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Abstract - In this paper we examine a class of product ci- 
phers referred to as substitution-permutation networks. We 
investigate the resistance of these cryptographic networks to 
two important attacks: differential cryptanalysis and linear 
cryptanalysis. In particular, we develop upper bounds on 
the differential characteristic probability and on the proba- 
bility of a linear approximation as a function of the number 
of rounds of substitutions. Further, it is shown that using 
large S-boxes with good diffusion chatzteristics and re- 
placing the petnn&uion between rounds by an appropriate 
linear transformation is effective in improving the cipher 
security in relation to these two attacks. 

I. Introduction 

A substitution-permutation network (SPN) is a practical 
product cipher [1][2] implemented as a number of rounds 
of small substitutions (referred to as S-boxes) connected 
by bit position permutations. Such ciphers map closely 
to Shannon’s fundamental principles of “confusion” and 
“diffusion” [3]. 
Recent cryptanalysis techniques have had a notable effect 
on the perceived security of many product ciphers. For ex- 
ample, DES [43 has been found to be theoretically cryptan- 
alyzable by differential cryptanalysis using a chosen plain- 
text approach 151 and by linear cryptanalysis using a known 
plaintext approach [6]. In this paper, we examine the secu- 
rity of SPNs with respect to these two powerful crypumal- 
ysis techniques and suggest structures that aid in resisting 
the attacks. In particular, we develop upper bounds on the 
probability of a differential characteristic and on the devi- 
ation of the probability of a linear approximation from the 
ideal value of l/2. The objective of the analysis is to de- 
termine a llexible architecture that can be efficiently imple- 
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Figure 1. SPN with N = 16, R = 4, and n = 4. 

men&l in as few rounds as possible to provide suitably 
small probabilities for differential characteristics and linear 
approXilMtiOnS. 

We shall consider a general N-bit SPN as consisting of R 
rounds of n x n S-boxes. The number of S-boxes used 
in each round is represented by M where M = N/n. 
The plaintext and ciphertext are N-bit vectors denoted as 
P = [PI I’2 . . . PN] and C = [Cl (5’2 . . . CN], respectively. 
An S-box in the network is defined as an n-bit bijective 
mapping S : X --) Y where X = [X, X2 . . . X,] and 
Y = [yl Y2 . . . Y,]. A simple example of an SPN is 
illustrated in Figure 1 with N = 16, R = 4. and n = 4. 

We shall assume in our discussion that the network is 
keyed by XORing N bits of key (as determined by the key 
scheduling algorithm) before the tlrst substitution, after the 
last substitution, and between all substitutions. Decryption 
is performed by applying the key scheduling algorithm in 
reverse and using the inverse S-boxes. 
Rather than strictly confining ourselves to the basic form 
of substitutions connected by permutations, in this paper 

148 



we consider the more general model of substitutions con- 
nected by invertible linear transformations. However, for 
consistency, we still refer to the more general architecture 
as an SPN. 
Of particular importance to our discussion is the notion 
of nonlinearity and we shall use the following nonlinearity 
measures when referring to a boolean function or an S- 
box. The nonlinearity of an n-input boolean function, 
f : (0, 1)” + (0, 1). is defined as the Hamming distance 
to the nearest aftlne function: 

NL(f) 

#{Xl f(X)# & uixi@V}. 
(1) 

= min 
i=l 

u,,....u,.ve(%l) 

The nonlinearity of an n x n bijective mapping or S-box 
S is &fined as the minimum nonlinearity of all non-zero 
linear combinations of output functions [7]: 

NL(S) = min (2) 
w, ,..., W&(0.1). .I, w;+o 

where fi represents the n-input function of the i-th output 
of the S-box. Letting S-l represent the inverse S-box of 
S-box S, it can be shown that NL(S-‘) = NL(S) 171. 

II. Two Important Classes of 
Cryptanalysis 

In this section we discuss two important classes of crypt- 
analysis which have had signiticant success against product 
ciphers. 

(a) Differential Cryptanalysis 
In a series of papers [5][81[9][101, Biham and Shamir suc- 
cessfully demonstrate the susceptibility of several product 
ciphers to differential cqptanalysis. Notably, differential 
cryptanalysis has been successful in breaking weakened ver- 
sions of DES and can theoretically compromise the secu- 
rity of the full 16round DES algorithm using 247 chosen 
plaintexts. 
Differential cryptanalysis is an attack which examines 
changes in the output of the cipher in response to con- 
trolled changes in the input. In general, we are inter- 
ested in bit changes or XOR differences within the net- 
work when two plaintexts, P’ and P” are selected as in- 
puts. We represent the XOR difference of the two plaintexts 
by AP = P’ @ P”. Let the input and output difference 
to a partidt~ round i be represented by AUi and AVi, 
respectively. Differential cryptanalysis relies on the exis- 
tence of highly probable “chamcteristics” where an r-round 
characteristic. $I,, is defined as a sequence of difference 

pairs: Q, = {(AU,, AV1), . . . . (AU,, AV,)}. The algo 
rithm tries an appropriate number of chosen plaintexts with 
AP = AU1 and counts the number of times that a sub-key 
consisting of a subset of the key bits is consistent with the 
ciphertext difference, AC, assuming that the characteristic 
has occurred. If the charzteristic occurs with probability 
pn., the correct sub-key bits are consistent with a probe- 
bility of at least po,. After an appropriate number of trials 
(typically several times mote than l/pn, chosen plaintext 
pairs) the correct sub-key will be counted significantly more 
times than incorrect sub-keys. 
In thii paper. we shall assume that a characteristic prob- 
ability is determined by the product of the probabilities 
of the occurrence of a one round difference pair. Letting 
P(AUi, AVi) represent the probability of OCCUITCA’UX of 
the i-th round difference pair, then 

PSI, = fi P(AUij *Vi). (3) 
i=l 

Equation (3) gives exactly the characteristic probability 
taken over the independent distributions of plaintext and 
key, Hence, it strictly applies only when the plaintext and 
the keys applied at each round are independent and uni- 
formly randomly selected for the encryption of each plain- 
text pair. In practice, equation (3) has been found to pro- 
vide a reasonable estimate of the characteristic probability 
in ciphers with mutually dependent round keys. 
Differential cryptanalysis of a basic SPN can be applied 
similarly to the attack on DES-like ciphers. For a DES-like 
cipher, differential qptanalysis determines key bits asso- 
ciated with the input to the last round function by using 
knowledge (directly available from the right half of the ci- 
phertext) of the two input values (and their difference) to the 
last round function combined with probabilistic knowledge 
of the output difference of the last round function. Simi- 
larly, differential cryptanalysis of a basic SPN can be used 
to determine the key bits XORed to the output of the last 
round of S-boxes by using knowledge of the two ciphertext 
values (and their dilference) and the probabilistic knowl- 
edge of the input difference to the last round of S-boxes. 
Hence, a diIferential attack may be successful if the crypt- 
analyst is aware of a highly probable characteristic for the 
firstR-lrounds,RR-l.TheattacktargetstheroundRS- 
boxes that are affected by the output changes of the charac- 
teristic, AVu- 1. The targeted subkey contains the key bits 
which are XORed with the output of the targeted S-boxes. 
Consequently, trying all sub-key values, the cryptanalyst 
can use the known ciphertext values to decrypt the portion 
of round R associated with the target S-boxes. (Ciphertext 
pairs which have bit changes in the output of non-targeted 
S-boxes may be discarded since they can not be generated 
by characteristic RR-~.) If the XOR difference of the tar- 
get S-box inputs determined by the partial decryption cot- 
responds to AVR- 1, then the corresponding sub-key count 
is incremented. The actual sub-key may be deduced as the 
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key which is consistent most frequently over a number of 
IlidS. 

In this paper we shall assume that the characteristic pmba- 
bility provides a reasonable estimate of the probability that 
round r will have a particular output difference, AV,, given 
AP. Differential cryptanalysis requires only the likely oc- 
currence of a particular AV, and it is conceivable that this 
AV, could occur as the result of several highly probable 
chamcteristics. Although the char&zteristic probability pn, 
is actually a lower bound on the probability that a particular 
AV, occurs, in cases where a highly probable characteristic 
may be found, we assume that it dominates the probability 
of AV, and the actual probability of AV, is very close 
to Pa- 
Using this assumption, we may approximate the number of 
chosen plaintexts required to determine the sub-key by ND 
where 

ND = l/pn,ml. (4) 

In practice, the number of chosen plaintexts required will 
be greater than ND since we have neglected the factor of 
2 (which arises from the fact that the chosen plaintexts am 
emxypted in pairs) and since many incorrect sub-keys, as 
well as the correct sub-key, are counted at least once. 
Let AX and AY represent the input and output XOR dif- 
ferences, respectively, to an S-box when a plaintext differ- 
ence AP is applied to the cipher. ‘Ihe existence of highly 
probable characteristics depends on two factors: the dis- 
tribution of S-box XOR difference pairs, (AX, AY), and 
the diffusion of bit changes within the network. We &tine 
the probability of an S-box XOR pair (AX, AY) to be the 
probability that AY occurs given that one of the input val- 
ues for X is randomly selected and the other is related by 
the difference AX. Let the probability of the most likely 
S-box XOR pair (other than (AX = 0, AY = 0)) be pa. 

In [ll], O’Connor shows that, for large n, the S-box XOR 
pair probability is expected to be at most n/2”-l. Hence, 
the expected maximum XOR pair probability decreases as 
the size of the S-box is increased. For 8 x 8 S-boxes, 
the expected maximum XOR pair probability satisfies pa 5 
2-4. 

(b) Linear Cryptanalysis 
In [6], Matsui presents an effective linear cryptanalysis 
method for DES. The attack uses a known plaintext tech- 
nique to extract key information by finding a linear equation 
consisting of plaintext, ciphertext. and key terms which is 
statistically likely to be satisfied. The full 16-round DES 
algorithm is susceptible to the attack with 247 known plain- 
texts and it is shown that the attack can even he modilied 
to be successful on an 8-round version of DES with 22g 
encrypted ASCIIcoded English blocks using a ciphertext 
only attack. 
In order to attack an SPN using the linear cryptanalysis 
technique, the cryptanalyst is interested in the best R-round 

linear approximation of the form: 

Pi, $ . . . @ Ps, $ Cj, $ . . . @ Cjc = Kk, @ . . . @ Kk,. (5) 

If we let pi represent the probability that equation (5) is 
satisfied. in order for the linear approximation to be valid 
pi # l/2 and the best expression is the equation for which 
lp~ - l/2] is maximized. If the magnitude lp~ - l/2( is 
large enough and sufilcient plaintext-ciphertext pairs are 
available. the equivalent of one key bit, expressed by the 
XOR sum of the key bits on the right side of equation (5) 
may be guessed as the value that most often satisfies the 
linear approximation. 

An apptopriate linear expression is derived by combin- 
ing a number of linear expressions for different rounds 
such that any intermediate teims (i.e., terms that are not 
plaintext, ciphertext, or key terms) are cancelled. Let 
the best linear approximation of an S-box, in the form 
alXl $ . . . @ anXn = blY1 63 . . . 63 b,Y,, be satisfied with 
probability pc assuming input X is randomly selected. In 
this paper, we consider the probability that a system linear 
expression is satisfied to be taken over the independent dis- 
tributions of plaintext and key. Hence, since the key bits 
XORed to the network bits prior to entering the S-boxes 
are independent and uniformly random. the inputs to the 
S-boxes involved in the linear approximation are indepen- 
dent and uniformly random. Under this assumption, it then 
follows 6om Lemma 3 in [6] that 

IPL - l/21 5 2O-l Ipc - 1/2y (6) 

where Q is the number of S-box linear approximations 
combined to give the overall linear approximation. 

It can be shown [6] that the number of known plaintexts 
required to give a 97.7% confidence in the corn% key bit 
may be approximated by NL where 

NL = Ipr. - l/21-‘. (7) 

It is obvious that NL can be increased by decreasing 
lp~ - l/21. Hence, selecting S-boxes for which pc + l/2 
will clearly aid in thwarting the attack. As well, the larger 
the number of S-boxes, Q, involved in the system equa- 
tion. the smaller (pi - l/2( and the mom known plaintexts 
required for the cryptanalysis. 

IIL S-box Design Criteria 

In this section, we consider S-box design criteria that are 
relevant to the two attacks and examine the procedures 
that may be followed to generate S-boxes that satisfy such 
design constraints. 
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(a) Diffusion 
S-boxes that effectively diffuse bit changes increase resis- 
tance to differential cryptanalysis. The diffusion properties 
of an S-box can be considered by examining the relationship 
between input and output XORs. Let wt(.) represent the 
Hamming weight of the specified argument and consider 
the following definition. 
Definition I: An S-box satisfies a d@iaion order qf A. 
A 1 0, if, for wt(AX) > 0, 

wt(AY) > 
{ 

X + 1 - wt(AX) ,wt(AX)<X+l 
o 

, otherwise. (8) 

Note that all bijective S-boxes satisfy ,! = 0 and that DES 
S-boxes satisfy X = 1 [121. As well, the diffusion order is 
bidirectional, i.e., the inverse S-box S-l satisfies the same 
diffusion order as S-box S. 
Let II represent the set of permutations for which no two 
outputs of an S-box are connected to one S-box in the 
next round. Note that the set II will only be non-empty 
if M 2 n. 
Lemma 1: Let ++I and $,+1 represent the number of 
S-boxes included in a characteristic from round r - 1 and 
round P + 1, respectively. For an SPN with it4 2 n S-boxes 
in each round, using a permutation A E II and S-boxes with 
a diffusion order of X. 

?L1+ v&+1 2 x + 2. (9) 

Proof: Let wx and WY represent the number of input 
and output bit changes for a particular S-box in round r 
selected such that wx # 0. From the constraint placed on 
the permutations of II and considering that M 2 n and 
wx,wy 5 n, we see that &-I 1 wx and &$I >_ WY. 
Hence, 

h-1 + to r+1 I wx + WY. (10) 

From the definition of diffusion order, wx + wy 3 A + 2 
and the inequality of (9) follows. cl 
Theorem I: Consider an SPN of R rounds of M S-boxes 
such that R is a multiple of 4 and M 2 n. Using a 
permutation A E II, the probability of an (R - l)-round 
characteristic satisfies 

PSI&, I (Ps)yR-(X+l) (11) 

where all S-boxes satisfy diffusion order J and pa represents 
the maximum S-box XOR pair probability. 
Proof An upper bound on the most probable (R - l)- 
round characteristic can be derived by considering the con- 
catenation of the most probable (R - 4)-round characteris- 
tic and the most probable 3-round characteristic. Further, a 
bound on the most likely (R - 4)-round characteristic can 

be determined as (R - 4)/4 iterations of the most proba- 
ble 4-round characteristic, and. hence, the (R - l)-round 
characteristic probability satisfies 

(12) 

where p;;” and p;“” are upper bounds on the probability 
of 3 and 4-round characteristics, respectively. 
In general, an upper bound on a characteristic probability 
can be derived by determining the characteristic which 
involves the fewest number of S-boxes and utilizing the 
maximum S-box XOR pair probability pa. From Lemma 1, 
the minimum number of S-boxes used by a characteristic 
in any 4 consecutive rounds is 2(A + 2) and therefore 

P;:” = (ps)” W2). (13) 

As well, by considering that the constraint of Lemma 1 
applies to the first and third rounds of a 3-round charac- 
teristic and that the second round has only one S-box, the 
minimum number of S-boxes used by a characteristic in any 
3 consecutive rounds is X + 3. Therefore, 

pn”,“” = (ps)? (14) 

Combining (12). (13). and (14) results in (11) and the 
theorem is proven. cl 
From Theorem 1 we see that S-boxes satisfying a high 
diffusion order can be used to decrease the upper bound on 
characteristic probabilities and thereby strengthen a network 
against differential cryptanalysis. One obvious approach 
to generate such S-boxes would be to randomly select an 
n x n bijective mapping and discard those which do not 
satisfy the appropriate property. Unfortunately, we have 
found experimentally that S-boxes which satisfy diffusion 
orders of A 2 1 are extremely rare and cannot generally be 
found by random starch. 
In Figure 2, we present an algorithm to select the S-box 
output values using a depth-tirst-search approach as an effi- 
cient method of generating S-boxes that satisfy a particular 
diffusion order. In the algorithm of Figure 2. we use the 
variables i and S(i) to represent, in decimal form. the S- 
box input and corresponding output, respectively. As well, 
rand( .) represents the random selection of an element from 
the specified set. 
There are limitations to the applicability of the depth-flrst- 
search algorithm. For example, while the algorithm suc- 
cessfully found many 8 x 8 S-boxes which satisfied diffu- 
sion orders of A = 1 and A = 2, it could not successfully 
find S-boxes with A 2 3. In the next section, we show 
that, although the algorithm is designed to find S-boxes 
that satisfy a particular diffusion order, it is also valuable 
in generating S-boxes which are cryptographically strong 
in other respects. 
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r={O,l,2 ,..., 2”-1) 
A0 = r 

i=o 

do 

if (Ai # (0)) fhen 

S(i) = rand(Ai) 

Ai = hi - {S(i)} 

if ((i, S(i)) safisfy A) then 

r = r - {S(i)) 

i=i+l 

Ai = r 
endif 

else 

jzj-1 

r = r+ {S(i)} 
endif 

while (i 5 2” - 1) 

oufput : (i, S(i)) for 0 5 i 5 2” - 1 

end 

Figure 2. Algorithm to Find 
S-boxes Satisfying Ditkion Order A. 

(b) Nonlinearity 

An important cryptographic property for product ciphers 
is nonlinearity. Since the S-boxes are the only nonlinear 
components of an SPN, it is crucial to consider the amount 
of nonlinearity requited in S-boxes to provide adequate 
overall SPN security. The linear cryptanalysis method 
of Matsui [6] is one basis for determining the amount of 
nonlinearity required in an S-box. 
Consider an SPN in which the lowest nonlinearity of an 
S-bOX is NLmin* i.e., NL(S) 2 N&i” for all S-bOXtX. 

Then the best linear approximation of an S-box occurs with 
probability PC where 

IPC - l/2) = 
2”-’ - NL,i, 

2” 
(15) 

Since there must be at least one S-box approximation in- 
cluded in the linear expression of equation (5) fop each 
round, the best possible linear approximation has (z = R 
and satisfies: 

IPL - l/2( 5 2R-1 Ipc - l/21R 

5 2R-1 
2 (16) 

‘S-boxes with NL(S) = 100 have been found using a 
more thorough search. 

Table 1. Nonlinearities of 8 x 8 S-boxes. 

It is known that there are n x n bijective mappings for which 
NL(S) 2 2”-’ - 2”i2 [131. Assuming that S-boxes are 
used that have NL(S) = 2”-’ - 2”i2. combining (7) and 
(16) we see that the number of known plaintexts required 
to determine one bit of key is at least 2nR-2(R-1). For 
example, ifan g-round SPN was constructed using 8 x 8 S- 
boxes with NL(S) = 112, it would take about 250 known 
plaintexts to determine one key bit. 
In [ 141, O’Connor shows that, as n gets larger, the expected 
distance of a randomly selected n-bit function (not neces- 
sarily balanced) from the neatest affine function increases 
and pr approaches the ideal value of l/2. In view of this, 
we expect that, as n gets large, S-boxes with high nonlin- 
earities will be plentiful and easy to find by random search. 
In order to confirm this intuition, 200 8 x 8 bijective S- 
boxes (i.e., A = 0) were randomly generated and their non- 
line&ties examined. As well, 50 S-boxes were constructed 
using the depth-tirst-search algorithm for the diffusion or- 
ders of A = 1 and ,J = 2. The results are given in Table 
1. We surmise that, as the diffusion characteristics become 
more constraining, the S-box nonlincarities arc adversely af- 
fected. However, for A = 0. 1, or 2, it is still reasonable to 
expect to find S-boxes with high nonlinearities of 94 cr 96. 

IV. Linear Transformations 
Between Rounds 

The permutations of an SPN belong to a specialized class 
of the set of linear transformations that may be used to 
achieve Shannon’s diffusion effect. In this section, we 
consider another class of invertible linear transfcrmations 
that may be used between rounds of S-boxes to increase 
the resistance to differential and linear cryptanalysis. 
Let N be even and consider the class of invertible linear 
transformations defined by 

v = r(L(U)) (17) 

where V = [VI b-2 . . . VN] is the vector of input bits to 
a round of S-boxes, U = [VI U2 . . . iYN] is the vector of 
bits from the previous round output, a E II, and L(U) = 
[151(U) . . . LN(U)]. The set II is defined to be the set of 
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permutations for which no two outputs of an S-box are 
connected to one S-box in the next round and 

Li(u) = 111 @ . . . @ vi-1 @ ui.+l @ . . . @ UN. (18) 

The linear transformation may be efficiently implemented 
by noting that each Li(U) can be Shply determined by 
XORing Vi with the XOR SUM of all Vi, 1 < j 5 N, i.e., 

Li(U)= r/i @& (19) 

where 

Q=($Uj. (20) 
j=l 

Theotwn 2: Consider an SPN of R rounds of M S-boxes 
such that R is a multiple of 4 and M 1 n. Let n 1 3 
and each S-box satisfy diffusion order A such that A 5 
(n - 1)/2. Using the linear transformation of equation (17). 
the probability of an (R - l)-round characteristic satisfies 

pflRsl 5 (ps)*R--(A+l) (21) 

where pa represents the maximum S-box XOR pair proba- 
bility. Further, for X = 0, the characteristic probability can 
be more tightly bounded by 

Pi-l,-, I (P6)+R-2. (22) 

Note that for A = 0 the linear transformation has decreased 
the upper bound on the characteristic probability and for 
A > 0 the bound on the characteristic probability has 
remained unchanged. 
Consider now the effects of the linear transformation on the 
applicability of linear cryptanalysis. Using the linear trans- 
formation ensures that there are a large number of S-box 
approximations included in the system linear approxima- 
tion, thereby increasing the number of required plaintexts. 
Theorem 3: Consider an SPN of R rounds of M S-boxes 
such that R is even and M 2 n. Using the linear transfor- 
mation of equation (17). the best possible R-round linear 
approximation requires (Y = 3R/2 S-box approximations 
and the probability of the linear approximation satisfies 

IpL - l/21 5 2+ypc - 1/2p (23) 

where pt represents the probability of the best S-box linear 
ilpprOXi~tiOn. 
Proof: We shall show in the proof that, using the linear 
transformation of equation (17), it is impossible to involve 
only one S-box per round in the linear approximation. 
Let the number of S-boxes from round i involved in the 
OV~I SySklll linear approximation be ~p%X~~ted by $Ji. 
Consider round r to contribute only one S-box to the linear 
approximation, i.e., v& = 1. The linear approximation 

of this S-box involves a linear combination of the input 
bits, alXl $ azX2 $ . . . 63 a,X,,. where a = [al . . . a,]. 
ai E (0, 1). and a linear combination of the output bits, 
b,Yl @bzYz$ . ..@b.Y,. where b = [bl . . . a,,], bi E (0,l). 
so that the probability of 

(24) 
i=l i-1 

doesnotequal1/2. (Notethatthetrivialcaseofa= Oand 
b=Oisofnouseinlinearcryptanalysisandisignored) 
Without loss of generality. assume that the S-box included 
in the system linear approximation from round r is the first 
S-box so that X = [X, X2 . . . X,] = [VI V2 . . . Vn] where 
vi is the i-th input bit to round r. ‘Ihe input to round r 
is cktermined by the permutation a so that V;: = Lji (U) 
where U is the vector of output bits from the S-boxes of 
round r - 1. s~bs~~edy, we have Xi = lYji $ & where 
Q is defined in quati~n (20) and each Uj,, 1 < i 5 n, 
comes from a different S-box (as a result of the definition 
of the penmation 7r). We now have 

i=l i=l 

= 4CliUji $ &CXiQ 

i=l i=l 

, wt(a) odd 

, cut(a) even. 

Hence, if wt(a) is odd, then the sum used for the input of 
the round r S-box is determined by N - wt(a) outputs of 
round r - 1 since a term is removed from Q when ai = 1. If 
wt(a) is even, then the sum used for the input of the round 
r S-box is determined by wt(a) outputs of round r - 1 since 
a term is only included in the summation when ai = 1. 
If, for example, w2(a) = 1, then the corresponding S-box 
input bit used in the linear approximation is a function of 
N - 1 output bits from round r - 1 and, hence, T+!J,-~ = 
M. If, however, wt(a) = 2, then t/+-l = 2. Hence, 
considering tier values for wl(a). 1 5 wl(a) 5 n. we 
may now conclude that given & = 1. $J~-~ 2 2. 
A similar analysis may be used to determine a lower bound 
on the number of S-boxes included in the linear approxi- 
mation from round r + 1. $J~+~, given q!+ = 1. This is 
possible due to the following easily verifiable observations: 
L-1 E t, 7r-1 E II, and L(a(-)) E r(L(.)). Hence, we 
have 

U’ = *-‘(L(v*)) (26) 

where U’ is the vector of output bits of the round r 
substitutions and V’ is the vector of input bits to the round 
r + 1 substitutions. Since (26) is of a similar form to (17). 
we may determine the bound for $J~+~ analogously to the 
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Table 2. Resistance to Cryptanalysis for Networks 
Using 8 x 8 S-boxes with pa = 2-4 and NL,i, = 96. 

bound for $,-i. Hence, it follows that $++1 2 2 given 
$Jr = 1. 
We conclude, therefore, that the number of S-boxes in- 
volved in the linear approximation from any 2 consecutive 
rounds must be at least 3 and for an R-round SPN, assuming 
R is even, a > 3R/2. cl 
Note that results similar to Theorem 2 and Theorem 3 
can be derived for .C(U) defined as other invertible linear 
transformations W~IE each Li(U) may contain fewer than 
the N - 1 terms of equation (18). 

V. Summary of Results 

In Table 2, for SPNs of 8 and 16 rounds, we have summa- 
rized lower bounds on the values of ND and NL (defined 
in equations (4) and (7). respectively). Both networks am 
assumed to he composed of 8 x 8 S-boxes where the max- 
imum S-box XOR pair probability is pa = 2-4 and the 
minimum S-box nonlinearity is NL,i, = 96. Results are 
presented for networks using permutations from the set II 
and for networks using a linear transformation of the form 
of equation (17). Note that the analysis of ‘lbble 2 is equally 
applicable to the decryption as well as the encryption net- 
work. (Ihis is important since the decryption network may 
also be attacked using either cryptanalysis method) 

VI. Conclusion 

In this paper we have developed bounds on the probabilities 
of a differential characteristic and a linear approximation for 
substitution-permutation networks. It is important to note 
that the hounds are of interest. not because they give a 
provable lower bound on the complexity of the cryptanaly- 
sis, but because they suggest the level of difficulty required 
in implementing the attacks. For example, in a differential 
attack, the cryptanalyst typically identifies a high probabil- 
ity input difference to the last round by searching for high 
probability differential characteristics. Similarly, for linear 

cryptanalysis, a good linear approximation can be practi- 
cally used by a cryptanalyst to determine which subsets of 
plaintext and ciphertext bits to examine in the attack 
The analysis presented in this paper suggests the follow- 
ing general design principles for substitution-permutation 
M4WCUk.K 

l large, randomly selected S-boxes are very likely to 
have high nonlinearity, 

. S-boxes which have good diffusion properties increase 
the resistance to differential cryptanalysis. and 

. the use of an appropriate linear transformation between 
rounds increases the resistance to linear cryptanalysis. 

Consequently, with an appropriate selection of S-boxes 
and linear transformations between rounds of substitutions, 
security in relation to ditferential and linear cryptanalysis 
can be improved, tesulting in an efficient implementation 
with fewer rounds required to provide adequate security. 
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