
Poster: On the Capability of DNS Cache Poisoning Attacks
Zheng Wang

Qingdao University
Qingdao, Shandong 266071, China

zhengwang09@126.com

ABSTRACT
Cache poisoning is a serious threat to today's DNS, and Kaminsky
cache poisoning is proposed as the most effective. We develop a
maximum-efficiency attack model of Kaminsky cache poisoning,
which is built on persistent poisoning attempts optimized for more
than one windows of opportunity. Using the model, we illustrate
the effects of Kaminsky cache poisoning and the optimal number
of outstanding queries in terms of probability of compromise.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General –
security and protection; C.4 [Performance of Systems]:
Performance attributes

General Terms
Security

Keywords
DNS Cache poisoning; Kaminsky attacks; outstanding queries

1. INTRODUCTION
The Domain Name System (DNS) is one of the most critical
components of the today's Internet. Cache poisoning is arguably
the most prominent and dangerous attack on DNS especially
before DNS is protected by cryptography such as DNSSEC (DNS
Security Extensions) [1]. In the typical scenarios, an attacker may
poison the cache by forging a response to a recursive DNS query
sent by a resolver to an authoritative nameserver. While DNS
cache poisoning was long received widespread publicity before
2008, it was not until Dan Kaminsky [2] discovered a way to
make the attack far more effective in the summer of 2008 that the
greatest concern was raised about DNS security. Hubert et al. [3]
presented a detailed description of DNS spoofing or cache
poisoning scenarios, and proposed measures to make spoofing a
resolver many orders of magnitude harder. Alexiou et al. [4] used
PRISM to introduce a Continuous Time Markov Chain
representation of the Kaminsky attack and the proposed fix, and
to perform the required probabilistic model checking. However,
their analysis of attack difficulty largely target at basic poisoning
model which factors TTL of the target domain while Kaminsky-
class poisoning inherently has no "wait penalty" for poisoning
failure.

This paper explores the vectors for Kaminsky-class cache
poisoning attacks and proposes a maximum-efficiency attack
model of Kaminsky cache poisoning. While previous studies limit
the technical details of attack model to a single window of
opportunity, the proposed attack model is built on persistent
poisoning attempts optimized for more than one widows. Thus it
better approaches the capability of Kaminsky cache poisoning.
This paper also shows the optimal number of outstanding queries
can be found in terms of probability of compromise if multiple
outstanding queries are allowed by the resolver. The numerical
results illustrated in this paper simulate the typical scenarios of
Kaminsky cache poisoning, thus provides insights into the effects
of Kaminsky cache poisoning in DNS practice.

2. BASIC KAMINSKY ATTACK MODEL
Cache poisoning is where the attacker manages to inject bogus
data into a resolver's cache with carefully crafted and timed DNS
packets. A cache poisoned resolver will response with its
wrongfully accepted and cached data, make its clients contact the
wrong, and possibly malicious, servers.

A resolver only accepts matching responses to its pending
queries, and unexpected responses are simply ignored. A response
packet is taken as "expected" and accepted by a resolver if and
only if: 1) The Question section of the reply packet matches the
Question in the pending query; 2) The response comes from the
same network address to which the question was sent; 3) The ID
efield of the reply packet matches that of the pending query; 4)
The response arrives on the same UDP port to which the question
was sent; 5)The Authority and Additional sections represent
names that are within the same domain as the question: this is
known as "bailiwick checking".

The goal of the attacker is to poison a victim domain, e.g.,
victim.com, thereby poison all A records with the IP address,
MXs for email, etc. in the domain. Before undertaking the attack,
the attacker configures a nameserver that's authoritative for the
victim.com zone, including whatever resource records he likes: A
records, MX for email, etc. Then a typical attack is:

Step 1: Towards the victim resolver, the attacker requests a or a
flurry of random names within the target domain (e.g.,
e33bc9.victim.com), something unlikely to be in cache even if
other lookups for this domain have been done recently.

Step 2: The attacker sends a stream of forged packets to the
victim resolver, where the target domain is delegated to another
nameserver via Authority records, indicating "I don't know the
answer, but you can ask over there". The authority data may well
contain the "real" victim.com nameserver hostnames, but the glue
points those nameservers at attaker's IPs. A match and forged
packet means that the victim resolver believes that attacker's
nameservers are authoritative for victim.com.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author. Copyright is held by the
owner/author(s).
CCS'14, November 3-7, 2014, Scottsdale, AZ, USA.
ACM 978-1-4503-2957-6/14/11.
http://dx.doi.org/10.1145/2660267.2662363

1523

Step 3: So any afterwards requests for the victim.com names will
be directed to the bogus nameserver and responded with the bogus
records.

3. MAXIMUM-EFFICIENCY KAMINSKY
ATTACK MODEL
In general, the first response matching the five conditions is
accepted. If an attacker's bogus reply succeeds in meeting the
five conditions before the response from the genuine nameserver
does so, the resolver will accept the bogus reply as a genuine
response to a query, and use the information found inside. Note
that a successful attacker has to have its bogus response arrive
before the authentic response. 0therwise, any packet that matches
the five conditions but arrives after the authentic response is no
longer accepted because the target pending query is already fed.
This means that the attacker has a limited time in which to inject
its spoofed response for one particular pending query. A window
of opportunity is considered for spoofing responses to one
particular pending query. In the window, the attacker requires a
number of response attempts to guess the necessary matching
parameters including ID number and port number. The window
often starts with the emission of a query for a target domain and
ends with the arrival of an expected response. Therefore, the
window largely depends on the network distance between the
resolver and the authentic authoritative nameserver. Calculated
for one particular pending query, longer window obviously means
more probability of success, because the attacker may initiate
more packets for a successful guessing. However, evaluation on
the cache poison in a single window is biased because it is not
based on the equal time period available for attacks. The cache
poison attack may last rather than cease at the end of one window,
so an attacker exceeding a shorter window may still have time for
further attempts in the residual time of a longer window in
comparison. The attacker may launch successive poison attempts
covering a time period much longer than a window. So it is
practical and fair to examine the success rate of cache poisoning
under successive poison attempts in the same time period rather
than in a single but length-varied window.

In comparison to the well documented attack models in a single
window, we first propose maximum-efficiency successive attack
models for DNS cache poison. According to whether or not
multiple queries for the same question to be outstanding is
allowed, two models are proposed respectively. The symbols and
their settings are presented in Table 1.

To achieve maximum efficiency of bogus replies, the attacker has
to keep track of is what IDs have been sent in the bogus replies so
there will not be any duplicates. Thus after every attempt of bogus
reply, the pool of unexplored IDs and ports shrinks by 1. So the
probability of successful compromise by the attacker increases
gradually with the number of bogus replies. The cumulative
probability of having missed in all attempts up to and including
the nth attempt is

P(the 1st attempt misses, the 2nd attempt misses, ..., the ith
attempt misses, ..., the nth attempt misses)=P(the 1st attempt
misses)*P(the 2nd attempt misses|the 1st attempt
misses)*,...,*P(the ith attempt misses|the 1st attempt misses, the
2nd attempt misses, ..., the (i-1) th attempt misses)*, ..., *P(the
nth attempt misses|the 1st attempt misses, the 2nd attempt
misses, ..., the (n-1) th attempt misses) (1)

Table 1. Symbols and their settings

Symbol Meaning and Setting

I Number distinct IDs available (maximum 65536)

P
Number of ports used (maximum around 64000 as ports under
1024 are not always available)

N Number of authoritative nameservers for a domain (around 2.5)

W
Window of opportunity, in seconds. Bounded by the response
time of the authoritative servers (often 0.1s)

D Number of identical outstanding queries of a resolver

S Average size of DNS packets initiated by an attacker (80 bytes)

B Maximum bandwidth available for an attacker (400 Kbps)

T Maximum DNS packets per second initiated by an attacker

Where P(the ith attempt misses|the 1st attempt misses, the 2nd
attempt misses, ..., the (i-1) th attempt misses)=1 - D / ((I+P)*N-
(i- 1))

i=1, 2, ..., n (2)

In a window of opportunity, the maximum number of attempts is
T*W. The cumulative probability of having missed in all attempts
in a window of opportunity is

P(the 1st attempt misses, the 2nd attempt misses, ..., the ith
attempt misses, ..., the (T*W)th attempt misses) (3)

If all attempts miss in a window of opportunity, the real reply
from the real servers arrives at and get accepted by the resolver.
So any more bogus replies for the previously queried name are no
longer accepted by the resolver. To continue with the attack, the
attacker has to quickly initiate a new query for the target domain,
aiming at open a new window of opportunity. Given that DNS
cache of the resolver may cache the real reply for the previously
queried name until its associated TTL expires, the new query
should not be identical with its predecessors. Also, considering
the TTL of the real replies may be long enough, the new query
should be random enough generated to avoid becoming a
duplicate of any of its predecessors. So any previously cache
records will not match this new query. This ensures that the new
query is outstanding one for the resolver. We have

P(i)=P(the 1st attempt misses, the 2nd attempt misses, ..., the ith
attempt misses, ..., the ith attempt misses) 1<=i<= T*W (4)

P(i)=P(T*W) *P(i-T*W) T*W<i< =2*T*W (5)

 ...

P(i)=P(T*W)j*P(i-j*T*W) j*T*W<i< =(j+1)*T*W (6)

The detailed process of the attack model for one outstanding

query is elaborated in the following steps (see Figure 1): ① the

attacker sends one query for a random name (rand_1.victim.com)

in the target domain (victim.com) to the victim resolver; ② the

victim resolver forwards the query to the victim.com authoritative

nameserver in case of cache missing; ③ the attacker makes a

flurry of forged replies; ④ the victim.com nameserver returns its

reply which ends the window of opportunity; ⑤ ⑥ Once the

attaker receives the genuine reply from the victim resolver, it

1524

starts the next round of poisoning attempts with a query for a new
random name (rand_2.victim.com).

Figure 1: Attack model (upper fig) and its timeline (lower fig)
for one outstanding query

The attacker first initiates D identical queries in a window of
opportunity, and then sends the forged replies in the rest of the
window of opportunity. This ensures that every forged reply has
an opportunity of hitting any of the D identical queries. When no
forged reply successes in the window of opportunity, which is
ended by the arrival of the real reply from the real servers, the
attacker starts the next window of opportunity with another D
identical queries, which are followed by forged replies lasting for
the rest of the window of opportunity. The attack process is
repeated likewise, until the attacker finally successes. Note that
DNS cache should be also be get around here for the D identical
queries. This means that they should also be randomly generated
to avoid possible duplication with identical queries in any
previous window of opportunity.

PD(i)=PD(the 1st attempt misses, the 2nd attempt misses, ..., the
ith attempt misses, ..., the ith attempt misses) =1 1<=i<= D
(7)

PD(i)=P(the 1st attempt misses, the 2nd attempt misses, ..., the Dth
attempt misses, ..., the ith attempt misses)

=PD(the 1st attempt misses, the 2nd attempt misses, ..., the Dth
attempt misses)PD(the (D+1)th attempt misses, the (D+2)th
attempt misses, ..., the ith attempt misses)

=P(the 1st attempt misses, the 2nd attempt misses, ..., the (i-D)th
attempt misses)

=P(i-D) D<i<= T*W (8)

 PD(i)=P(T*W-D) T*W<i< =T*W+D (9)

 PD(i)=P(T*W-D) P(i-(T*W+D)) T*W+D<i< =2*T*W (10)

 ...

 PD(i)=P(T*W-D)j j*T*W<i< =j*T*W+D (11)

 PD(i)=P(T*W-D)j*P(i-(j*T*W+D))

 j*T*W+D<i< =(j+1)*T*W+D (12)

The process of the attack model for multiple outstanding queries
is much similar to one outstanding query (see Figure 2) except
that: each window of opportunity starts with D repeated queries,
which are followed by a flurry of forged replies.

We define the "optimal" D as the one with a minimum aggregate
DNS packets required for a probability of compromise. Fig. 3
illustrates the probability of compromise vs aggregate packets,
where the optimal D is 31 and at least 14,494 packets are
sufficient to ensure a 50% chance of compromise.

4. REFERENCES
[1] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.

RFC 4035: Protocol modifications for the DNS security
extensions, March 2005.

[2] D. Kaminsky. Blackops2008– its the end of the cache as we

know it. Presented at BlackHat 2008, 2008.

[3] A.Hubert, R. van Mook. RFC 5452: Measures for making
DNS more resilient against forged answers, January 2009.

[4] N. Alexiou, S. Basagiannis, P. Katsaros, T. Dashpande, and
S. A. Smolka. Formal analysis of the Kaminsky DNS cache-
poisoning attack using probabilistic model checking. Proc. of
HASE '10, 2010.

Figure 2: Attack model (upper fig) and its timeline (lower fig)
for multiple outstanding queries

0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aggregate packets

P
ro

ba
bi

lit
y

of
 c

om
pr

om
is

e

D=1

D=10

D=20
D=31

D=60

Figure 3: The probability of compromise under different
number of outstanding queries.

1525

