
PICCO: A General-Purpose Compiler for Private
Distributed Computation

Yihua Zhang, Aaron Steele, and Marina Blanton
Department of Computer Science and Engineering

University of Notre Dame, Notre Dame, IN, USA
{yzhang16,asteele2,mblanton}@nd.edu

ABSTRACT
Secure computation on private data has been an active area of re-
search for many years and has received a renewed interest with
the emergence of cloud computing. In recent years, substantial
progress has been made with respect to the efficiency of the avail-
able techniques and several implementations have appeared. The
available tools, however, lacked a convenient mechanism for im-
plementing a general-purpose program in a secure computation
framework suitable for execution in not fully trusted environments.
This work fulfills this gap and describes a system, called PICCO,
for converting a program written in an extension of C into its dis-
tributed secure implementation and running it in a distributed envi-
ronment. The C extension preserves all current features of the pro-
gramming language and allows variables to be marked as private
and be used in general-purpose computation. Secure distributed
implementation of compiled programs is based on linear secret
sharing, achieving efficiency and information-theoretical security.
Our experiments also indicate that many programs can be evaluated
very efficiently on private data using PICCO.

Categories and Subject Descriptors
K.6 [Management of Computing and Information Systems]: Se-
curity and Protection; C.2.4 [Computer-Communication Networks]:
Distributed Systems—distributed applications

Keywords
Secure multi-party computation; secure computation outsourcing;
general-purpose computation; compiler; source-to-source transla-
tor; linear secret sharing; parallel execution

1. INTRODUCTION
This work is motivated by the broad goal of developing tech-

niques suitable for secure and general data processing and out-
sourcing. The desire to compute on sensitive data without having
to reveal more information about the data than necessary has led to
several decades of research in the area of secure multi-party compu-
tation (SMC). Today, cloud computing serves as a major motivation
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2477-9/13/11 ...$15.00.
http:///dx.doi.org/10.1145/2508859.2516752.

for the development of secure data processing techniques suitable
for use in outsourced environments. This is because security and
privacy considerations are often cited as one of the top impediments
to harnessing the benefits of cloud computing to the fullest extent.

Despite the sheer volume of research literature on privacy-preserving
computation and newly appearing secure outsourcing techniques,
most of the available techniques focus on a rather narrow domain,
namely, integer-based arithmetic. Little or no attention has been
paid to other types of computation, as well as to data structures and
algorithms suitable for secure data processing in not fully trusted
environments. With the recent progress in the performance of basic
secure computation techniques and the shift toward cloud comput-
ing, we believe that it is the prime time to enable privacy-preserving
execution of any functionality or program, or general-purpose se-
cure data processing.

Toward this goal, this work introduces PICCO (Private dIstributed
Computation COmpiler) — a system for translating a general-purpose
program for computing with private data into its secure implemen-
tation and executing the program in a distributed environment. The
main component of PICCO is a source-to-source compiler that trans-
lates a program written in an extension of the C programming lan-
guage with provisions for annotating private data to its secure dis-
tributed implementation in C. The resulting program can conse-
quently be compiled by the native compiler and securely run by
a number of computational nodes in the cloud or similar environ-
ment. Besides the compiler, PICCO includes programs that aid
secure execution of user programs in a distributed environment by
preprocessing private inputs and recovering outputs at the end of
the computation.

Our desire to build as general of a tool as possible is supported
by two important aspects of this work:
• We make a distinction between the participant(s) who hold

private inputs, participant(s) who receive the output, and com-
putational parties who conduct the computation. This al-
lows the framework to be used in many contexts including
privacy-preserving collaborative computation with multiple
participants and secure computation outsourcing by one or
multiple clients.
• The goal of this work is to support as wide of a range of

functionalities as possible, i.e., as long as the functionality
is known at the run-time, it can be securely evaluated in our
framework. Toward this goal, we supplement the functional-
ity of C with a number of private data types and operations
on them, and incorporate them in standard types of construc-
tions used in C. For example, unlike other compilers, PICCO
has support for floating point arithmetic on private data.

We hope that our system will aid accessibility and wider adoption
of general-purpose secure computation and outsourcing.

813

Performance is a key factor for secure computation. For that rea-
son, PICCO utilizes lightweight information-theoretically secure
techniques based on secret sharing to build secure distributed im-
plementations of user programs. The resulting implementations
promise to be particularly efficient and suitable for large-scale ap-
plications, as evidenced by our experiments.

The remainder of this work describes the design and implemen-
tation of our system as well as reports on the performance of a
number of programs compiled and executed using PICCO.

2. RELATED WORK
There are a number of existing tools and compilers for secure

two- and multi-party computation, which are relevant in the con-
text of this work. They include Fairplay [35], FairplayMP [8],
Sharemind [10], VIFF [19], SEPIA [14], TASTY [28], and a secure
two-party compiler for (a subset of) ANSI C [29]. While many of
them were designed to support a rather general types of compu-
tation (normally on integers) and some have attractive properties,
due to efficiency and flexibility goals that we target to achieve we
choose to build our own compiler instead of directly extending one
of the existing tools. In particular, the features that we find crucial
are: (i) support for multi-party computation, (ii) support for a vari-
able number of participants (including separation between compu-
tational, input, and output parties), (iii) the use of standard linear
secret sharing techniques, (iv) applicability of techniques for ma-
licious adversaries, (v) support for arithmetic of desired precision,
and (vi) efficiency. None of the above mentioned tools simultane-
ously achieve the desired properties (or can be modified to achieve
them at a relatively small cost).

In more detail, Fairplay [35] was the first compiler for secure
two-party computation based on evaluation of garbled Boolean cir-
cuits. It allows a user to specify a function to be securely evalu-
ated in a high-level language SFDL, compile it, and run the corre-
sponding protocol. The circuit optimization part of compilation is
known to have large memory requirements [9]. FairplayMP [8] ex-
tends Fairplay with multi-party functionality. It uses several inter-
active operations on secret-shared values for the evaluation of each
Boolean gate, resulting in a performance disadvantage compared
to multi-party solutions that directly build on a linear secret shar-
ing scheme. TASTY [28] is a recent tool that combines two-party
garbled circuit evaluation with computation based on homomor-
phic encryption. The desired functionality is specified in a custom
language TASTYL, which is a subset of python. Another recent
two-party compiler [37] was developed with the goal of extensibil-
ity, which would permit different techniques to be used in a single
protocol. The most recent two-party compiler [29] allows a pro-
gram written in ANSI C to be compiled into a garbled circuit. The
current limitations of it include no coverage of real numbers, point-
ers, or variable-length numeric data types.

Sharemind [10] is the most developed and efficient tool to date
with a built-in support of integer arithmetic, arrays, and matrices. It
has a number of operations written in the assembly language, which
results in an efficient implementation. A C-like language SecreC
was developed for specifying the desired computation [31]. Unfor-
tunately, Sharemind uses non-standard secret-sharing techniques
with three parties, which do not automatically extend to other num-
bers of computational parties. In addition, the use of non-standard
arithmetic makes many existing techniques inapplicable, including
techniques for security against malicious adversaries. Sharemind
also supports only integers of fixed 32-bit length.

SEPIA [14] is a library for secure distributed processing of net-
work data based on linear secret sharing techniques. It has an ex-
plicit separation between computational parties and the parties who

Tool/compiler No. Basic Varying Non-int Type of
parties technique precision arithmetic parallelism

Fairplay 2 GC
√

N/A
C compiler [29] 2 GC

√
N/A

TASTY 2 GC & HE
√

N/A
FairplayMP ≥ 3 GC & SS

√
N/A

Sharemind 3 additive SS
√

arrays
VIFF ≥ 3 linear SS

√
each interactive op

This work ≥ 3 linear SS
√ √ loops, arrays, and

user-specified

Table 1: Summary of related work.

contribute inputs and obtain outputs. It was developed for the pur-
poses of privacy-preserving intrusion detection and has features in-
herent to this application which limit its applicability to a wider
range of collaborative computation.

VIFF [19] is a compiler based on standard multi-party linear se-
cret sharing techniques. It was designed to be suitable, and has
support, for security in presence of malicious parties and uses spe-
cially designed for this purpose asynchronous techniques. VIFF
tries to parallelize as many operations as possible, with each in-
teractive operation implemented as a callback. This means that all
operations are scheduled when a protocol starts, but each operation
is executed when its inputs become available. Unfortunately, the
choice of the programming language in which it is implemented
and the way parallelism is handled (with a heavy-weight thread per
elementary operation) makes it unnecessarily slow in practice.

Lastly, the compiler described in [32] is complementary to our
work, and if computational parties coincide with output parties, it
can be used to optimize performance of user-specified programs.

The features of the available compilers and tools are summarized
in Table 1. Parallel execution optimizations are not applicable to
some tools where the computation can always be realized in a con-
stant number of rounds. In the table, GC stands for garbled circuits,
HE for homomorphic encryption, and SS for secret sharing.

3. FRAMEWORK
In this work, we utilize a threshold linear secret sharing scheme

for representation of and secure computation over private values.
We choose to concentrate on this setting due to its flexibility and
speed. Throughout this work, we thus use the multi-party setting in
which n > 2 parties securely evaluate a function on private inputs
and output the result to the recipients of the computation. We divide
all participants into three groups: The input parties distribute their
inputs in the form of shares to the computational parties prior to the
computation. The computational parties carry out the computation
on secret-shared data. Upon completion of the computation, they
communicate their shares of the result to the output parties, who
reconstruct the values and learn the result. Note that there are no
constraints on how these three groups are formed, and a single en-
tity can be involved in a protocol taking on one or more of the above
roles. This formulation of secure computation is flexible enough to
naturally fit several broad categories of collaborative and individual
computing needs. In particular, a number of parties with a private
input each can engage in secure function evaluation themselves and
learn the result (or their respective results). Alternatively, they can
choose a subset of them, a number of outside parties, or a combi-
nation of the above to carry out the computation, while each input
owner distributes her private data to the parties who carry out the
computation. Another very important scenario consists of a single
entity outsourcing its computation to a number of computational
nodes. In this case, the data owner will be the only input and output

814

party. Finally, the setup also allows two parties with private inputs
to seek help of one or more additional servers and proceed with
secure evaluation of their function using multi-party techniques.

We refer to computational parties as P1, . . ., Pn and assume that
they are connected by secure authenticated channels with each other.
Each input and output party also establishes secure channels with
P1 through Pn. With a (n, t)-secret sharing scheme, any private
value is secret-shared among n parties such that any t + 1 shares
can be used to reconstruct the secret, while t or fewer parties can-
not learn any information about the shared value, i.e., it is perfectly
protected in information-theoretic sense. Therefore, the value of n
and t should be chosen such that an adversary is unable to corrupt
more than t computational parties (for instance, data owners can
acquire nodes located at different cloud service providers).

In a linear secret sharing scheme, a linear combination of secret-
shared values can be performed by each computational party lo-
cally, without any interaction, but multiplication of secret-shared
values requires communication between all of them. In particu-
lar, we utilize Shamir secret sharing scheme [38], in which a secret
value s is represented by a random polynomial of degree t with
the free coefficient set to s. Each share of s corresponds to the
evaluation of the polynomial on a unique non-zero point. All op-
erations are performed in a field F (normally Zp for a small prime
p larger than any value that needs to be represented). Then given
t + 1 or more shares, the parties can reconstruct the polynomial
using Lagrange interpolation and learn s. Possession of t or fewer
shares, however, information-theoretically reveals no information
about s. With this representation, any linear combination of secret-
shared values is computed locally by each party using its shares,
while multiplication involves multiplying shares locally then ap-
plying interactive re-sharing and interpolation operations to reduce
the degree of the resulting polynomial from 2t to t. This places a
restriction on the value of t and we require that t < n/2. Multipli-
cation is used as the basic building block that requires interaction.
More generally, a multivariate polynomial of degree k can be eval-
uated by the computational parties using a single interaction when
kt < n. In our case, by assuming t < n/2 the parties can compute
multiplication or evaluate any multivariate polynomial of degree 2
using a single interaction. We implement multiplication as given in
[26], where each party transmits n−1 messages resulting inO(n2)
overall communication. More advanced techniques (such as [22])
allow for linear communication complexity per multiplication and
can be employed to optimize communication.

A number of operations that we utilize for arithmetic use pseudo-
random secret sharing (PRSS) [18], which allows the computa-
tional parties to agree on shares of a random value without com-
munication. We refer the reader to [18] for additional details.

Throughout this work we assume that the participants are semi-
honest (also known as honest-but-curious or passive), in that they
perform the computation as prescribed, but might attempt to learn
additional information from the messages that they receive. Secu-
rity in presence of semi-honest adversaries is commonly defined
by assuming ideal functionality, in which the computation is per-
formed by a trusted third party, and showing that the real execution
of a protocol does not reveal any additional information about pri-
vate data than in the ideal model. In our setting security means
that the combined view of any coalition of t or less computational
parties can be simulated without access to the private data. We an-
ticipate that PICCO will often be used in the setting when the com-
putational parties do not contribute any input and do not receive
any output (i.e., the case of secure computation outsourcing).

We use existing efficient protocols for computation on integer
and floating point values that have previously been shown secure in

our security model. Furthermore, by the composition theorem [15],
these building blocks can be combined together to achieve security
of the overall computation. Because we do not introduce any new
cryptographic protocols but rather build an automated tool for their
composition, we omit formal security definitions.

Performance of secure computation protocols is of a paramount
importance for their practical use, and in our framework perfor-
mance of a protocol is normally measured in terms of two parame-
ters: (i) the number of interactive operations (multiplications, dis-
tributing shares of a secret, or opening a secret-shared value) neces-
sary to perform the computation and (ii) the number of sequential
interactions, i.e., rounds. Our goal is to minimize both of those
parameters and in particular bring the round complexity as close as
possible to the optimal complexity that can be achieved in a custom
solution with the fastest available building blocks.

One interesting component of this work to be explored is the
use of parallelism in the compiled functionalities. Our goal is to
avoid too restrictive and too general use of parallelism found in
prior work and instead incorporate enough flexibility that will pro-
vide fast runtime of compiled programs. That is, in frameworks
similar to ours, Sharemind [10] provides parallelism only at the
level of arrays, where multiple instances of an operation applied to
each cell of the array are performed in a batch. This is insufficient
for reducing the round complexity of many types of computation to
a practical level. In VIFF [19], on the other hand, each interactive
operation is allocated its own thread and is scheduled at the pro-
gram initiation, but is executed when its inputs become available.
Managing a large number of threads (many of which are not neces-
sary) slows down the execution. We propose to provide parallelism
which is still restrictive, but general enough for efficient execution.

We build on the knowledge of distributed systems compilers such
as OMPi [23] to achieve efficiency in compilation and execution.

4. COMPILER DESIGN

4.1 Overview
We choose to implement our compiler as a source-to-source trans-

lator. It is designed to take a program written in an extension of C,
where data to be protected are marked as private, and transform it
into a C program that implements SMC. The transformed program
can then be compiled by each computational party using a native
compiler into an executable code. The C language was chosen due
to its popularity and, more importantly, performance reasons. By
translating a user program into the source code of its secure im-
plementation and using a native compiler to produce binary code,
we can ensure that our compiler can be used on any platform and
we are able to take advantage of optimizations available in native
compilers. Figure 1(a) shows the compilation process of a user-
specified program. Besides the user program itself, our compiler
takes as its input a configuration file which contains parameters as-
sociated with the setup of secure computation that do not change
with each program. These parameters include the specification of
the secret sharing scheme (the values n and t and optional modulus
or its size in bits), and the number of input and output parties. The
compiler determines the optimal modulus size for secret sharing
based on the program content. After the user translates her pro-
gram into C code corresponding to its secure implementation, the
user supplies the transformed program to each computational party.
Each computational party locally compiles the code and is ready to
start the execution upon the receipt of the input data.

When the user would like to initiate secure computation, the user
produces shares of the input data and sends each share to the re-
spective computational party. The execution process is shown in

815

program

user

SMC

source−to−
source
SMC

compiler

program

SMC

native
compiler

executable

program

user compute node

config file

(a) Compilation

program

user compute nodes user

input output

runtime config file

runtime config file
program

share
input

share
output utility

program
utility

program

executable

executable

(b) Execution

Figure 1: Compilation and execution of secure computation using PICCO.

Figure 1(b), where small utility programs are used for producing
shares of the input and assembling the output from the produced
shares. The runtime configuration file specifies information about
the runtime setup and in particular contains IP addresses of compu-
tational parties and their public keys for the purpose of establishing
secure channels. Once the user transmits shares of her input vari-
ables to the computational parties, the parties can start the compu-
tation. During the execution, the computational parties read shares
of input data from user transmission and produce shares of out-
put data. Upon computation completion, each computation party
transmits shares of output variables to the user, who reconstructs
the values using the utility program. This means that the client in-
puts data during an offline stage and is not an active participant of
the computation. The compiled program is instructed to read input
variables from user transmission according to the variable types.

The figure illustrates the case when a single user is the only input
provider and output receiver. When, however, the computation is
performed on behalf of a number of parties, they must jointly per-
form source-to-source translation of their target computation and
separately supply shares of their respective inputs to the compu-
tational parties. In that case, each input variable in the program is
annotated with the id of the input party supplying it and each output
variable with the id of the party receiving it. This means that during
the computation the compiled program will read an input variable
from the transmission of the corresponding input party and write
shares of an output variable to the file destined to the output party
as specified in the program.

4.2 Specification of user programs
A program that specifies a functionality for secure collaborative

computation or outsourcing is written in an extension of C. We ex-
tend C with support for private data types and operations on them.
Public variables are handled without protection and our source-to-
source compiler does not modify computation on them. For that
reason, in the description that follows we treat private values and
the interaction between private and public values.
Private and public variable qualifiers. A programmer can de-
clare a variable to be either public or private using standard data
types. To ensure that no information is accidentally leaked about a
private variable, a variable will default to a private data type. For
example, declarations private int x and int x will both create
a private variable x of integer type.
Private data types. Because the length of the representation of
numeric data types has a large influence on performance of secure
computation, we allow lengths of private variables to be config-
urable, with set default values to aid usability. That is, the pro-
grammer can specify the length of numeric data types in bits and
use the default value when the bitlength is not set. For example,
if private integers are declared to be of type int<20>, we can set
the field size to be of the minimum value necessary for computing

with 20-bit integers. Support for custom-length data types is one of
the features that distinguishes this work from some other compilers
and SMC implementations such as [10] and [29].

For integer arithmetic, users can define private variables to be
of type char, short, int, long, long long, and custom x-bit
int<x>. The bitlength of standard data types is set according to
the platform on which the program is being translated into secure
implementation, but both standard-size and custom-size data types
are implemented as integers with their bitlength recorded in the
translated code.

To realize private floating point arithmetic, we use representation
(and corresponding operations) from [7]. In particular, each float-
ing point number is represented as a 4-tuple 〈v, p, s, z〉, where v is
an `-bit significand, p is a k-bit exponent, and s and z are sign and
zero bits, respectively. The user can specify standard types float,
double, and long double as well as custom-length float<x,y>
with x-bit significand and y-bit exponent.

Operations on private data types. We provide support for many
operations on private integer and floating point numbers. In partic-
ular, we implement integer addition +, subtraction -, multiplication
*, division /, left and right shifts « and », bitwise XOR ˆ, AND &
and OR |, comparisons and equality tests. We also support floating
point addition, subtraction, multiplication, division, and compar-
isons. The set of supported operations can be easily extended with
additional operations and conversions between selected data types.

With the current implementation, users can perform operations
on strings using arrays of one-byte integers char, but in the future
we plan to provide built-in functions for string manipulation.

Built-in I/O functions. The programmer can specify variables that
should be read from the input using special function smcinput.
The function takes two arguments: the name of the variable to read
and the id of the input party from whom the variable (or shares of
the variable) come. For example, specifying smcinput(x,1) for
private integer x will instruct the compiled program to read shares
of an integer number from the transmission of input party 1. For
private floating point numbers, shares of four elements of the float-
ing point representation will be read. Because the input parties sup-
ply their data offline, smcinput is used for both private and public
variables which during execution are read from the transmitted file
of the appropriate input party.

Similarly, smcoutput is used to specify output variables and
the output party who is to learn each of them. That is, including
smcoutput(x,1) for private x will instruct the compiled program
to output shares of x into a file which at the end of the computation
is sent to output party 1. Both smcinput and smcoutput can be
called anywhere in the program.

Conditional statements and loop constructs. All conditions in
conditional statements can be private, which will allow if-statements
to be evaluated obliviously. The only exception is that in loops

816

the termination condition must either be public or be evaluated pri-
vately, after which its result is revealed to the parties carrying out
the computation. In other words, the function being evaluated must
be known at the run time. To the best of our knowledge, private
conditions are not supported in most secure computation tools and
in particular are not available in any SMC software based on secret
sharing (i.e., Sharemind or VIFF).

Support for concurrent execution. One of the most important de-
sign decisions that determines performance of compiled secure pro-
tocols is how parallelism is achieved. Because latency of interac-
tive operations dominates performance of multi-party protocols in
this setting, recent literature concentrated on techniques that lower
round complexity of operations. For that reason, it is important to
be able to execute several interactive operations in parallel.

A number of existing tools that adopt the same or similar frame-
works have a variable degree of support for parallel execution of
operations. For example, Sharemind executes all instances of an
operation defined for each element of a (one- or two-dimensional)
array in a batch. SEPIA runs a number of operations in a batch in
each time slot (called round in [14]) using an application-specific
implementation of parallelism. VIFF provides the most flexible
way of parallel execution, in which an interactive operation is ini-
tiated as soon as its inputs are available. Experience with VIFF,
however, shows that the cost of managing a large number of threads
(many of which are often unnecessary) slows down protocol exe-
cution [25].

We believe that to achieve efficient execution of a broad range of
functionalities, the available options for parallelizing the execution
should not be either too narrow or unnecessarily too flexible. That
is, the parallelism offered by Sharemind and SEPIA will allow for
efficient execution of many functionalities, but can be very limiting
for other applications and operations. The callback mechanism of
VIFF, on the other hand, results in large overheads which can often
be avoided. For these reasons, we support parallel execution of
parts of a program in the ways defined next. Our goal is to provide
enough flexibility to achieve very efficient performance for a broad
range of programs while avoiding unnecessary slowdown due to
managing threads for every elementary operation.

1. We support parallel execution of loop iterations, which gen-
eralizes Sharemind’s and SEPIA’s batch processing of iden-
tical operations. Because many programs require sequen-
tial execution of loop iterations, we leave it to the program-
mer to decide whether parallel or sequential execution should
take place. The distinction is made using different syntax in
the code. The conventional syntax, e.g., for (statement;

condition; statement) {statement; ...} is used for
sequential execution, and modified syntax, e.g., for (statement;

condition; statement) [statement; ...] is used to
execute all iterations of the loop in parallel.

2. For the programs in which execution of different code in par-
allel is possible and desirable (and parallel execution cannot
be specified using a loop construct), we will offer a mecha-
nism to specify the code that should be executed in parallel.
We will use similar syntax with code enclosed in [] brackets
for these purposes. For example, construction [statement1;]
[statement2;] indicates that the two statements can be ex-
ecuted concurrently.

The use of loops with concurrent execution of loop iterations dic-
tates the rule that the conditions affecting the number of loop iter-
ations (i.e., the loop terminating conditions) are not allowed to be
modified within the loop iterations. This is due to the obvious fact
that the loop iterations must be scheduled without executing their

contents and thus the number of loop iterations should be known
or computable without executing instructions contained in the loop
iterations. This implies that only for-loops can be specified to use
simultaneous execution of loop iterations.

Array operations. As an additional mechanism for improving per-
formance of distributed computation, we provide the ability for the
programmer to specify operations on private vectors (arrays). For
example, the user can specify expression A*B on private arrays A
and B of the same size, which will lead to element-wise multipli-
cation of A and B, i.e., multiplication of each element of A to the
corresponding element of B. Besides the operations on private data
types listed above, we support the inner product computation on
two vectors using syntax A@B, which can be particularly efficiently
implemented. Also, the I/O functions smcinput and smcoutput

can be used with array variables to input/output a block of values at
a time, using the third argument to specify the number of elements.
For example, smcinput(A,1,100) reads 100 values into array A

from the data of party 1.
We also provide a way of using portions of multi-dimensional

arrays in (one-dimensional) array operations. This is performed by
specifying the index in each dimension except the last one. For
example, if matrix A is declared to be a two-dimensional array, no-
tation A[i] will refer to the ith row of A (or elements A[i][j] for
all j). This can, for instance, lead to an efficient implementation of
matrix multiplications and other operations.

Enforcement of secure data flow. To ensure that no information
about private values is leaked during program execution, we place
certain restrictions on the data flow that involves both private and
public data. In particular, statements that assign an expression that
contains private values to a public variable are not allowed. This
includes the case when the expression consists of function evalua-
tion with a private return data type. The opposite, however, is true:
a private variable can be assigned a public value, which is subse-
quently converted to shares.

In circumstances when the user intentionally wants to reveal cer-
tain information about a private value, we provide a built-in func-
tion smcopen that reveals the content of a private variable. For
example, if the computation requires that the sign of private x is to
be publicly revealed, the user can write

if (x >= 0) a = 1;
b = smcopen(a);

with private a and public b. This provides a mechanism for in-
tentional declassification of information about private values and
ensures that information is not accidentally leaked in an incorrectly
written assignment.

Another restriction is related to enforcing secure data flow when
conditional statements with a private condition are used. In par-
ticular, assignments to public variables within the scope of such
statements are not allowed. This is due to the fact that by observing
the value of a public variable after executing a conditional state-
ment with a private condition, the result of the condition evaluation
can be learned, which leaks information about private values. The
same applies to functions called from the inside of a conditional
statement with a private condition: the function must have no pub-
lic side effects. This in particular means that the function is not
allowed to modify global or shared public variables or public argu-
ments passed by reference. This can be generalized to any instruc-
tions or computation with observable action, e.g., jump statements,
which may leak information about the private condition.

Limitations and future work. Our current implementation does
not provide support for pointers in user programs besides the use
of arrays (note that the size of allocated memory for an array can

817

depend on prior computation). This limitation is also present in
all other tools and compilers including ANSI C-based [29]. As
our goal is to build as a general-purpose tool as possible, adding
support for pointers is our most immediate goal for future work.

Another future work direction consists of adding resilience to
malicious behavior. A number of existing techniques can be di-
rectly applied to our framework, e.g., asynchronous implementa-
tion in [19]. As part of future work we plan to evaluate performance
of compiled programs in malicious security model.

4.3 Processing of user programs
When our compiler receives a user-specified program, it parses

it and builds an abstract syntax tree (AST), which is consequently
used to produce a modified program that implements secure dis-
tributed computation. To create a grammar for our extension of
C, we build on existing source-to-source translators that parse C
code. In particular, we build on an open-source OpenMP compiler
OMPi [23]. We use flex [3] and bison [1] for defining tokens, spec-
ifying the context-free grammar, and building the AST.

Besides the AST, during parsing the compiler also builds and
maintains a symbol table of defined variables and functions to-
gether with their types. Once the input program is parsed, the com-
piler performs transformations on the AST if necessary and outputs
a modified program. All computation on public values is left un-
changed, while all operations that use private values will be trans-
formed into secure computation using GMP library [5] for large-
precision arithmetic.1

Program transformations. The first transformation that the com-
piler performs on the input program is that of locating the main
function within the user’s code and renaming it into function called
old_main. The main function of the transformed program con-
tains necessary declarations for secure distributed computation and
consequently calls the user’s original main old_main.

Each private variable in the original user’s program is transformed
into one or more GMP large-precision variables of type mpz_t for
storing its share, and all operations on private variables are rewrit-
ten to execute on GMP variables using the corresponding SMC al-
gorithms. For example, declaration of a private integer variable x

will result in declaring x of type mpz_t and initializing it using
a call to mpz_init(). A private floating point variable is trans-
formed into a structure that contains four variables of type mpz_t.

Now, because each operation on private variables needs to be
modified to reflect operating on secret shares and call the corre-
sponding secure distributed operations, evaluation of expressions
on private variables introduces temporary variables in the modified
program. For example, expression x+y*z on private integer x, y,
and z will be transformed into statements mpz_mul(tmp,y,z);

mpz_add(tmp,x,tmp); based on the precedence order of opera-
tors in the grammar. Our compiler is optimized to use the minimal
number of temporary variables that ensure correct execution of the
original program.

Another transformation that we perform is changing arguments
of functions with private return values. Due to the implementation
specifics of the mpz_t data type, functions cannot return variables
of type mpz_t. For that reason, we change the arguments of all
user-declared functions with private return values to include an ex-
tra argument passed by the reference which corresponds to the re-
turn value of the function and the return type is set to void. This
does not restrict the way functions can be specified by the program-
mer and is transparent to the users.

1We note that the choice of a large number arithmetic library is not
detrimental to the operation of the compiler.

Variable initialization. If a private variable is initialized to a con-
stant (e.g., as in int a=5), the implementation needs to convert
the constant to its shares. To achieve this, we create instructions for
the computational parties in the transformed program to generate
random shares of 0 (using a pseudo-random sharing of zero PRZS
from [18]) and add the constant to each share. This will result in
properly distributed shares of the constant, but it means that the
value of the constant will be known to the computational parties.
We choose to treat these private initialization constants as public
because it complies with the intuition that the program’s source
code should not be treated as private. Furthermore, in many cir-
cumstances the constants to which private variables are initialized
are indeed public, which simplifies their processing. For example,
if a private variable is used in a computation of summation of pri-
vate values, the fact that it is initialized to 0 does not need to be
protected. In the event that a private variable needs to be initialized
to a private constant, it should be input using a call to smcinput.
Handling of program input and output. Recall that input and
output parties are not active participants in the computation. Thus,
when a variable is specified to be read from the input using the
smcinput function, its value will come from one of the input par-
ties prior to the computation. Similarly, the content of every vari-
able used in a call to smcoutput is stored by the computational
parties until the end of the computation. At that point all values
recorded for output party i will be transmitted to that party by all
computational nodes. Because smcinput and smcoutput func-
tions are the only available mechanism for I/O operations, we use
the same interface for both public and private variables.

When a call to smcinput or smcoutput with arguments var
and i is observed in the user program, the compiler looks up the
type of variable var in the symbol table that stores all declared
variables. The compiler than replaces a call to smcinput in the
transformed program with instructions for reading data of the ap-
propriate type from the input of party i and placing it in variable
var. Similarly, a call to smcoutput is replaced with instructions
for writing the content of var according to its type to the output
destined to output party i. The type of variable var determines
how many fields are used to represent the variable and their lengths.
For example, a private floating point variable is represented by four
random field F elements (secret shares), while a public integer is
represented by a single value of its declared size.

Because a user program might be processed using multi-threaded
implementation, the compiler instructs the transformed program to
read the input of all parties into a data structure (that also maintains
variable names) before the computation starts. The data structure
allows each thread to access the variables it reads or writes from
the memory without having to implement I/O synchronization.
Implementation of numeric operations. Numeric operations on
private values constitute a significant portion of our implementa-
tion of secure distributed computation, and we briefly describe how
these operations are implemented. Integer addition, subtraction,
and multiplication are basic building blocks for computation on se-
cret shares. Integer division is implemented according to [7], right
shift « x is implemented as multiplication by 2x, and left shift is
implemented using truncation as in [16]. Integer bitwise operations
are implemented using bit decomposition according to [17] fol-
lowed by the corresponding bitwise computation using arithmetic
operations. That is, for each bit i of operands a = a1. . .a` and
b = b1. . .b`, XOR is implemented as ai ⊕ bi = ai + bi − 2aibi,
AND is implemented as ai ∧ bi = aibi, and OR is implemented
as ai ∨ bi = ai + bi − aibi. Comparisons and equality tests
are implemented according to [16]. All operations can be used
on both signed and unsigned integers. The complexities of divi-

818

sion, bit decomposition, comparisons, and equality tests are linear
in the bitlength of the operands, and the complexity of truncation
is linear in the number of bits being truncated. All floating point
operations (addition, subtractions, multiplication, and division) are
implemented according to [7].

Implementation of array variables. To be able to support direct
operations on arrays of private data types using the traditional syn-
tax (e.g., infix notation for binary operators), the compiler must
know the size of the arrays. While the size of an array generally
cannot be determined in C due to the use of pointers, in our C ex-
tension arrays of private elements are created through a controlled
interface. This allows us to internally represent private arrays af-
ter program parsing as a structure consisting of a field that stores
the size of the array and a field with the array elements themselves.
The size is then used to rewrite operations on private arrays into
secure distributed computation, where all elements of the array are
processed together. For example, multiplying two private arrays of
size n will lead to executing n element-wise multiplications in one
round of computation. This means that all operations are processed
using the round complexity of only one operation, but in some cases
even greater computational savings are possible. For example, in-
ner product computation can be realized using only a single inter-
active operation regardless of the size of the arrays. Recall that
our setting allows us to evaluate any multivariate polynomial of de-
gree 2 using a single interaction between the computational parties
which results in a particularly efficient inner product protocol.

Note that, while our current implementation does not support
pointers besides arrays, using a structure to represent a private array
can be made compatible with implementations with full support for
pointers. In particular, we can make a pointer to a private array to
point to the second field of the structure that stores array elements
to achieve data compatibility.

Memory access at private locations. When the user-specified
code contains access to an element of an array at a private loca-
tion, we protect the location information by touching all elements
of the array.2 Private indexing is implemented as a multiplexer,
where we first privately bit-decompose the index and then evaluate
the multiplexer according to its Boolean formula. AND gates (mul-
tiplications) are computed for each element of the array in parallel,
after which the result is locally added together by each computa-
tional node. NOT operation of bit b is implemented as 1 − b. The
result of this operation is always private regardless of the type of
the data stored in the array.

Handling of private data types in assignments. To ensure that in-
formation about private values is not accidentally leaked, the com-
piler checks all assignment statements and produces a terminal er-
ror if a private expression is being assigned to a public variable.
This is enforced using the AST, in which each node is marked as
public or private and private status propagates from a child to its
parent. Then a node that corresponds to assignment is not permit-
ted to be composed of a public variable and private expression.

This check covers the cases when the expression contains func-
tion calls and the return type of at least one function used in the
expression is known to be private. If, however, a function call is
used, but its return type is not known (i.e., function declaration
cannot be found), the compiler displays a warning of a potential
violation of secure data flow (i.e., unknown data type and a poten-
tial information leakage). The goal of these checks is to help the

2For large-sized arrays or databases, alternative techniques such as
oblivious RAM [27] or the approach from [33] are likely to result
in faster performance and their use will be investigated as part of
this project.

programmer avoid unintentional information leakage without re-
stricting the functionality. Public variables can be assigned values
based on private data through smcopen calls.

If, on the other hand, a private variable is assigned a public ex-
pression, the compiler rewrites the code to convert the result of the
expression evaluation to secret shares and then assign the resulting
private value to the variable.
Handling of conditional statements. As mentioned earlier, if-
statements with private conditions are not allowed to contain ob-
servable public actions in their body to prevent information leakage
about private conditions. To enforce this constraint, the compiler
analyzes all statements in the body of the conditional statement (re-
cursively parsing all constructions) to detect violations and produce
a terminal error is a violation is found. Similarly, the compiler ex-
tracts the list of functions called from the body of a conditional
statement with a private condition. For each such function, if its
content is known, the compiler analyzes its body for public side ef-
fects (such as changes to public global or shared variables) and pro-
duces a terminal error if such side effects are present. If, however,
the content of the function is not known, the compiler produces a
warning indicating a possible information leakage. Note that pri-
vate side effects in functions called from the body of an if-statement
with a private condition are permitted.

If no terminal errors have been found, the compiler proceeds
with transforming the if-statements with private conditions. As
the first step, the compiler determines all variables, the values of
which are modified within the body of the if-statement (by search-
ing through the list of statements for assignment operations), and
their values are preserved in temporary variables. Next, the body
is evaluated as if the condition was true and the condition of the
if-statement is also privately evaluated. Now all variables affected
by the instructions in the body of the if-statement are updated as if
the condition holds and we need to roll back to their original val-
ues if the condition does not hold. To accomplish this, we update
each affected variable v by setting its value to c · v+ (1− c)vorig ,
where c is a private bit corresponding to the result of evaluating the
condition and vorig is the original value of v prior to executing the
body of the if-statement.

If the if-statement contains the else clause, we repeat the process
for all variables modified within the body of the else clause with
two important differences: the private condition no longer needs to
be evaluated, and each variable v affected by the body of the else
clause is updated to (1− c)v+ c · vorig after executing all instruc-
tions in the else clause. This approach allows us to support arbitrary
constructions while using the minimal amount of resources.

The above approach allows us to evaluate private conditional
statements that modify ordinary variables efficiently, but can lead
to suboptimal memory use when the variables are arrays. In partic-
ular, if the body of an if-statement modifies a single element of the
array (or a small number of them), storing the original content of
the entire array may result in substantial amount of extra memory.
For example, in constructions of the type
for (i=0; i<n; i++)
if (a[i]<0) a[i]=-a[i];

with private array a, there is no need to make a copy of the en-
tire array a for each conditional statement. Similarly, if a function
receives an index into a global array as its parameter and condi-
tionally modified the element at that index, storing a copy of the
array is wasteful. To mitigate the problem, we make special pro-
visions for array handling. In particular, if an element of an array
is modified within the body of a conditional statement with private
condition and that assignment is not surrounded by a loop, the ele-
ment of the array is treated as an ordinary variable, i.e., only a copy

819

of the element is made, not a copy of the array. If, on the other
hand, the assignment is within the scope of a loop that affects the
element’s index within the array, that assignment will correspond
to modifications to a number of array elements. In that case, we
create a single temporary variable and in each loop iteration store
the current value of the array element to be modified prior to exe-
cuting the assignment operation. This will ensure that the optimal
amount of memory is used by the program. For example, if the
original program contains code

if (t>0)
for (i=0; i<n; i+=5)
a[i]=a[i]+1;

with private t and a, it will be transformed into:

mpz_t cond1;
mpz_t tmp1;
smc_gt(t,0,cond1);
for (i=0; i<n; i+=5) {
tmp1=a[i];
a[i]=a[i]+1;
a[i]=cond1*a[i]+(1-cond1)*tmp1;

}

where the above code is a simplification of the actual code produced
and smc_gt corresponds to secure distributed implementation of
the greater than operation that stores the result of comparing its
first two arguments into the third argument.

Handling of parallel constructs. Recall that we support two ways
for the programmer to specify that portions of the code can be pro-
cessed concurrently: (1) parallel loop iterations and (2) arbitrary
parts of code that can be processed simultaneously. While both
constructions use similar syntax, their implementations differ. In
particular, a number of identical operations from different loop iter-
ations can be efficiently processed in a batch (using the same num-
ber of rounds as that of a single loop iteration), with the overall
load partitioned among the available cores via threads. In the sec-
ond case, however, the only available mechanism for parallelizing
the computation is by executing the portions of the code that can
be concurrently processed in different threads. Threads can also be
used within a single operation (not visible to the programmer) to
provide the fastest execution of that operation.

In what follows, we first describe how we handle batch execu-
tion used for parallel loop constructs only, and then address the use
of threads, which are used for concurrent execution of both loop
iterations and arbitrary code.

Batch execution. When the compiler observes a loop construc-
tion with parallel iterations indicated using square brackets, it trans-
forms the instructions contained in loop iterations using batch exe-
cution. As the first step, the transformed program will need to de-
termine the number of loop iterations that should be scheduled for
batch execution. For that reason, the compiler places loop specifi-
cation code (without the loop’s body) in the transformed program,
so that the number of loop iterations can be computed at run time.
In the case when loops with parallel iterations are nested in the user
program, all iterations can still be processed using a single batch.

A loop construction, all iterations of which can be executed si-
multaneously, must be written in such a way that its iterations up-
date independent memory locations. This can be achieved using
arrays and similar data structures. Each iteration, therefore, can
consist of statements that operate on array indices computed using
arbitrary expressions. For example, a program can contain:

for (i=1; i<n; i*=3) [
a[i]=b[i*i]*c[i+2];
c[i-1]=b[i+1]*k;

]

where a, b, and c are arrays consisting of private elements and k

is a private value. Our compiler handles this by creating code in
the transformed program that allocates an integer array for storing
array indices used in each expression or assignment. This array
contains indices for each array operand and the array being updated
(when applicable). By doing this, we can pass only necessary array
elements used in the operation to its batch execution. This process
is repeated for all operations within the statement. When a batch
operation is executed, the transformed program uses the computed
index array together with the start address of each array operand
and the array being updated to perform computation. For example,
batch execution of the first statement in the loop above will pass the
address of arrays a, b, and c together with index array consisting of
indices i for all i specified in the loop, indices i · i, and indices i+2
to the multiplication operation. Execution of the second statement
does not use array indices associated with the second operand.

When the body of a loop with parallel execution contains a pri-
vate condition, the transformed program needs to store a copy of the
variables being modified, evaluate the private condition in a batch,
and compute the value of each variable v as c · v + (1 − c)vorig ,
where c is the result of condition evaluation. Unlike regular loops,
where we could store the original value of array elements one at
a time right before the modification, the use of batch operations
requires that we store all necessary data before the operation.

Thread management. To ensure that the number of threads is lim-
ited and the overhead associated with their management does not
become overwhelming, a transformed program that uses concur-
rent execution is written to maintain a thread pool with provisions
to maximize CPU utilization and avoid deadlocks (when a task as-
signed to a thread is blocked waiting on a child task and the child
task is unable to acquire a thread). For loops with parallelizable
iterations, we divide all iterations in batches of a predefined size,
and place the next batch in a queue to be picked up by an available
thread. This will ensure that the context switching overhead is very
low relative to the overall computation time even for loops with a
very large number of iterations. Given a specific setup, the optimal
number of threads in the thread pool and the optimal batch size can
be determined experimentally.

Our thread management mechanism is similar to that used in
OMPi [23] and is realized as follows. Each user program starts
by running in a single thread, and we refer to the code that can be
scheduled to run in a separate thread as a task. Each task maintains
a data structure (called task node) that stores information about its
environment including local (i.e., visible only to the running thread)
and shared (i.e., shared by all running threads) variables necessary
for its execution. Furthermore, each thread from the thread pool
manages a queue data structure (called task queue) that stores task
nodes corresponding to the tasks whose execution is pending. The
queue structure maintained by each thread has a fixed upper bound,
which means that it can store only a certain number of tasks to ex-
ecute. When a new task is being created, the thread that creates it
will normally store it in its task queue, although there is a mech-
anism to indicate that the task execution must start immediately.
When the task queue is full, but a new task is received, the thread
will suspend the task it was running (which spawned the new task),
and execute the newly received task to its completion. This en-
sures that no tasks are ever lost due to queue overflow. Lastly, to
minimize the overall idle time for threads, the compiler applies the
work-stealing strategy [24], which allows an idle thread to execute
a task from another thread’s queue.

The thread management mechanism on which we build did not
require a thread to communicate with other nodes and thus had
no provisions for a thread to retrieve only its own communication

820

off the network. For that reason, if execution of a compiled pro-
gram uses multiple threads, at the point of execution where multiple
threads are created, we also create a manager thread that handles
incoming communication in behalf of all other threads. In partic-
ular, the manager thread listens to the sockets corresponding to all
peer nodes with which the current node communicates and reads
the data once it becomes available. After retrieving the data from
a specific socket for a specific thread (each transmission is now
marked with thread id), the manager thread signals the receiving
thread that it now has data available. This ensures that each thread
correctly receives data destined to it. Sending the data, on the other
hand, is handled by each thread as before, after securing a lock for
mutual exclusion on the socket that the thread wants to use.

To the best of our knowledge, no implementation other than
VIFF supports multi-threaded execution and this topic has not been
sufficiently treated in the SMC literature.
Modulus computation. The programmer can specify the size of
the modulus or the modulus itself3 to be used for secure compu-
tation. If that information is not provided, the compiler computes
the minimum modulus size necessary for correct and secure oper-
ation. The size is computed based on the bitlength of the declared
variables and operations on them. The algorithm proceeds by com-
puting the maximum bitlength of all declared variables and maxi-
mum bitlength necessary for carrying out the specified operations.
For example, for integer data types, the algorithm computes the
maximum of all declared bitlengths `i, max(`1, `2) + κ for each
comparison operation on arguments of bitlengths `1 and `2, where
κ is the statistical security parameter, `1+κ for each right shift op-
eration on an argument of bitlength `1, and 2max(`1, `2) + κ+ 1
for each division on arguments of bitlengths `1 and `2.

Once the modulus size is determined, our compiler chooses the
modulus of the appropriate size and includes it in the transformed
user program. The compiler also outputs the modulus to a runtime
configuration file for use with other components of the system.

4.4 Supplemental programs
While our source-to-source translator is the main component of

PICCO, the system also contains two utility programs for private
input preprocessing and private output assembly as shown in Fig-
ure 1(b). Here we briefly describe their functionality.

As mentioned earlier, each input and output variable is marked
with the id of the input party supplying or receiving it, and the
computational parties receive data from each input party prior to
the computation start. To aid the input parties with creating their
input transmissions, we instruct the compiler to produce a supple-
mental configuration file (not shown in Figure 1) in addition to the
transformed user program itself. The configuration file contains
the modulus necessary for share manipulation and a list of input
and output variables (in the order of appearance of smcinput and
smcoutput function calls) annotated with their input/output type,
data type, and the id of the responsible input or output party.

At runtime, every input party will provide this configuration file
to the input utility program. The program will prompt the user for
the id and will ask to input data marked with that user’s id in the
configuration file. Data entry can be done either manually or from
a file. The utility program consequently converts private inputs into
their shares while leaving public inputs unchanged and produces n
output files. The input party communicates the ith produced file to
computational party Pi.
3When the user chooses the modulus for secure computation, the
modulus has to be some prime p > n for the computation to be
carried in the field Zp or be equal to 256 to indicate that the com-
putation is in the field GF(28).

The output utility program has a similar functionality: Upon re-
ceipt of output transmissions from at least t + 1 computational
parties, an output party will input the supplemental configuration
file together with the user id into the program. The output utility
program consequently reconstructs user data according to the data
types and outputs the result to the user.

5. PERFORMANCE EVALUATION
In this section we provide experimental results using PICCO.

Following [29], we create a number of user programs of various
functionalities, compile and run them in the distributed setting, and
measure their performance. To fully evaluate the effect of parallel
execution (using array operations, batching, and threads), for each
tested functionality we provide its basic version as well as opti-
mized version that uses concurrent execution features of PICCO.
The types of computations tested as part of this work include:

1. A mix of arithmetic operations consisting of 90% additions
and 10% multiplications with 10 input and 5 output variables.
The basic functionality sequentially executes all operations,
while the optimized version uses batch operations.

2. Multiplication of two matrices. The basic and optimized user
programs are given in Figures 2 and 3, respectively. For com-
pactness of presentation, we assume that the second matrix
is given as the transpose of the matrix to be multiplied. Com-
puting the transpose uses only local memory operations and
does not increase the overall runtime.

3. Mergesort computation that outputs the median of the sorted
array. The programs are given in Figures 4 and 5.

4. Computation of the Hamming distance between two binary
vectors. The programs are given in Figures 6 and 7.

5. Evaluation of one block of AES on a private 128-bit message
using private 128-bit key.

6. Computation of the edit distance between two strings of equal
size via dynamic programming. The cost of insertion, dele-
tion, and substitution is fixed and set to 1.

7. Matching of two fingerprints consisting of an equal number
of minutiae. Each minutia point consists of x and y coordi-
nates in a two-dimensional space, as well as its orientation.

The source code of the last three programs is omitted, but will be
reported in the full version. Instead, we give a brief description. For
compactness of presentation of other programs, we use array oper-
ations with input/output functions even in unoptimized programs,
which introduces only a marginal improvement on the runtime of
basic programs. All of the programs included in the experiments
use integer arithmetic, which facilitates comparison of their per-
formance with the same functionalities produced using other tools.
Performance of our implementation of floating point operations,
however, can be found in [7], including performance of executing
multiple instances of an operation in a batch.

The results of the experiments for n = 3 computational par-
ties are given in Table 2. We consider this value of n to be com-
monly used in practice. Because the number of computational par-
ties is independent of the number of input owners and output re-
cipients, in cases of both single client computation outsourcing and
secure collaborative computation it is possible to find three inde-
pendent computational parties which are unlikely to collude with
each other. The programs our compiler produces are written in
C/C++ using the GMP [5] library for large number arithmetic, the
Boost libraries [2] for communication, and OpenSSL [6] for secur-
ing the computation. Our LAN experiments were conducted using
2.4 GHz 6-core machines running Red Hat Linux and connected
through 1 Gb/s Ethernet. Our WAN experiments used machines
from the GENI infrastructure [4], where two of the machines were

821

Experiment Modulus p Basic functionality Optimized functionality Sharemind Two-party compiler [29]
length (bits) LAN (ms) WAN (ms) LAN (ms) WAN (ms) LAN (ms) WAN (ms) LAN (ms) WAN (ms)

100 arithmetic operations 33 1.40 315 0.18 31.6 71 203 1,198 1,831
1000 arithmetic operations 33 13.4 3,149 0.60 32.3 82 249 3,429 5,823
3000 arithmetic operations 33 42.7 9,444 1.60 34.5 127 325 10,774 11,979
5× 5 matrix multiplication 33 17.7 3,936 0.27 31.6 132 264 3,419 5,244
8× 8 matrix multiplication 33 67.8 16,126 0.45 32.1 168 376 18,853 21,843
20× 20 matrix multiplication 33 1,062 251,913 2.41 35.7 1,715 2,961 N/A N/A
Median, mergesort, 32 elements 81 703.7 98,678 256.7 6,288 7,115 22,208 4,450 5,906
Median, mergesort, 64 elements 81 1,970 276,277 649.6 12,080 15,145 47,636 N/A N/A
Median mergesort, 256 elements 81 13,458 1,894,420 3,689 47,654 66,023 203,044 N/A N/A
Median mergesort, 1024 elements 81 86,765 – 20,579 170,872 317,692 869,582 N/A N/A
Hamming distance, 160 bits 9 21.2 5,038 0.17 31.1 72 188 793 816
Hamming distance, 320 bits 10 42.3 10,092 0.22 31.3 102 203 850 1,238
Hamming distance, 800 bits 11 105.8 25,205 0.35 31.5 117 254 933 989
Hamming distance, 1600 bits 12 212.7 50,816 0.57 31.8 132 284 1,037 1,265
AES, 128-bit key and block 8 319.1 75,874 35.1 3,179 652 [34] N/A N/A N/A
Edit distance, 100 elements 57 48,431 9,479,330 4,258 116,632 69,980 214,286 N/A N/A
Edit distance, 200 elements 57 201,077 – 16,038 432,456 196,198 498,831 N/A N/A
Fingerprint matching, 20 minutiae 66 3,256 541,656 830 74,704 24,273 75,820 N/A N/A
Fingerprint matching, 40 minutiae 66 13,053 2,140,630 2,761 172,455 55,088 172,266 N/A N/A

Table 2: Performance of representative programs using PICCO.

public int main() {
public int i, j, k, S;
smcinput(S, 1, 1);
int A[S][S], B[S][S], C[S][S];
smcinput(A, 1, S*S);
smcinput(B, 1, S*S);

for (i = 0; i < S; i++)
for (j = 0; j < S; j++)

C[i][j] = 0;

for (i = 0; i < S; i++)
for (j = 0; j < S; j++)

for (k = 0; k < S; k++)
C[i][j] += A[i][k]*B[k][j];

smcoutput(C, 1, S*S);
return 0;

}

Figure 2: Basic matrix multiplication program.

located on the same LAN and one at a different location. All ma-
chines were running Fedora 15 with either 4 cores using 3.0 GHz or
8 cores using 2.4 GHz. The pairwise round-trip times between the
machines were 0.2 msec, 63 msec, and 63 msec. Each experiment
was run 5 times and the mean time over the runs and computational
parties is reported in the table. We omit unoptimized experiments
with excessive runtime. Also, batch execution in the optimized
functionalities does not use threads as the number of operations in
batch execution is not sufficiently large to exceed the threshold and
be divided into threads.

As can be seen from Table 2, the running time of unoptimized
programs for arithmetic operations, matrix multiplication, and Ham-
ming distance grows linearly with the number of multiplications
that they use. That is, performing multiplication of 5 × 5 matri-
ces, computing 125-element Hamming distance, and performing
1250 arithmetic operations takes very similar amount of time for
both LAN and WAN experiments. For these functionalities, com-
bining multiple interactive operations into a single batch results in
tremendous performance improvement. That is, using a loop with
concurrent iterations in arithmetic operations program and using

public int main() {
public int i, j, S;
smcinput(S, 1, 1);
int A[S][S], B[S][S], C[S][S];

smcinput(A, 1, S*S);
//assume B is given as transpose of original B
smcinput(B, 1, S*S);

for (i = 0; i < S; i++) [
for (j = 0; j < S; j++) [

C[i][j] = A[i] @ B[j];
]

]
smcoutput(C, 1, S*S);
return 0;

}

Figure 3: Matrix multiplication program that uses concurrent
computation.

vector operations in the remaining functionalities, the round com-
plexity of all of these programs reduces to 1. For programs and
batches of small size (e.g., 10 multiplications in 100 arithmetic
operations program), the overall time can hardly be distinguished
from the time that a single operation takes. For computation of
larger size, however, although round complexity does not change,
both increased computation and communication contribute to the
overall time. Consider, for example, optimized matrix multiplica-
tion results. In the LAN experiments, almost all of the overhead for
20× 20 matrix multiplication (8,000 multiplications, but only 400
interactive operations) is due to computation. In the WAN experi-
ments, however, most of the time is still contributed by communi-
cation (sending and receiving shares for one batch operation). The
execution times for matrix multiplication can be compared to that
of the Hamming distance, where the optimized functionality always
invokes one multiplication operation regardless of the problem size.
The Hamming distance results tell us how the computational effort
increases as the problem size increases and communication remains
the same.

To summarize, for these types of functionalities, the use of con-
current loop iterations and vector operations brings the round com-

822

public int K=32;
private int A[K];

void mergesort(public int l, public int r) {
public int i, j, k, m, size;
size = r - l + 1;
int tmp;

if (r > l) {
m = (r + l)/2;
mergesort(l, m);
mergesort(m + 1, r);

for (i = size >> 1; i > 0; i = i >> 1)
for (j = 0; j < size; j += 2*i)

for (k = j; k < j + i; k++)
if (A[k+l] > A[k+i+l]) {

tmp = A[k+l];
A[k+l] = A[k+i+l];
A[k+i+l] = tmp;

}
}

}

public int main() {
public int i, median = K/2;
smcinput(A, 1, K);
mergesort(0, K-1);
smcoutput(A[median], 1);
return 0;

}

Figure 4: Basic mergesort median program.

plexity to the minimal single round and thus the performance is
bounded by a one-way communication delay from below. In our
experiments, the performance was improved by 2–3 orders of mag-
nitude depending on the problem size and the savings will continue
to increase for larger computational problems. The use of threads
additionally improves the running time for problems of large size
by a small factor that depends on the number of cores.

Mergesort computation is dominated by O(m log2m) compar-
isons for a set of size m and this growth is reflected in the run-
times of the unoptimized (sequential) functionality. The use of
concurrent loop iterations greatly decreases the time that the merge
step takes, but for this functionality the use of threads to concur-
rently sort the first half and the second half of the set also im-
proves the performance. The round complexity of mergesort is
O(log2m) comparisons, but we do not achieve it because the num-
ber of threads is limited to the number of cores. (Likewise, our
Sharemind program written in a similar way does not achieve opti-
mal round complexity.)

For the AES implementation, the best performance can be achieved
when the computation is in GF(28) and thus the user needs to spec-
ify this field as a configuration parameter. Then the user secret-
shares each byte of the key and message with the computational
nodes. Recall that each round of AES consists of AddRoundKey,
SubBytes, ShiftRows, and MixColumns algorithms and the most
complex part of round key computation is the same as SubBytes.
When using arithmetic in GF(28), all operations other than S-box
computation in SubBytes and round key computation are linear and
thus are performed non-interactively. Instead of following the tra-
ditional implementations of the S-box as a table lookup, we write
the user program to compute the transformation directly, where the
computation of the inverse and bit decomposition is implemented
as suggested in [20]. One round of key expansion and one round of

void mergesort(public int l, public int r) {
public int i, j, k, m, size;
size = r - l + 1;
int tmp[size];

if (r > l) {
m = (r + l)/2;
[mergesort(l, m);]
[mergesort(m + 1, r);]

for (i = size >> 1; i > 0; i = i >> 1)
for (j = 0; j < size; j += 2*i) [
for (k = j; k < j + i; k++) [

tmp[k] = A[k+l];
if (A[k+l] > A[k+i+l]) {

A[k+l] = A[k+i+l];
A[k+i+l] = tmp[k];

}
]

]
}

}

Figure 5: Mergesort median program that uses concurrent
computation (the difference from basic program).

public int main() {
public int i, M;
smcinput(M, 1, 1);
private int<1> A[M], B[M];
private int<10> dist = 0;

smcinput(A, 1, M);
smcinput(B, 1, M);
for (i = 0; i < M; i++)
dist += A[i] ^ B[i];

smcoutput(dist, 1);
return 0;

}

Figure 6: Basic Hamming distance program.

block cipher are computed simultaneously, where all bytes of the
block are processed in parallel.

We obtain that the compiled program performs the key expansion
and one block of AES encryption in only 35 msec, which is clearly
very competitive even compared to custom implementations that
do not use a compiler. In particular, in recent years several publi-
cations optimize evaluation of AES in the context of secure multi-
party computation. The results range from circuit minimization
techniques [12, 13] to concrete realizations in the two-party and
multi-party settings. In the two-party setting, [36], [28], and [30]
report 7 sec, 3.3 sec, and (without key expansion) 0.2 sec evaluation
time, respectively, for AES using custom (as opposed to compiler-
generated) circuits. In the multi-party setting, the results are avail-
able for 3 computational parties on a LAN. [20] reports 2 sec in a
setting similar to ours, the fastest recent results in the Sharemind
framework [34] are 652 msec, and, most notably, [33] reports 9
msec without key expansion using an implementation with 2 con-
current threads (and 14.3 msec using a single thread) based on a
new lookup-table protocol of high efficiency. The last approach
can be integrated into our compiler for achieving high-performance
table lookups for AES and other purposes. Also, [21] reports run-
time on the order of minutes (offline and online work without key
expansion) in two stronger security models (while all other results
cited above are in the semi-honest model).

The edit distance program uses dynamic programming to fill in
the cells of a (m + 1) × (m + 1) grid, where m is the length of

823

public int main() {
public int i, M;
smcinput(M, 1, 1);
private int<1> A[M], B[M];
private int<10> dist;

smcinput(A, 1, M);
smcinput(B, 1, M);
dist = A @ B;
dist = -2*dist;
for (i = 0; i < M; i++) {

dist += A[i] + B[i];
}
smcoutput(dist, 1);
return 0;

}

Figure 7: Hamming distance program that uses concurrent
computation.

the input strings. Each cell at position (i, j) is computed as the
minimum of three distances computed from the distances at cells
(i − 1, j), (i, j − 1), (i − 1, j − 1) and the result of comparison
of the characters at positions i and j. The optimized version of the
program processes all cells on a diagonal in parallel, resulting in
2m− 3 rounds that compute the minimum function.

Lastly, the fingerprint program compares one minutia of finger-
print A to all minutiae of fingerprint B, and among those that
matched (i.e., within close Euclidean distance and small angle)
chooses the one with the closest distance. The chosen minutia in
fingerprint B is marked as no longer available. The process is re-
peated with all other minutiae of fingerprint A, where all minutiae
marked as no longer available are ignored in finding a matching.
The output of the algorithm is the number of minutiae marked as
having a mate in the other fingerprint. The optimized version of this
program runs all distance and orientation comparisons for a minu-
tia in fingerprint A in parallel. It then also computes the minimum
and its location using a tree with logm rounds of comparisons for
m-minutia fingerprints. Note that the computation cannot reveal if
a minutia in B already has a mate or not close enough to a minutia
in A, and thus for each minutia in A we have to treat all minutiae
in B in the same way.

For comparison, we also provide performance of secure two-
party computation compiler from [29] and Sharemind [10]. The
former is a general-purpose compiler for ANSI C for the two-party
setting and it is informative to compare performance of programs
produced using the compiler. In Table 2 we list runtimes for sim-
ilar programs when available as reported in [29]. The latter is a
framework that allows a program written in language called Se-
creC to be compiled into secure distributed implementation for 3
computational parties. The tool is constantly evolving and well op-
timized, while the language currently has a few limitations such as
no support for if-statements with a private condition4. We chose
Sharemind for its speed, as other general secure multi-party com-
putation tools and compilers such as FairplayMP and VIFF result
in slower performance. We run Sharemind experiments in the same
setups as our LAN and WAN experiments.

From Table 2, it is clear that despite using more computational
parties and highly interactive techniques, the performance of pro-
grams compiled using PICCO compares very favorably to those

4SecreC allows for comparisons and other basic predicates to be
evaluated on private values outside of if-statements. This has sim-
ilar expressiveness to using if-statements with arbitrary conditions
over private variables, but results in degradation of usability, as the
programmer has to expand and rewrite all if-statements by hand.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 3 5 7 9 11

Ti
m

e
(m

s)

Number of computational parties

arith ops (basic)
arith ops (optimized)
mergesort (optimized)

Figure 8: Performance of selected programs with a varying
number of computational parties on a LAN.

compiled using the two-party approach of [29]. In particular, the
largest difference we observe is by more than 3 orders of magni-
tude for some LAN experiments. Performance of the programs
executed through Sharemind is also slower than with PICCO, es-
pecially for simple programs on a LAN. In our Sharemind experi-
ments we were unable to match the performance reported in [11],
despite extensive use of the available (batch) optimization mecha-
nisms. Furthermore, we experience a large 4-fold reduction in exe-
cution time of arithmetic operations programs by replacing opera-
tions of the form a = a+ a with operations of the form b = a+ a,
where a and b are vectors. This could be in part due to excessive
logging (which we were unable to disable) and is not the expected
behavior. The execution of interactive multiplication operations is
more costly and execution of local addition operations should take
a small fraction of the overall time, regardless of how addition op-
erations are handled in the user program. We conclude that Share-
mind was optimized for massively-parallel computation with low
amortized cost per operation, but not general-purpose computation
where sequential execution is common. Furthermore, Sharemind is
likely to outperform PICCO when a large number of homogeneous
operations are to be run in parallel, but we expect our tool to result
in lower execution time for general-purpose functionalities.

To investigate the impact of varying the number of computa-
tional parties on the performance, we conducted additional exper-
iments. The programs that we chose are unoptimized 1000 arith-
metic operations, optimized 1000 arithmetic operations, and 32-
element mergesort, which provide insights into the performance
of plain multiplications, batch multiplications, and combination of
batch and multi-threaded implementation, respectively. To perform
multiplication, each computational party transmits n− 1 messages
and performs Lagrange interpolation that in the most general form
involves quadratic (in the number of parties) computation. On a
LAN, this computation contributes a substantial portion of the over-
all time and [25] reports that the growth in multiplication time can
be best described by function f(n) = 0.009n2 +0.006n+0.799.
We, however, observe that in the semi-honest setting all parties send
their data as prescribed and the set of available shares is known.
This means that Lagrange coefficients used during interpolation
can be precomputed, resulting in linear computation time. Further-
more, we reconstruct only the free coefficient of the polynomial
that encodes the secret as opposed to the entire polynomial. This
gives us that the work a computational party performs for a single
interactive operation is linear in n, but the total volume of commu-
nication placed on the network is quadratic in n. Our LAN results
(using a new set of machines) are given in Figure 8, where opti-
mized arithmetic operations’ time is scaled up by a factor of 20.
We can observe linear or slightly higher than linear growth in n.

824

6. CONCLUSIONS
The goal of this is work is to enable secure execution of general-

purpose programs in not fully trusted environments. Toward this
goal, we introduce PICCO — a suite of programs for compiling a
user program written in an extension of C with variables that need
be protected marked as private, into its secure distributed imple-
mentation, and running it in a distributed setting. Our implementa-
tion uses techniques based on secret sharing with several optimiza-
tions to improve the runtime. This results in efficient secure execu-
tion suitable for sizeable computations in a variety of settings.

Acknowledgments
We are grateful to Ethan Blanton for valuable suggestions on the
design of the compiler, Dan Bogdanov for the help with Sharemind
experiments, and anonymous reviewers for their valuable feedback.
This work was supported in part by grants CNS-1319090 and CNS-
1223699 from the National Science Foundation and FA9550-13-1-
0066 from the Air Force Office of Scientific Research. Any opin-
ions, findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily
reflect the views of the funding agencies. We also acknowledge
the NSF-sponsored Global Environment for Network Innovations
(GENI) test bed, which allowed us to run WAN experiments.

7. REFERENCES
[1] Bison – GNU parser generator.

http://www.gnu.org/software/bison.
[2] Boost C++ libraries. http://www.boost.org.
[3] flex: The Fast Lexical Analyzer. http://flex.sourceforge.net.
[4] GENI: Global environment for network innovations.

http://www.geni.net.
[5] GMP – The GNU Multiple Precision Arithmetic Library.

http://gmplib.org.
[6] OpenSSL: The open source toolkit for SSL/TLS.

http://www.openssl.org.
[7] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure

computation on floating point numbers. In NDSS, 2013.
[8] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A

system for secure multi-party computation. In CCS, 2008.
[9] M. Blanton. Empirical evaluation of secure two-party

computation models. Technical Report TR 2005-58,
CERIAS, Purdue University, 2005.

[10] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
ESORICS, pages 192–206, 2008.

[11] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson.
High-performance secure multi-party computation for data
mining applications. IJIS, 11(6):403–418, 2012.

[12] J. Boyar and R. Peralta. A new combinational logic
minimization technique with applications to cryptology. In
Symposium on Experimental Algorithms, 2010.

[13] J. Boyar and R. Peralta. A small depth-16 circuit for the AES
S-box. In Information Security and Privacy Research, pages
287–298, 2012.

[14] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain
network events and statistics. In USENIX Security
Symposium, pages 223–240, 2010.

[15] R. Canetti. Security and composition of multiparty
cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[16] O. Catrina and S. de Hoogh. Improved primitives for secure
multiparty integer computation. In Security and
Cryptography for Networks (SCN), pages 182–199, 2010.

[17] O. Catrina and A. Saxena. Secure computation with
fixed-point numbers. In FC, pages 35–50, 2010.

[18] R. Cramer, I. Damgård, and Y. Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure
computation. In TCC, pages 342–362, 2005.

[19] I. Damgård, M. Geisler, and M. Krøigård. Asynchronous
multiparty computation: Theory and implementation. In
PKC, pages 160–179, 2009.

[20] I. Damgård and M. Keller. Secure multiparty AES. In FC,
pages 367–374, 2010.

[21] I. Damgård, M. Keller, E. Larraia, C. Miles, and N. Smart.
Implementing AES via an actively/covertly secure
dishonest-majority MPC protocol. IACR Cryptology ePrint
Archive Report 2012/262, 2012.

[22] I. Damgård and J. Nielsen. Scalable and unconditionally
secure multiparty computation. In CRYPTO, 2007.

[23] V. Dimakopoulos, E. Leontiadis, and G. Tzoumas. A
portable C compiler for OpenMP V.2.0. In European
Workshop on OpenMP (EWOMP), pages 5–11, 2003.

[24] M. Frigo, C. Leiserson, and K. Randall. The implementation
of the Cilk-5 multithreaded language. In PLDI, pages
212–223, 1998.

[25] M. Geisler. Cryptographic protocols: Theory and
implementation. PhD thesis, Aarhus University, 2010.

[26] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and
fast-track multiparty computations with applications to
threshold cryptography. In PODC, pages 101–111, 1998.

[27] O. Goldreich. Towards a theory of software protection and
simulation by oblivious RAMs. In STOC, 1987.

[28] W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: Tool for Automating Secure
Two-partY computations. In CCS, pages 451–462, 2010.

[29] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure
two-party computations in ANSI C. In CCS, 2012.

[30] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In USENIX
Security Symposium, 2011.

[31] R. Jagomägis. SecreC: A privacy-aware programming
language with applications in data mining. Master’s thesis,
University of Tartu, 2010.

[32] F. Kerschbaum. Automatically optimizing secure
computation. In CCS, pages 703–714, 2011.

[33] J. Launchbury, I. Diatchki, T. DuBuisson, and
A. Adams-Moran. Efficient lookup-table protocol in secure
multiparty computation. In ICFP, pages 189–200, 2012.

[34] S. Laur, R. Talviste, and J. Willemson. From oblivious AES
to efficient and secure database join in the multiparty setting.
In ACNS, pages 84–101, 2013.

[35] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a
secure two-party computation system. In USENIX Security
Symposium, pages 287–302, 2004.

[36] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure
two-party computation is practical. In ASIACRYPT, 2009.

[37] A. Schroepfer, F. Kerschbaum, and G. Mueller. L1 – An
intermediate language for mixed-protocol secure
computation. In COMPSAC, pages 298–307, 2011.

[38] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

825

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130918071931
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 3
 AllDoc
 3

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 12
 13
 12
 13

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130918071931
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 3
 AllDoc
 3

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 12
 13
 12
 13

 1

 HistoryList_V1
 qi2base

