
POSTER: Towards Attribute Based Group Key
Management

Mohamed Nabeel
Dept. of Computer Science

Purdue University
West Lafayette, IN, USA

nabeel@cs.purdue.edu

Elisa Bertino
Dept. of Computer Science

Purdue University
West Lafayette, IN, USA

bertino@cs.purdue.edu

ABSTRACT

Attribute based systems enable fine-grained access control
among a group of users each identified by a set of attributes.
Secure collaborative applications need such flexible attribute
based systems for managing and distributing group keys.
However, current group key management schemes are not
well designed to manage group keys based on the attributes
of the group members. In this poster, we propose a novel key
management scheme that allows users whose attributes sat-
isfy a certain policy to derive the group key. Our scheme effi-
ciently supports rekeying operations when the group changes
due to joins or leaves of group members. During a rekey op-
eration, the private information issued to existing members
remains unaffected and only the public information is up-
dated to change the group key. Our scheme is expressive;
it is able to support any monotonic policy over a set of at-
tributes. Our scheme is resistant to collusion attacks; group
members are unable to pool their attributes and derive the
group key which they cannot derive individually.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms

Security, Algorithms, Design

1. INTRODUCTION
Current technological innovations and new application do-

mains have pushed novel paradigms and tools for supporting
collaboration among (possibly very dynamic) user groups.
An important requirement in collaborative applications is
to support operations for user group memberships, like join
and leave, based on identity attributes (attributes, for short)
of users; we refer to this requirement as attribute-based group

dynamics. As today enterprises and applications are adopt-
ing identity management solutions, it is crucial that these
solutions be leveraged on for managing groups. Typically, a
user would be automatically assigned (de-assigned) a group
membership based on whether his/her attributes satisfy (cease
to satisfy) certain group membership conditions. Another
critical requirement is to provide mechanisms for group key
management (GKM), as very often the goal of a group is

Copyright is held by the author/owner(s).
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

to share data. Thus data must be encrypted with keys
made available only to the members of the group. The
management of these keys, which includes selecting, dis-
tributing, storing and updating keys, should directly and
effectively support the attribute-based group dynamics and
thus requires an attribute-based group key management (AB-
GKM) scheme, by which group keys are assigned (or de-
assigned) to users in a group based on their identity at-
tributes. This scheme recalls the notion of attribute-based
encryption (ABE) [4, 1]; however, as we discuss later on,
ABE has several shortcomings when applied to GKM. There-
fore, a different approach is needed.

A challenging well known problem in GKM is how to effi-
ciently handle group dynamics, i.e., a new user joining or an
existing group member leaving. When the group changes, a
new group key must be shared with the existing members,
so that a new group member cannot access the data trans-
mitted before she joined (backward secrecy) and a user who
left the group cannot access the data transmitted after she
left (forward secrecy). The process of issuing a new key is
called rekeying or update. Another challenging problem is to
defend against collusion attacks by which a set of colluding
fraudulent users are able to obtain group keys which they
are not allowed to obtain individually.

In a traditional GKM scheme, when the group changes,
the private information given to all or some existing group
members must be changed which requires establishing pri-
vate communication channels. Establishing such channels is
a major shortcoming especially for highly dynamic groups.
Recently proposed broadcast GKM (BGKM) schemes [5]
have addressed such shortcoming. BGKM schemes allow
one to perform rekeying operations by only updating some
public information without affecting private information ex-
isting group members possess. However, BGKM schemes
do not support group membership policies over a set of at-
tributes. In their basic form, they can only support 1-out-
of-n threshold policies by which a group member possessing
1 attribute out of the possible n attributes is able to derive
the group key. Further, they become inefficient when the
group size is large. In this poster we show a novel expressive
AB-GKM scheme which allows one to express any threshold
or monotonic 1 conditions over a set of identity attributes.
Further, we improve the performance of BGKM schemes by
utilizing the concepts from subset-cover techniques [2].

A possible approach to construct an AB-GKM scheme is
to utilize attribute-based encryption (ABE) primitives [4,

1Monotone formulas are Boolean formulas that contain only
conjunction and disjunction connectives, but no negation.

821

1]. Such an approach would work as follows. A key genera-
tion server issues each group member a private key (a set of
secret values) based on the attributes and the group mem-
bership policies. The group key, typically a symmetric key,
is then encrypted under a set of attributes using the ABE en-
cryption algorithm and broadcast to all the group members.
The group members whose attributes satisfy the group mem-
bership policy can obtain the group key by using the ABE
decryption primitive. One can use such an approach to im-
plement an expressive collusion-resistant AB-GKM scheme.
However, such an approach suffers from some major draw-
backs. Whenever the group dynamic changes, the rekey-
ing operation requires to update the private keys given to
existing members in order to provide backward/forward se-
crecy. This in turn requires establishing private communica-
tion channels with each group member which is not desirable
in a large group setting. Further, in applications involving
stateless members where it is not possible to update the ini-
tially given private keys and the only way to revoke a mem-
ber is to exclude it from the public information, an ABE
based approach does not work. Another limitation is that
whenever the group membership policy changes, new pri-
vate keys must be re-issued to members of the group. Our
construction addresses these shortcomings.

2. BACKGROUND
Our construction is based on the ACV-BGKM (Access

Control Vector BGKM) scheme [5], a provably secure BGKM
scheme, and Shamir’s threshold scheme. We give an overview
of ACV-BGKM in this section.
BGKM schemes are a special type of GKM scheme where

the rekey operation is performed with a single broadcast
without using private communication channels. Unlike con-
ventional GKM schemes, BGKM schemes do not give users
the private keys. Instead users are given a secret which is
combined with public information to obtain the actual pri-
vate keys. Such schemes have the advantage of requiring a
private communication only once for the initial secret shar-
ing. The subsequent rekeying operations are performed us-
ing one broadcast message. Further, in such schemes achiev-
ing forward and backward security requires only to change
the public information and does not affect the secret shares
given to existing users. In general, a BGKM scheme consists
of the following five algorithms: Setup, SecGen, KeyGen,
KeyDer, and Update. We provide an overview of the con-
struction of the ACV-BGKM scheme under a client-server
architecture.
Setup(ℓ): Svr initializes the following parameters: an ℓ-
bit prime number q, the maximum group size N (≥ n and
N is usually set to n + 1), a cryptographic hash function
H(·) : {0, 1}∗ → Fq, where Fq is a finite field with q elements,
the keyspace KS = Fq, the secret space SS = {0, 1}ℓ and
the set of issued secrets S = ∅.
SecGen(): Svr chooses the secret si ∈ SS uniformly at
random for Usri such that si /∈ S, adds si to S and finally
outputs si.
KeyGen(S): Svr picks a random k ∈ KS as the group key.
Svr chooses N random bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ.
Svr creates an n× (N + 1) Fq-matrix where

ai,j =

{

1 if j = 0
H(si||zj) if 1 ≤ i ≤ n, 1 ≤ j ≤ N, si ∈ S

Svr then solves for a nonzero (N + 1)-dimensional column

Fq-vector Y such that AY = 0. Note that such a nonzero
Y always exists as the nullspace of matrix A is nontriv-
ial by construction. Here we require that Svr chooses Y
from the nullspace of A uniformly at random. Svr con-
structs an (N +1)-dimensional Fq-vector ACV = k ·eT1 +Y ,
where e1 = (1, 0, . . . , 0) is a standard basis vector of FN+1

q ,

vT denotes the transpose of vector v, and k is the cho-
sen group key. The vector ACV controls the access to the
group key k and is called an access control vector. Svr lets
PI = 〈ACV, (z1, z2, . . . , zN)〉, and outputs public PI and
private k.
KeyDer(si, PI): Using its secret si and the public infor-
mation tuple PI, Usri computes ai,j , 1 ≤ j ≤ N, as in the
above formula and sets an (N+1)-dimensional row Fq-vector
vi = (1, ai,1, ai,2, . . . , ai,N). vi is called a Key Extraction
Vector (KEV) and corresponds to a unique row in the ac-
cess control matrix A. Usri derives the key k′ from the inner
product of vi and ACV : k′ = vi ·ACV .

The derived key k′ is equal to the actual group key k if
and only if si is a valid secret used in the computation of
PI, i.e., si ∈ S.
Update(S): It runs the KeyGen(S) algorithm and out-
puts the new public information PI ′ and the new group key
k′.

The above construction becomes impractical with large
number of users since the complexity of the matrix and the
public information is O(n). In our technical report [3], we
propose using subset-cover techniques with BGKM to make
the complexity sublinear in n.

3. OUR SCHEME
We use a modified version of ACV-BGKM scheme to con-

struct our AB-GKM scheme. The idea of the modified ver-
sion is that instead of giving each member in the group same
intermediate key, each member is given a unique intermedi-
ate key in order to prevent collusion attacks. Our technical
report [3] provides the details and security proofs of it. We
construct a separate BGKM instance for each attribute and
embed the policy P in an access structure T . T is a tree
with the internal nodes representing threshold gates and the
leaves representing BGKM instances for attributes. T can
represent any monotonic policy. The goal of the access tree
is to allow deriving the group key for only the users whose
attributes satisfy the access structure T .

A high-level description of the access tree is as follows.
Each threshold gate in the tree is described by its child
nodes and a threshold value. The threshold value tx of a
node x specifies the number of child nodes that should be
satisfied in order to satisfy the node. Each threshold gate is
modeled as a Shamir secret sharing polynomial whose degree
equals to one less than the threshold value. The root of the
tree contains the group key and all the intermediate values
are derived in a top-down fashion. A user who satisfies the
access tree derives the group key in a bottom-up fashion.

Our AB-GKM scheme consists of five algorithms:
Setup(ℓ): Svr initializes the parameters of the underlying
modified ACV-BGKM scheme: the prime number q, the
maximum group size N (≤ n), the cryptographic hash func-
tion H, the key space KS, the secret space SS, the set of
issued secrets S, the user-attribute matrix UA and the uni-
verse of attributes A = {attr1, attr2, · · · , attrm}.

Svr defines the Lagrange coefficient ∆i,Q for i ∈ Fq and a
set, Q of elements in Fq:

822

∆i,Q(x) =
∏

j∈Q,j 6=i

x− j

i− j
.

SecGen(γi): For each attribute attrj ∈ γi, where γi ⊂ A,
Svr invokes SecGen() of the modified ACV-BGKM scheme
to obtain the random secret si,j . It returns βi, the set of
secrets for all the attributes in γi.
KeyGen(P): Svr transforms the policy P into an access tree
T . The algorithm outputs the public information which a
user can use to derive the group key if and only if the user’s
attributes satisfy the access tree T built for the policy P. We
refer the reader to our technical report [3] for the detailed
algorithm and security proofs.
For each user Usri having the intermediate set of keys

Ki = {ki,j |1 ≤ j ≤ m}, where ki,j represents the inter-
mediate key for Usri and attrj , the following construction is
performed. For each attribute attri, there is a leaf node in T .
The construction of the tree is performed top-down. Each
node x in the tree is assigned a polynomial qx. The degree
of the polynomial qx, dx is set to tx−1, that is, one less than
the threshold value of the node. For the root node r, qr(0)
is set to the group key k and dr other points are chosen
uniformly at random so that qr is a unique polynomial of
degree dr fully defined through Lagrange interpolation. For
any other node x, qx(0) is set to qparent(x)(index(x)), where
parent(x) is the parent node of x, index(x) is the index
of x, and dx other points are chosen uniformly at random
to uniquely define qx. For each leaf node x corresponding
to a unique attribute attrj , qx(0) is set to qparent(x)(1) and
ki,j = qx(0).
At the end of the construction of T , we have all the sets of

intermediate keys K = {Ki|Usri, 1 ≤ i ≤ N}. For each leaf
node x, the modified BGKM algorithm KeyGen(Sx, Kx),
where Sx is the set of secrets corresponding to the attribute
associated with the node x andKx = {ki,j |1 ≤ i ≤ N, attrj},
j = attr(x), the index of attribute x, is invoked to generate
public information tuple PIx. We denote the set of all the
public information tuples PI = {PIj |attrj , 1 ≤ j ≤ m}.
KeyDer(βi, PI): Given βi, a set of secret values corre-
sponding to the attributes of Usri, and the set of public
information tuples PI, it outputs the group key k.
The key derivation is a recursive procedure that takes βi

and PI to bottom-up derive k. Note that a user can obtain
the key if and only if her attributes satisfy the access tree
T .
For each leaf node x corresponding to the attribute with

the user’s secret value sx ∈ βi, the user derives the interme-
diate key kx using the underlying modified BGKM scheme
KeyDer(sx, P Ix). Using Lagrange interpolation, the user
recursively derives the intermediate key kx for each internal
ancestor node x until the root node r is reached and kr = k.
Since intermediate keys are tied to unique polynomials, users
cannot collude to derive the group key k if they are unable
to derive it individually. A detailed description follows.
If x is a leaf node, it returns an empty value ⊥ if sx 6∈

βi, otherwise it returns the key kx = vx · ACVx, where vx
is the key derivation vector corresponding to the attribute
attrattr(x) and ACVx the access control vector in PIx.
If x is an internal node, it returns an empty value ⊥ if the

number of child nodes having a non-empty key is less than
tx, otherwise it returns kx as follows:

Let the set Qx contain the indices of tx children nodes
having non-empty keys {ki|i ∈ Qx}.

∆i,Q
x
(y) =

∏

i∈Q
x
,i 6=j

y − i

j − i

qx(y) =
∑

i∈Q
x

ki∆i,Q
x
(y)

kx = qx(0).

The above computation is performed recursively until the
root node is reached. If Usri satisfies T , Usri gets k = qr(0),
where r is the root node. Otherwise, Usri gets an empty
value ⊥.

4. CONCLUSIONS
We presented a high-level view of a GKM scheme that sup-

ports a large variety of conditions over a set of attributes.
When the group changes, the rekeying operations do not af-
fect the private information of existing group members and
thus our scheme eliminates the need of establishing private
communication channels. Our scheme provides the same
advantage when the group membership conditions change.
Furthermore, the group key derivation is very efficient as
it only requires a simple vector inner product and/or poly-
nomial interpolation. Additionally, our scheme is resistant
to collusion attacks. Multiple group members are unable to
combine their private information in a useful way to derive
a group key which they cannot derive individually.

We plan to implement our scheme and compare the per-
formance of it with an ABE based scheme.

Acknowledgements

The work reported in this paper has been partially sup-
ported by the NSF grant 0712846“IPS: Security Services for
Healthcare Applications,” and the MURI award FA9550-08-
1-0265 from the Air Force Office of Scientific Research.

5. REFERENCES
[1] V. Goyal, O. Pandey, A. Sahai, and B. Waters.

Attribute-based encryption for fine-grained access
control of encrypted data. In CCS ’06: Proceedings of

the 13th ACM conference on Computer and

communications security, pages 89–98, New York, NY,
USA, 2006. ACM.

[2] D. Halevy and A. Shamir. The lsd broadcast encryption
scheme. In Proceedings of the 22nd Annual

International Cryptology Conference on Advances in

Cryptology, CRYPTO ’02, pages 47–60, London, UK,
2002. Springer-Verlag.

[3] M. Nabeel and E. Bertino. Attribute based group key
management. Technical Report CERIAS TR 2010,
Purdue University, 2010.

[4] A. Sahai and B. Waters. Fuzzy identity-based
encryption. In Eurocrypt 2005, LNCS 3494, pages
457–473. Springer-Verlag, 2005.

[5] N. Shang, M. Nabeel, F. Paci, and E. Bertino. A
privacy-preserving approach to policy-based content
dissemination. In ICDE ’10: Proceedings of the 2010

IEEE 26th International Conference on Data

Engineering, 2010.

823

