
POSTER: Study of Software Plugin-based Malware
Liang Yu1,2

1Beijing University of Posts and
Telecommunications

2Institute of Computing Technology,
Chinese Academy of Sciences

liangyu@bupt.edu.cn

Li Zhiqiao1,2
1Beijing University of Posts and

Telecommunications
2Institute of Computing Technology,

Chinese Academy of Sciences
lizhiqiao@software.ict.ac.cn

Cui Xiang1
1Institute of Computing Technology,

Chinese Academy of Sciences
cx@ict.ac.cn

ABSTRACT
Security issues of software plugins are seldom studied in existing
researches. The plugin mechanism provides a convenient way to
extend an application’s functionality. However, it may also
introduce susceptibility to new security issues. For example,
attackers can create a malicious plugin to accomplish intended
goals stealthily. In this poster, we propose a Software Plugin-
based Malware (SPM) model and implement SPM prototypes for
Microsoft Office, Adobe Reader and mainstream browsers, with
the aim to study the development feasibility of such malware and
illustrate their potential threats.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS (C)]: Security and Protection

General Terms
Security, Malware.

Keywords
Software plugin, SPM, malware.

1. INTRODUCTION
A plugin, also known as extension or add-on, is a software
component that adds a specific feature to existing software (host
application). Most of today’s popular software solutions support
plugins, such as IE’s Adobe Flash Player, MS Office and Adobe
Reader’s translation plugin. Each of these are conceptualized and
designed to perform specific functions and simplify our work.

Although, a plugin can bring immense convenience to users, it
also introduces some threats [1] [2]. Some viruses such as
“Gauss” can use plugin mechanism to compromise the privacy of
IE users; “Red October” can download other malware into a
computer. A plugin runs within its host application, and therefore,
when initiated, it may have the same privileges as its host
application.

A SPM is more competent than conventional malware in that it
does not need a software bug to exploit and can be initiated as
soon as its host application begins. Further, the host application
inadvertently serves as a protective umbrella for the SPM, which
thereby avoids detection and termination by antivirus software.

Moreover, the SPM can also bypass the computer’s firewall
depending on the host application privileges and can access files
opened by the host application to extract information.

In this poster, we propose a SPM model and implement SPM
prototypes for MS Office (Word, Excel, Outlook and PowerPoint),
Adobe Reader and mainstream browsers (IE, Firefox and Google
Chrome). These SPM prototypes can communicate with a remote
server, download executable files, and execute them upon
initiation. In addition, they can also execute CMD commands and
create working threads, the browser extension in SPM can even
be used to collect sensitive information about the user. All these
actions can successfully bypass Avira and Kaspersky antivirus
software.

2. THE PROPOSED SOFTWARE PLUGIN-
BASED MALWARE MODEL
2.1 Definitions and Modules
Figure 1 illustrates the proposed SPM model, which can be
divided into three main parts: a Dropper, a plugin, and a
command and control (C&C) server.

The Dropper is a wrapper program for a plugin, which can install
the plugin automatically and stealthily without the user’s consent
in such a manner that the process does not trigger antivirus
software, system firewall and User Account Control (UAC). A
Dropper is always necessary for an attacker because a plugin’s
installation procedures may be complex or they may need
administrator rights for installation. Therefore, a Dropper can
simplify installation procedures greatly. Once the dropper has
performed its task, it deletes itself, and the plugin will be installed
successfully.

The Plugin is the key part of the SPM model. Different software
imposes different types and levels of limitations on plugins’
privileges. This determines the levels of security that the attacker
needs to bypass or break for completing its malicious actions. In
addition, the methods of plugins’ development vary as well. One
kind of software may support a few methods to develop plugins,
and depending on the development environment used, the plugin
can have different privileges.

In our experiments, in terms of MS Office and Adobe Reader,
first, an attacker can create a plugin in the form of a DLL for MS
Office and an API file(file extension is API) for Adobe Reader,
using C/C++. Subsequently, the attacker can add malicious code
into MS Office’s plugin’s OnConnection(…) function and Adobe
Reader’s plugin’s PluginInit(void) function. While the former
function will be called when the MS Office software loads a
plugin, the latter function is responsible for the Adobe Reader
plugin’s initial work. After these two steps, both plugins will be
loaded, and the attacker’s malicious code will be executed every

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the Owner/Author. Copyright is held by the
owner/author(s).
CCS'14, November 3-7, 2014, Scottsdale, AZ, USA.
ACM 978-1-4503-2957-6/14/11.
http://dx.doi.org/10.1145/2660267.2662381

1463

time the corresponding host application starts. As for browsers, an
attacker can create a plugin in the form of browser extensions
using JavaScript. With the browser extension’s ability to travel
across domains and its privileged access to DOM elements, an
attacker can add malicious code into browser extension’s
Load_Event callback function using powerful API functions like
XPCOM or AcitveX to implement downloading and information
stealing tasks.

The C&C server is responsible for distributing commands to the
plugin and storing execution results sent back from the plugin.

2.2 Working Procedures
�The attacker uploads some commands to a prepared C&C server,
which is waiting for a malicious plugin to connect.

�The attacker creates a Dropper for the plugins and induces users
to run it, i.e., the Dropper may be delivered to a user in the form
of an attachment of a fishing email, it may be disguised as an
image, or may be presented through other forms of social media.
Once the user triggers it, the dropper installs plugins stealthily and
deletes itself. In the case of MS Office, the Dropper will register
the DLL (MS Office’s plugin format) as its plugin. On another
hand, in the case of Adobe Reader, the Dropper will release the
API file (Adobe Reader’s plugin format) into its “plug-ins”
directory. As for browsers, the Dropper will release extension
files into extension folder in the browser’s profile directory and
then rewrite the browser extension preference file. Then each
plugin will be loaded as and when its host application starts.

�The plugin will send some registration information, such as IP,
OS, Username and etc. to the C&C server when it loads for the
first time. Subsequently, it will ask for new commands every time
it is loaded again.

�When the plugin receives new commands, it will execute them
and send the execution results back to the C&C server. Take
browser extension for example, when a victim accesses his or her
email or bank account, the browser extension will capture this
event and then produce a copy of the login information from input
fields, even if this sensitive information is encrypted. After
capturing login information, the browser extension returns it to
the C&C server through secure socket layers, ensuring that the
malicious extension remains stealthy and reliable.

�Accordingly, the attacker will extract information from a
compromised computer successfully.

To a user it seems like the SPM is performing the advertised
function; however, in the background it stealthily communicates
with the C&C server and executes malicious tasks.

3. PRELIMINAY RESULTS AND
EXPLANATIONS
3.1 Preliminary Results
Preliminarily, we have implemented SPM prototypes for MS
Office, Adobe Reader and three mainstream browsers. All the
SPM prototypes can download executable files from C&C servers,
execute them upon loading, and execute remote CMD commands.
Figure 2 show SPM prototypes’ downloading, executing and
information stealing functions for MS Office, Adobe Reader and
Google Chrome. It is necessary to point out that some browser
vendors have devised measures to protect users from malicious
extensions. For example, Google allows extensions to be installed
only if they are hosted on its Chrome web store.; Internet
Explorer (IE) versions 8–11 will display security warnings and
prevent scripts or ActiveX controls from running natively, and
etc. Although these restrictions are strong, an attacker can still
find and exploit vulnerabilities in these commercial browsers to
bypass those restrictions.

More detailed experimental results are listed in Table 1.

Figure 2: Downloading, Executing and Information
stealing by SPM prototypes

Figure 1: Software Plugin-based Malware Model

1464

3.2 Explanations
In our experiments, we were able to download and execute
executable files, create threads, and execute CMD commands
with SPM prototypes for MS Office and browsers as the
applications impose minimalistic restrictions on their plugins. But
we are not able to create threads with the Adobe Reader SPM
prototype because the Adobe Reader’s plugin needs to be
activated and the activation of the plugin requires a key, which
has to be bought from Adobe Systems. As soon as Adobe Reader
detects the plugin is inactive or invalid, it discontinues the
plugin’s loading process. However, our experiments show that
Adobe Reader can execute malicious code that exists inside the
plugin, and an attacker can still make use of the plugin without
activation.

4. CONLUSIONS AND FUTURE WORKS
In this poster, we present the Software Plugin-based Malware
model and present an experimental implementation of the SPM
prototype, proving that it is possible to infect the most popular
software: Microsoft Office, Adobe Reader and mainstream

browsers, with SPM. Therefore, it is necessary to consider
countermeasures in advance.

In the future, we will develop an application to monitor plugins’
behaviors, which can detect such kinds of SPMs.

5. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their helpful comments for improving this paper. This work is
supported by the National Natural Science Foundation of China
under grant (No. 61202409) and the National High Technology
Research and Development Program (863 Program) of China
under grant (No. 2012AA012902).

6. REFERENCES
[1] http://www.freebuf.com/articles/system/15065.html

[2] Utakrit, Nattakant. (2009,2009). Review of Browser
Extensions, a Man-in-the-Browser Phishing Techniques
Targeting Bank Customers. In 7th Australian Information
Security Management Conference, 2009.

.

Privileges

Software

Download
executable file

Execute
executable file

Create
threads

Execute CMD
commands

Bypass Avira &
Kaspersky

Online
information

stealing

Platform
supported

Microsoft Office
2013

√ √ √ √ √ ×
Win8 Pro

Win7 SP1

Microsoft Office
2010

√ √ √ √ √ ×
Win8 Pro

Win7 SP1

Microsoft Office
2007

√ √ √ √ √ ×
Win8 Pro

Win7 SP1

Adobe Reader XI √ √ × √ √ ×
Win8 Pro

Win7 SP1

Adobe Reader X √ √ × √ √ ×
Win8 Pro

Win7 SP1

Adobe Reader 9 √ √ × √ √ ×
Win8 Pro

Win7 SP1

IE

8-11
√ √ √ √ √ √

Win8 Pro

Win7 SP1

Chrome

28–35
√ √ √ √ √ √

Win8 Pro

Win7 SP1

Ubuntu 12

Mac OS X 10.8

Firefox

13–30.0
√ √ √ √ √ √

Win8 Pro

Win7 SP1

Ubuntu 12

Mac OS X 10.8

Table 1. Functions of SPM Prototypes.

1465

