · · , ν}.
We reduce the task of server-aided verification to the task

of “secure” delegation of pairing computation. Let S be a
secure pairing delegation protocol to be described in details.
The framework of our generic protocol is given below.

1. The verifier runs the pre-computation phase of S, pos-
sibly with the knowledge of a (set of) public key.

2. After receiving a (set of) message, a signature and a
(set of) public key, the verifier executes F (or Fagg) to
obtain {Ci}i∈[1,ν] (or {(Ci, vi)}i∈[1,ν] for F or F ′

agg).

3. The verifier engages with the server in the request-
response phase of S to ask for the values of ê(Ci, Cj),
ê(Ck, Cl) where (i, j) ∈ X , (k, l) ∈ Y according to the
predicate V (or V ′).

4. The verifier runs the verification phase of S to ensure
the pairing are computed correctly.

5. The verifier finally checks if the predicate is true ac-
cording to the values obtained in the output phase of
S, which is gives the result of the verification of the
signature.

4.2 Pairing Delegation Protocols
The key element of our SAV protocol is pairing delegation

S, which is introduced in [4]. Below we adopt slightly the
definition from [11].

Definition 6. A pairing delegation protocol is a two-move
interactive protocol between a client (delegator) and a serv-
er (delegatee) consists of five phases – pre-computation, re-
quest, response, verification and output.

1. Pre-computation phase: the client performs local com-
putation taking the system parameter and possibly one
of the points A, B as the input. The system parameter
includes the bilinear map context (G,GT , g, p, ê).

1We abused the notation of f a bit such that it may take a
truncated part of the input (only a part of σ in their case).

403

2. Request phase: the client sends a message to the serv-
er based on the output of the pre-computation phase.
In case that one of the points is not used in the pre-
computation phase, The message to be sent should be
further processed with the knowledge of any points which
are not used in the pre-computation phase.

3. Response phase: the server sends a message to the
client. The input of the server includes the system pa-
rameter and the message from the client in the request
phase.

4. Verification phase: the client verifies the message from
the server based on the output of the pre-computation
phase. It halts and output ⊥ if the check fails.

5. Output phase: the client outputs a GT element ê(A,B)
and the server has no local output.

To our knowledge, the studies of pairing delegation proto-
cols in the literature include [4, 10, 11] . Only the protocols
in [11] consider batch delegation.

Definition 7 ([11]). Batch pairing delegation protocol
is an interactive protocol between a client (delegator) and a
server (delegatee). The input of the client consists of a set
of points A, {Bi}i∈[1,ν] ∈ G for a positive integer ν. As a
result of the protocol, the client outputs a set of GT elements
{ê(A,Bi)}i∈[1,ν] and the server has no local output.

The first reason we turn our attention to the batch pair-
ing delegation protocol is that, the definitions of soundness
in [4, 10] do not specify whether A and/or B are known to
the adversary (the malicious server in our context). Indeed,
none of the protocols in [10] is designed for the case which
both of the two input points are public. This is important
in SAV since the input of the verification algorithm is by
definition public (also recall that the adversary in our ad-
versarial model is equipped with the message, the signature,
the system parameters, etc.) It is simply not suitable for
our purpose if the security of the protocols relies on the fact
that the adversary does not know the input of the predicate.
Moreover, it has been suggested [11] that there exists a dele-
gation protocol that is secure if and only if A is private from
a simplification of an existing protocol [10]. Finally, the pro-
tocol for public points in [11] is more efficient than that its
counterpart in [4]. For these reasons, we choose to instan-
tiate S with the protocol PVPC (an acronym for “Public
Variable and Public Constant”) [11] which we review below.

• Pre-computation. The client first picks a genera-
tor Q ∈ G and a random exponent rQ ∈R Zp; then
computes Q̃ = QrQ and ê(A, Q̃) = ê(A,Q)rQ .

• Request. The client sends to the server ⟨A,B0 =

Q̃ ·
∏n

i=1 B
bi
i , B1, . . . , Bn⟩, where bi ∈R Zp.

• Response. The server sends ⟨α0, α1, . . . , αn⟩, where
αi = ê(A,Bi).

• Output. The client verifies if αi ∈ GT for i = 0 to
n and ê(A, Q̃)

∏n
i=1 α

bi
i = α0 all hold. If so, outputs

{αi}, ⊥ otherwise.

Limitations. A more flexible type of pairing delegation pro-
tocol is PVPV (an acronym for “Public Variable and Public

Variable”) which is not available to the best of our knowl-
edge. The other limitation is that the knowledge of the point
A is required in the above PVPC protocol. We remark that
there exists non-batch PVPC protocol which does not re-
quire the knowledge of the constant A in the precomputation
stage [4].

4.3 Our SAV Protocol for Short Signatures
Following our generic protocol, we define function FBLS

and predicate VBLS to build a SAV protocol for Boneh-Lynn-
Shacham signature [3], with the notation in Table 1.

• Function FBLS : (Param, pk,m, σ) 7→ (g, σ, pk, H0(m)).

• Predicate VBLS : ê(C1, C2)
?
= ê(C3, C4) with C1 = g,

C2 = σ, C3 = pk, C4 = H0(m).

The verifier engages in the pairing delegation protocol S
with the server and obtains the two pairing values α0 =
ê(g, σ) and α1 = ê(pk, H0(m)). Finally, the verifier checks if

the predicate is true, that is, whether α0
?
= α1.

Since the pairing delegation protocol S we employ is ca-
pable of delegating pairing computations in batch, the veri-
fier can offload the verification of many signatures from the
same signer to further reduce the computation overhead.
Specifically, the verifier can delegate the computation of
{α0i = ê(g, σi)} and {α1i = ê(pk, H0(mi))} in batch.

Unfortunately, using a PVPC protocol instead of a PVPV
protocol, the pairing of ê(C1, C2) and ê(C3, C4) cannot be
batched since only C1 = g is a constant.

We can define functions F ′
ZSS , F ′

BB and predicates V ′
ZSS , V ′

BB

for ZSS [14], and Boneh-Boyen [1] as below. Note that we
omit the exponent vi when it is equal to 1 for brevity.

• Function F ′
ZSS :

(Param, pk,m, σ) 7→ ((g,H1(m)), σ, pk, σ, g, g).

• Predicate V ′
ZSS : ê(Cv1

1 , C2)ê(C3, C4)
?
= ê(C5, C6) with

C1 = g, v1 = H1(m), C2 = σ, C3 = pk, C4 = σ,
C5 = g, C6 = g.

• Function F ′
BB : (Param, (pkX , pkY),m, (σ1, σ2)) 7→

((g,H1(m)), σ1, pkX , σ1, (pkY , σ2), σ1, g, g).

• Predicate V ′
BB :

ê(Cv1
1 , C2)ê(C3, C4)ê(C

v5
5 , C6)

?
= ê(C7, C8) with C1 =

g, v1 = H1(m), C2 = σ1, C3 = pkX , C4 = σ1, C5 =
pkY , v5 = σ2, C6 = σ1, C7 = g, C8 = g.

In both ZSS and BB, we have the evaluation of ê(g, g)
which is a constant independent of the signer’s public key
or the signature. The client can simply store it without
re-computing it every time.

Comparison with Batch Signature Verification. The con-
cepts of using batch pairing delegation for verifying many
signatures and batch signature verification look almost the
same at the first glance. However, there are subtle differ-
ences. While the computation of pairing are delegated in
batch, the pairing values are not aggregated together and the
client can get each of the individual pairing value. In other
words, the client is able to verify each of the signature by
simple equality checks (and possibly with exponentiations in
GT). On the other hand, extra measures are usually needed
to identify the invalid signature(s) in batch verification.

404

With respect to concrete instantiations available today, for
the case of batching the signatures form different n signers,
(n+1) pairing computations are needed by the batch verifier
for BLS proposed in [8]. In our approach, these pairings
are delegated, and the client only requires to do O(n) of
exponentiations. In the batch verifier approach [8], O(n)
of exponentiations only involve small exponents, which may
also be used in the batch pairing delegation protocol [11]
since secrecy of the points are not a concern here.2

Using the PVPC protocol [11] in verifying n signatures
from the same signer produced by ZSS or BB require 2 or
3 times of pairing computations (at the server side) respec-
tively than the normal approach. The cost can be justified
when the batch PVPC protocol is faster than n invocations
of the non-batch protocol by a factor of 3. Lastly, we remark
that we are not aware of any batch verifier for ZSS or BB.
Finally, we remark that these two approaches can be used

together, i.e., first identify what are the required pairing
computations in a batch verifier, then these computations
can still be delegated by using a pairing delegation protocol.

4.4 Our Protocol for Aggregate Signatures
For an aggregated signature σ, a list of messages {mi}ni=1

and the public key list of the corresponding signers {pki}
n
i=1,

we define function Fagg and predicate V to build a SAV
protocol for Boneh et al.’s aggregate signature [2].

• Function Fagg : (Param, pk1, . . . , pkn,m1, . . . ,mn, σ)
7→ (g, σ, pk1, H0(m1), . . . , pkn, H0(mn)).

• Predicate Vagg: ê(C1, C2)
?
=

∏n
i=1 ê(C2i+1, C2i+2) with

C1 = g, C2 = σ, C2i+1 = pki, C2i+2 = H0(mi) for
i = 1 to n.

The verifier engages in the pairing delegation protocol S
with the server and obtains the pairing values α0 = ê(g, σ)
and αi = ê(pki, H0(mi)) for i = 1 to n. Finally, the verifier

checks if the predicate is true, that is, whether α0
?
=

∏n
i=1 αi.

Again, we remark that we are not aware of any protocol of
type PVPV and hence the delegation of these pairing com-
putations cannot be batched together. On the other hand,
computation overhead can be reduced further by batch del-
egation of pairing values for the same signer.

4.5 Security Analysis
Security Properties of Pairing Delegation. Two security re-
quirements of pairing delegation protocol include complete-
ness and correctness. Informally, completeness means that
the client can obtain the correct values after interacting with
an honest server; and correctness means that the client can
detect (with high probability) when the server is cheating,
which means the final result consists of a wrong value. The
formal definitions can be found in [11].

Security of Our Protocol. Existential unforgeability follows
from the completeness of S and the unforgeability of the
underlying signature scheme. If a forgery passes the verifi-
cation algorithm of the underlying signature, i.e., it satisfies
the predicate determined by the verification algorithm, by

2One can use small exponents {bi} in the PVPC protocol.
However, at least one of them should be chosen from a large
domain. Otherwise an adversary may guess the hidden Q̃
correctly and break the protocol.

the completeness of S, the delegated predicate will evaluate
to the same value, and hence the forgery will pass (an honest
execution of) AidedVerify.

Soundness also follows readily from the soundness of S. If
the delegated evaluation of the predicate mismatches with
a direct evaluation of the predicate, there must exist one
wrongly-computed pairing value that is undetected by the
client, which breaks the soundness of S. This can always be
identified by simply recomputing all the pairings involved
which can be done in a polynomial time.

5. REFERENCES
[1] Dan Boneh and Xavier Boyen. Short Signatures

Without Random Oracles and the SDH Assumption in
Bilinear Groups. J. Cryptology, 21(2):149–177, 2008.

[2] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In EUROCRYPT,
pages 416–432, 2003.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
Signatures from the Weil Pairing. J. Cryptology,
17(4):297–319, 2004.

[4] Benoit Chevallier-Mames, Jean-Sebastien Coron, Noel
McCullagh, David Naccache, and Michael Scott.
Secure Delegation of Elliptic-Curve Pairing.
Cryptology ePrint Archive, 2005/150, 2005.

[5] Sherman S. M. Chow, Joseph K. Liu, and Jianying
Zhou. Identity-based online/offline key encapsulation
and encryption. In ASIACCS, 2011. To appear.

[6] Sherman S. M. Chow, Siu-Ming Yiu, and Lucas
Chi Kwong Hui. Efficient Identity Based Ring
Signature. In ACNS, pages 499–512, 2005.

[7] Cheng-Kang Chu, Wen Tao Zhu, Sherman S. M.
Chow, Jianying Zhou, and Robert H. Deng. Secure
mobile subscription of sensor-encrypted data. In
ASIACCS, 2011. To appear.

[8] Anna Lisa Ferrara, Matthew Green, Susan
Hohenberger, and Michael Østergaard Pedersen.
Practical Short Signature Batch Verification. In
CT-RSA, pages 309–324, 2009.

[9] Marc Girault and David Lefranc. Server-Aided
Verification: Theory and Practice. In ASIACRYPT,
pages 605–623, 2005.

[10] Bo Gyeong Kang, Moon Sung Lee, and Je Hong Park.
Efficient Delegation of Pairing Computation.
Cryptology ePrint Archive, Report 2005/259, 2005.

[11] Patrick P. Tsang, Sherman S. M. Chow, and Sean W.
Smith. Batch Pairing Delegation. In IWSEC, pages
74–90, 2007.

[12] Zhiwei Wang, Licheng Wang, Yixian Yang, and
Zhengming Hu. Comment on Wu et al.’s Server-Aided
Verification Signature Schemes. Intl. J. of Network
Sec., 10(2):158–160, 2010.

[13] Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang.
Server-Aided Verification Signatures: Definitions and
New Constructions. In ProvSec, pages 141–155, 2008.

[14] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy
Susilo. An Efficient Signature Scheme from Bilinear
Pairings and Its Applications. In PKC, pages 277–290,
2004.

405

