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ABSTRACT
With the proliferation of Internet of Things, there is a grow-
ing interest in embedded system attacks, e.g., key extrac-
tion attacks and firmware modification attacks. Code execu-
tion tracking, as the first step to locate vulnerable instruction
pieces for key extraction attacks and to conduct control-flow
integrity checking against firmware modification attacks, is
therefore of great value. Because embedded systems, espe-
cially legacy embedded systems, have limited resources and
may not support software or hardware update, it is impor-
tant to design low-cost code execution tracking methods that
require as little system modification as possible. In this work,
we propose a non-intrusive code execution tracking solution
via power-side channel, wherein we represent the code ex-
ecution and its power consumption with a revised hidden
Markov model and recover the most likely executed instruc-
tion sequence with a revised Viterbi algorithm. By observing
the power consumption of the microcontroller unit during ex-
ecution, we are able to recover the program execution flow
with a high accuracy and detect abnormal code execution be-
havior even when only a single instruction is modified.

1. INTRODUCTION
Embedded devices controlled by microcontroller units are

deployed everywhere. They are not only widely spread in
our daily life with the proliferation of Internet of Things
(IoT), but also extensively used in the global IT environ-
ments and critical infrastructures. Consequently, there is a
growing interest in embedded system attacks and defense
mechanisms. What makes both, especially defense, difficult
is the limited capability of code execution monitoring on
embedded systems, mainly caused by limited I/O interfaces
and constrained-resources. This situation is unlikely to be
alleviated any time soon by adding extract features, since
updating embedded systems, especially legacy systems, is
hindered due to safety or cost concerns. Thus, in the paper,
we design a method for code execution tracking of embed-
ded systems without requiring software or hardware modifi-
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cation. Such a method enables us to answer two important
security related questions: (1) At a given time, which in-
struction in a code is being executed? (2) Given a source
code, has it been modified and is the microcontroller unit
(MCU) executing a malicious code?

Here, we illustrate how to utilize code execution tracking
with two examples, but its applications are not limited to
these two. (1) Locate the vulnerable code section for extract-
ing private information of a system during execution. For in-
stance, key extraction attacks [1,2] assume that adversaries
are aware of the code of the cryptographic algorithms. They
analyze the source code to find vulnerable code sections, and
locate these code sections during execution for private infor-
mation extraction. Typically, prior work assumes locating
code sections during execution is achievable and focus on the
code analysis part. Our work fills in the blank. (2) Detect
attacks that intend to hijack MCU’s control-flow to execute
malicious code [3–5]. One effective countermeasure to these
attacks is to enforce control-flow integrity (CFI) [6], which
tracks code execution and prevents code execution deviating
from the control-flow graph (CFG) of the program. Over the
last decade, a large number of CFI techniques [7–12] have
been proposed. These techniques, despite their effectiveness,
are inapplicable for many embedded systems, because the
imposed overhead will overwhelm the resource-constrained
devices and they typically require software and/or hardware
modification, which is impossible for most embedded de-
vices, especially legacy devices. Our work enables to apply
CFI on embedded systems.

Code execution tracking via power side-channel is promis-
ing yet challenging. The advantage is that power side-channel
leaks information about instructions being executed on MCU
and obtaining such information needs no modification on the
MCU itself. However, power measurement traces are quite
noisy and it is difficult to extract useful information out of
them. Prior work on recovering the type of executed instruc-
tion in a MCU via power-side channel [13] showed a rather
low accuracy (about 60% in the best case). We manage to
track code execution at a much higher accuracy by lever-
aging the control transfer information from CFG and using
frequency analysis to reduce the noise in power side-channel.
To be specific, the main contributions of this work include
the followings.

• We propose to recover the instruction sequence by hid-
den Markov model (HMM). To increase the identifica-
tion accuracy, we take advantage of the fact that for a
given program, instructions should be executed in se-
quences obeying CFG, and identifying these sequences
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can increase the noise resilience than identifying every
single instruction independently. Thus, we represent
the CFG as the state machine in HMM. To efficiently
utilize control transfer information from CFG, we use
basic blocks in CFG as states in HMM. Correspond-
ingly, we revise the classic HMM and Viterbi algorithm
to cope with the challenges that basic blocks contain
different numbers of instructions and hence have dif-
ferent lengths.

• We propose signal extraction techniques to design the
observation symbols in HMM. By extracting high qual-
ity signals from power measurement traces, the impact
of power measurement noises is dramatically reduced
and we are able to further improve instruction recog-
nition accuracy.

• We apply our proposed code execution tracking tech-
niques for control-flow integrity checking, i.e., we ob-
tain the likelihood of the reported instruction sequence
from power side channels and its value reflects whether
there exists abnormal execution behavior.

We evaluate the proposed code execution tracking solution
on a 8051 MCU, a popular choice for IoT, wearable devices,
industrial sensors, etc, because of their ease of software de-
velopment, royalty-free licensing and low cost, and small sil-
icon footprint. We select nine programs as our benchmark
suite. We demonstrate that our method can significantly im-
prove the tracking accuracy. For the benchmark programs,
we are able to achieve 99.94% accuracy in recovering the
type of executed instruction, which is 42.55% higher than
that of the previous method. Besides recovering instruction
type, our method can identify which instruction in code is
executed at a given moment, with the average accuracy of
98.56%. In addition, we demonstrate that our method is
able to detect abnormal execution behavior effectively, even
for the case when a single instruction in the original code
has been changed.

The remainder of the paper is organized as follows. In
Section 2, we present background knowledge and our prob-
lem formulation. Next, we give an overview of our method
in Section 3, and we discuss our revised HMM and Viterbi
algorithm in Section 4. Section 5 describes how to design
observation symbol and emission distribution function. In
Section 6, we explore how our method can facilitate de-
tecting abnormal execution. We evaluate our method with
STC89C52 MCU in Section 7 and discuss the limitations of
our method in Section 8. At last, we introduce related works
in Section 9 and conclude this work in Section 10.

2. BACKGROUND AND PROBLEM
FORMULATION

In this section, we first discuss the importance of code
execution tracking on key extraction attack and CFI. Then,
we briefly describe CFG and HMM. Finally, we formulate
the problem to be investigated in this work.

2.1 Key Extraction Attack
When cryptographic algorithms are implemented in soft-

ware, for security reasons, designers usually choose imple-
mentations from open source libraries (e.g., OpenSSL [14]).
Hence, adversaries are knowledgeable about the code, and

typically extract keys via side-channel attacks or fault in-
jection attacks. Both attacks require to precisely track code
execution before launching the attacks.

Side-channel attacks analyze MCU’s behavior on physical
side-channels, e.g., acoustic emission [15] and power con-
sumption [16], when vulnerable instruction pieces are exe-
cuted during encryption or decryption. Such vulnerable in-
struction pieces are carefully chosen from the code, so that
their operations are correlated to the key bits. For example,
differential power analysis (DPA) [1] on Data Encryption
Standard requires to obtain the power traces for the 16th

encryption round; correlation power analysis (CPA) [17] on
Advanced Encryption Standard (AES) requires to obtain the
power traces just after the first AddRoundKey operation.

Fault injection attacks attempt to disturb cipher’s opera-
tions and extract keys by analyzing the cipher’s faulty out-
put [18, 19]. For each fault attack method, attackers must
inject faults into MCU at precise timing when vulnerable in-
struction pieces are executed. Take extracting the round key
of AES-128 encryption algorithm [20] as an example. The
vulnerable sections can be the code between the 6th and
the 7th MixColumns operations [21], in the last encryption
round but before its SubBytes operation [2], in the previous
rounds of the targeted round [22,23], and in the penultimate
round but before its MixColumns operation [24].

Thus, all these key extraction attacks require to locate
the vulnerable instruction pieces during execution. Conse-
quently, code execution tracking is an essential step in such
attacks and it is unfortunate that previous works in this
domain often assume such method is readily available.

2.2 Control Flow Integrity
Code execution tracking is also the foundation for CFI

techniques, which is effective to cope with control flow hi-
jacking attacks, e.g., return oriented programming [25], jump
oriented programming [26], buffer overflow [27] and firmware
modification [3]. CFI tracks code execution and prevents
any attempt to deviate execution flow from CFG [28].

Fine-grained CFI checking [7] requires adding a piece of
CFI guard code before every control-flow instruction (e.g.,
indirect jump) and allocating an additional shadow stack to
track and validate every function call, return, and excep-
tion during execution. To improve the performance, many
CFI techniques require hardware support. For instance,
ROPecker [8] relies on last Branch Recording (LBR), which
is a hardware unit introduced in Intel’s Nehalem architec-
ture, for CFI, and hardware modification is needed when ap-
plying it to other processors. Similarly, HAFIX [10] depends
on special hardware designs to track and verify function re-
turns during execution, and other studies [11, 12] introduce
dedicated hardware modules to track instruction execution
sequence, calculate a signature for this sequence, and com-
pare it with golden values.

Thus, the aforementioned CFI techniques require software
or MCU modification and incur non-trivial overhead to the
system. For embedded systems with limited resources, es-
pecially legacy embedded systems, such intrusive solutions
are not applicable.

2.3 Basics for CFG and HMM
Control Flow Graph [29] is a directed graph and repre-

sents how a program can transit between basic blocks dur-
ing execution. A basic block is a sequence of instructions
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Figure 1: (a) An example Control Flow Graph. (b) Illustration of a classic HMM.(c) Illustration of a revised HMM.

that has only one entry point at the beginning and one exit
point at the end. That is, a basic block can be considered
as an execution primitive, and its instruction combination
always run in the same order. Figure 1(a) shows an exam-
ple of CFG: each node in CFG represents a basic block and
each edge in CFG represents a valid control transfer between
basic blocks.

A hidden Markov model [30] consists of three parts: state
machine, emission distribution, and observation symbol. The
visible observation depends on hidden states and the hidden
state transition is a Markov process. Each state has a prob-
ability distribution over the possible observation. There-
fore, the sequence of observation provides some informa-
tion about the sequence of hidden states. Viterbi algo-
rithm [30] is often used to find the most probable state
sequence for a given observation sequence in HMM. Fig-
ure 1(b) shows an HMM example, which consists of three
states ({s1, s2, s3}) and four possible observation symbol val-
ues ({v1, v2, v3, v4}). At time t, people can make an obser-
vation ot, where ot ∈ {v1, v2, v3, v4}. By continuously ob-
serving the HMM, an observation sequence O is obtained.
O is generated by the HMM going through a state sequence
Q, where qt (qt ∈ {s1, s2, s3}) in Q is the state of HMM at
time t. If HMM is in state si at time t, it will jump to state
sj at time t + 1 with probability ai,j . The probability to
observe vk is ek,i = Pr[vk|si], which depends on the hidden
state si.

2.4 Problem Formulation
Term definition. For the sake of clarity, we define the fol-
lowing terms used throughout the paper before formulating
the problem.

Instruction Instance. We use an instruction instance to
indicate a specific instruction, including both its machine
code and location in the code. If two instructions in the
code have the same machine code but with different PC
values, we treat them as different instruction instances. For
the sake of simplicity, an instruction sequence in this paper
refers to a sequence of instruction instances.

Instruction Type. Instruction type of an instruction is
only determined by its operation code. We treat instruction
instances with the same operation code belong to the same
instruction type.

Formulation. Although both key extraction and CFI rely
on code execution tracking, their requirements are differ-
ent. For key extraction, they only need to accurately track
the normal execution of the given code. In normal execu-
tion, the actual execution flow always obeys the CFG. On

the contrary, control flow hijacking attacks usually introduce
invalid control transfers [3,25–27], and the actual execution
flow deviates from the CFG, namely abnormal execution.
The objective of CFI is therefore to detect whether there is
abnormal execution in the system.

Thus, we formulate two sub-problems in this work.

1. Normal Execution Tracking: Given the source code
and the power measurement traces during code execu-
tion, we would like to recognize which instruction in-
stance is executed at each moment within the power
traces.

2. Abnormal Execution Tracking: Given the source
code and the power measurement traces during code
execution, we would like to detect whether abnormal
execution is performed.

3. OVERVIEW
In this section, we introduce the overall flow of our execu-

tion tracking method and discuss the main challenges. To
simplify discussion, we consider every instruction costs one
unit of time. Practically, some instructions may cost mul-
tiple units of time. In that case, we treat them as multiple
one-unit instructions.

3.1 Overall Flow
While we formulated two problems to tackle in this work,

both of them share the same code execution tracking frame-
work. We model code execution on MCU and its power side-
channel behavior as an HMM. To be specific, we consider a
basic block as an individual state, control transfer between
basic blocks as state transition, and the power consump-
tion of MCU as observation. Then, tracking code execution
is equivalent to recognizing how underlying state transition
happens for a given power trace.

Workflow of Code Execution Tracking. The overall
flow of our execution tracking framework is illustrated in
Figure 2, which contains an HMM construction phase and an
execution tracking phase. The final output of our framework
includes two sequences: an instruction sequence and the cor-
responding likelihood of each instance in the sequence.

The HMM construction phase determines the parameter
values of the HMM. We obtain substate (i.e., instruction
instance), state and state transition information from the
CFG of the given code, which can be derived by analyz-
ing the disassembled binary [31]. Based on a set of power
traces when executing various instructions, the observation
symbols are obtained by performing signal extraction and
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Figure 2: Workflow of the proposed code execution tracking framework.

dimension reduction, and emission distribution is modeled
with Gaussian distribution, as detailed in Section 5.

In the execution tracking phase, we first obtain observa-
tion sequence from power trace, and then identify the most
probable instruction sequence. In particular, we first divide
power traces into chunks that map to individual instruc-
tions. This is a straightforward procedure because power
trace exhibits periodical characteristics with periods map-
ping to instructions [13,32]. Then, to obtain the observation
symbol value for each chunk, we conduct filtering and linear
transformation on the raw power trace within the chunk,
which correspond to signal extraction and dimension reduc-
tion, respectively. With our revised Viterbi algorithm, we
can recover the most probable instruction sequence from the
obtained observation sequence. Then, based on recovered
instruction sequence and observation sequence, we can cal-
culate the likelihood sequence.

Normal and Abnormal Execution Tracking. The re-
ported instruction sequence directly addresses the normal
execution tracking problem. To approach the abnormal ex-
ecution tracking problem, we can examine the likelihood se-
quence, as detailed in Section 6.

3.2 Challenges
To track code execution with HMM, we could define indi-

vidual instruction type or individual instruction instance as
a state in HMM, but both have limitations. Using instruc-
tion type as state only recovers the instruction type sequence
instead of instruction sequence, which cannot solve the nor-
mal execution tracking problem. Using instruction instance
as individual state can solve this problem, but its computa-
tional complexity is prohibitive because the given code usu-
ally contains a large amount of instruction instances, which
creates a large number of states. For instance, the space
complexity of Viterbi algorithm is proportional to the num-
ber of states and hence becomes inefficient. In addition,
every state requires an emission distribution function, and
building individual emission distribution function for every
instruction instance is impractical for large programs. To
reduce the number of states without sacrificing recognition
accuracy, we define a basic block in CFG as state in HMM.
Because the instruction instances in a basic block always
run in the same order, if we know how basic block transi-
tion occurs during execution, the instruction sequence can
be determined as well.

The above state definition in HMM, however, incurs many
challenges. Classic HMM defines emission distribution func-
tion on the entire state, and it needs to divide given power
trace into chunks, where each chunk corresponds to one
unknown state. However, basic blocks may contain var-
ious number of instruction instances and hence different
states have unequal lengths in our case, which makes divid-
ing power trace for unknown states non-trivial. Moreover,

classic Viterbi algorithm assumes the length of every state
is 1, and it cannot work for states with unequal lengths. To
tackle these problems, we introduce substates, which repre-
sent instruction instances (see Figure 1(c)) in basic blocks,
and define emission distribution function on substate. By
doing so, we only need to divide power trace into chunks
that correspond to instructions. We also revise Viterbi al-
gorithm to work with unequal length states and the sub-
states. By combining states and substates, we are able to
simultaneously preserve the CFG information in HMM and
dramatically reduce computational complexity.

To reduce the cost of building emission distribution func-
tion for every instruction instance, we build individual emis-
sion distribution function for each instruction type and in-
struction instances of the same type use the same distribu-
tion function. Such emission distribution function design
suffices to track code execution, because different parts of
the code usually have different instruction type sequences
and accurately recognizing instruction type enables us to
recover the underlying state. To reduce the noise in instruc-
tion type recognition, we try to extract high-quality signals
from power traces and use them for observation symbols. To
further reduce the computational overhead of distribution
function construction, we also exploit dimension reduction
when designing observation symbols.

4. REVISED HMM AND VITERBI
ALGORITHM

In this section, we discuss how to revise HMM and Viterbi
algorithm for the problems investigated in this work.

4.1 HMM Parameters
Figure 1(c) shows an example of our revised HMM, and

formally, our HMM is characterized by the following param-
eters:

States, state lengths and substates. States are given
by S = {si | 1 ≤ i ≤ N}, where N is the number of basic
blocks in the CFG, and state si corresponds to the ith basic
block in the CFG. We use li to represent the number of
substates, i.e., instruction instances, in state si. Then si
can be further represented as a sequence of li substates, i.e.,
si = {s1i , s2i , . . . , slii }, where smi is the mth substate in si.

State transition probability and initial substate dis-
tribution. In our model, state transition represents con-
trol transfer between basic blocks. However, such transition
probability distribution can vary significantly with different
inputs to program, and the exact input for targeted execu-
tion is not available to us. Hence, we use a(si, sj) to indicate
whether there is a valid control transfer in CFG from si to
sj , that is

a(si, sj) =

{
1 if transition is valid
0 otherwise

. (1)
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Figure 3: Example for Q and R(Q).

Consequently, a(si, sj) is no longer a probability value, be-
cause, for any i,

∑
1≤j≤N a(si, sj) could be larger than 1.

The first chunk in examined power trace can correspond to
any instruction instance in any basic block. To obtain the
prior probability of instruction sequence, we also need the
probability of an instruction instance, i.e., substate, being
the initial one. This probability distribution also varies with
different input data, and we simply assume all substates have
equal probability to be the initial one.

Observation symbols and emission distribution. We
use V to represent the set of all possible observation sym-
bol values. As mentioned above, our emission distribution
is defined on substate. Emission distribution for substate
smi is given by {e(v, smi ) = p(v|smi ) | v ∈ V }. We detail
how to design observation symbol and emission distribution
function in Section 5.

4.2 Likelihood Estimation
Then, finding the most probable instruction sequence is

equivalent to finding the most probable substate sequence.
Next, we discuss how to estimate the probability for a sub-
state sequence given the observation sequence.

When calculating the probability of a substate sequence
Q, we also need its corresponding state sequenceR(Q). R(Q)
explicitly represents the state transitions in Q. For example,
in Figure 3, for substate sequence {s35, s12, s22, s18, s28, s38}, its
corresponding state sequence is {s5, s2, s8}.

Formally, a substate sequence of length T can be written
as Q = {q1, q2, . . . , qT }, where qt ∈

⋃
1≤i≤N si. R(Q) can

be written as R(Q) = {r1, r2, ...., rK}, where rk ∈ S. Note
that, q1 ∈ r1 and qT ∈ rK . We name r1 as the initial
state, and name rK as the final state. Because q1 and qT
can be any intermediate substate between r1 and rK , the
corresponding substate sequence parts for r1 and rK in Q
can be incomplete. Nevertheless, substate sequence parts
for states between the initial state and the final state must
be complete in Q.

Then, given an observation sequence O = {o1, o2, . . . , oT }
of length T , a candidate substate sequence Q and its corre-
sponding state sequence R(Q), the probability of Q given O
is p(Q|O) = p(Q,O)/p(O). Because p(O) is the same for all
candidate Qs, to find the most probable substate sequence,
we only need to compare the p(Q,O) part, given as,

p(Q,O) = p(O|Q) · p(Q)

=
∏

1≤t≤T

e(ot, qt) · [b(q1) ·
∏

2≤k≤K

a(rk−1, rk)],

where b(q1) is the probability that q1 is the initial substate.
As indicated by Equation 1,

∏
2≤k≤K a(rk−1, rk) equals 0

if R(Q) contains any invalid state transition, otherwise it is
b(q1), whose value is the same for different q1. Consequently,
the likelihood value J for a substate sequence Q given O can

be estimated as,

J(Q,O) =


0, R(Q) contains

invalid transition∏
1≤t≤T

e(ot, qt), otherwise
. (2)

Then, the most probable substate sequence is simply the
one with the maximum J value.

4.3 Revised Viterbi Algorithm
Next, let us discuss how to efficiently find the most prob-

able substate sequence, given observation sequence O of
length T . Our algorithm follows the idea in classic Viterbi
algorithm. We first calculate the J value of most probable
substate sequence by recurrence, and then reconstruct the
most probable substate sequence by backtracking.

For each state sj and each time t, our revised Viterbi
algorithm calculates a quantity, denoted by δt(j). When
1 ≤ t ≤ T , δt(j) represents the maximal J for substate se-
quence that starts at time 1 and terminates at time t with

s
lj
j (i.e., the last substate of sj). So at time T, the calcu-

lated δT (j) corresponds to the maximal J value of substate
sequence that ends exactly at the last substate of sj . Given
the observation can also end at any substate inside sj (e.g.,
the case shown in Figure 3), we also calculate sj ’s δ at time
T + 1 to T + lj − 1. When T + 1 ≤ t ≤ T + lj − 1, δt(j)
represents the maximal J for substate sequence which starts

at time 1 and terminates at time T with s
lj−(t−T )

j as the last
substate.

Let us first give the basic idea about how to calculate δ
by recurrence. For a given substate sequence, we can divide
it into two parts: one part corresponds to its final state and
the other part is the substate sequence before its final state.
For instance, we can divide the Q shown in Figure 3 into
{s18, s28, s38} and {s35, s12, s22}. Then, according to Equation 2,
the J value of a valid substate sequence is the product of J
value for its final state part and J value for the former part
(i.e., the substate sequence part before the final state). It

means, if a substate sequence terminates with s
lj
j at time

t(t > lj) and its J value is δt(j), the J value of its former
part must be one of the δ values at time t − lj . Otherwise,
there must be other substate sequence that also terminates

at time t with s
lj
j , has larger J than it. Consequently, we can

calculate δt(j) based on δ values at time t−lj , and all δ values
can be obtained by recurrence. When recurrently calculating
δt(j), we also use a quantity φt(j) to record which previous
state’s δ at time t− lj maximizes δt(j).

Next, we give the formal recurrence relation and initial-
ization step for state sj . For the sake of simplicity, we
use Ω(sj ,m, n) to represent the partial substate sequence
in state sj , starting with smj and terminating with snj , i.e.,

Ω(sj ,m, n) = {smj , sm+1
j , . . . , snj },

where 1 ≤ m ≤ n ≤ lj .

Recurrence. When t ≥ 1 + lj and t ≤ T , according to
Equation 2, we have

δt(j) = [max
i
δt−lj (i)] · J(sj , {ot+1−lj , . . . , ot})

φt(j) = argmax
i

δt−lj (i) (3)

s.t. a(si, sj) = 1.
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When t ≥ 1+ lj and T < t ≤ T + lj−1, we tackle substate
sequences terminating in the middle of state sj at time T .
In this case, δ is calculated by,

δt(j) = [max
i
δt−lj (i)] · J(s′j , {ot+1−lj , . . . , oT })

φt(j) = argmax
i

δt−lj (i)

s.t. a(si, sj) = 1,

where s′j = Ω(sj , 1, T − t+ lj).

Initialization. δt(j) and φt(j) for 1 ≤ t ≤ lj are set by
initialization. Because lj may be greater than T , we have

• when 1 ≤ t ≤ lj and 1 < t ≤ T

δt(j) = J(s′j , {o1, . . . , ot}), φt(j) = 0,

where s′j = Ω(sj , lj − t+ 1, lj).

• when 1 ≤ t ≤ lj and t > T

δt(j) = J(s′j , {o1, . . . , oT }), φt(j) = 0,

where s′j = Ω(sj , lj − t+ 1, lj − t+ T ).

φt(j) = 0 indicates sj , terminating at t, is the initial state.

With above, if a substate sequence is of length T and uses
sj as final state, its maximal J value is given by

max{δT (j), . . . , δT+lj−1(j)}.

Hence, the J value of the most probable substate sequence
is given by

max
j
{max{δT (j), . . . , δT+lj−1(j)}}.

Once the J value of the most probable substate sequence
is located, we can reconstruct the most probable substate
sequence by backtracking the φ value accordingly, similar to
classic Viterbi algorithm.

4.4 Complexity Analysis
In this subsection, we analyze our method’s complexity,

by comparing it to the naive method that treats each in-
struction instance as individual state and uses classic Viterbi
algorithm to solve it. Because the instructions inside a basic
block always run in the same order, it means most instruc-
tion instances in the code only have single possible previous
instruction. However, classic Viterbi algorithm updates the
δ value for a state at time t by enumerating all states’ δ val-
ues at time t− 1 and records the φ value for every state at
every moment, which is unnecessary for most instructions.

Suppose a program has X instruction instances and Y ba-
sic blocks. Because we usually observe MCU execution for
a long time, the observation sequence length, denoted by T ,
should be much larger than the length of the longest basic
block, denoted by lmax. Both classic Viterbi algorithm and
our revised one can be implemented in a dynamic program-
ming manner.

The space complexity is mainly determined by the size
of the array used in dynamic programming, which records
φ and δ for every state at every moment. Then, the space
complexity of the naive solution is O(T × X), and ours is
O((T + lmax − 1) × Y ) = O(T × Y ). Let us take aes case
shown in Table 1 as an example. lmax in aes is 82. If T
is 7065, then the size of the array with the naive method
is 7065 × 1472 ≈ 107 and that with our method is (7065 +

82− 1)× 55 ≈ 3.9× 105. Hence, we can reduce the memory
overhead by about 96.1%.

The time complexity is mainly determined by the cost
of updating elements in the array. In both methods, the
cost of updating one element consists of two parts: one is
evaluating the likelihood of the state given the observation,
e.g., J(sj , {ot+1−lj , . . . , ot}) in Equation 3, and the other one
is enumerating previous states, e.g., maxi δt−lj (i) in Equa-
tion 3. Assume the complexity of calculating the likelihood
for one instruction instance is O(1). In our method, let us
consider the worst case that every element is updated with
Equation 3. Then at time t, Y states need to evaluate the
likelihood for X instructions in total and each state needs
to enumerate Y previous states. Hence, the total time com-
plexity is O(T×(X+Y 2)). With the naive method, there are
X states. At time t, it also needs to evaluate X instructions,
but each state needs to enumerate X states. Therefore, the
total time complexity is O(T × (X + X2)), which is much
larger than ours.

5. OBSERVATION SYMBOL AND EMIS-
SION DISTRIBUTION FUNCTION

A good observation symbol design should enable us to
recover the instruction sequence accurately, and reduce the
overhead of building emission distribution function at the
same time. In order to achieve the above objectives, we
need to solve the following two problems.

First, because we build individual emission distribution
function for each instruction type, we should design the ob-
servation symbol in such a manner that it facilitates rec-
ognizing instruction type. Consequently, signal extraction
techniques are employed to increase the correlation between
observation symbol and instruction type.

Second, because a chunk of power trace that corresponds
to one instruction instance could contain hundreds of sample
points, there is significant overhead to model the distribution
of such a high-dimensional variable. Therefore, dimension
reduction technique is used to reduce computational com-
plexity.

In the following, we first discuss our signal extraction tech-
nique, and then present the overall design flow of our obser-
vation symbol.

5.1 Signal Extraction
From the viewpoint of frequency domain, power signal is

synthesized from different frequency components. The ob-
jective of signal extraction in this work is to select those
frequency components that are highly correlated to instruc-
tion type and filter out other components.

Frequency Components Selection. The raw power sig-
nal represents the total power consumption of the MCU,
and there are at least four factors that affect MCU power
consumption when an instruction is executed. First, instruc-
tion type affects power consumption by designating the mi-
cro operations of the processor. Next, when executing an
instruction, the instruction operands and the instruction ex-
ecuted prior to it affect the low-level switching activities of
the circuit. Finally, environment noise would also have some
impact on the obtained power trace. The last three factors
would interfere with instruction type recognition, and their
impact can be mitigated by increasing the correlation be-
tween observation symbol and instruction type.
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Usually, a frequency component can be represented by its
amplitude value Acom. As raw power signal is determined
by four factors, we simply model Acom as linear combination
of two parts, given by

Acom = Atype +Aother, (4)

where Atype is determined by instruction type, and Aother

represents the part determined by instruction operand, pre-
vious executed instruction and environmental noise together.

We assume Atype and Aother in Equation 4 are indepen-
dent. Ideally, different instruction types have different Atype

values and the same type of instruction has the same Atype

value. In this case, to evaluate the correlation between a
frequency component and instruction type, we can use the
correlation between Atype and Acom instead.

We use Pearson’s correlation coefficient to evaluate the
correlation. Then the correlation between Atype and Acom

is given by

ρ(Acom, Atype) =
cov(Acom, Atype)√

DcomDtype

,

where cov(Acom, Atype) is the covariance between Atype and
Acom, Dcom is the variance of Acom, and Dtype is the vari-
ance of Atype.

Because Atype and Aother are independent, we have

ρ(Acom, Atype) =
cov(Atype, Atype) + cov(Aother, Atype)√

DcomDtype

=
Dtype + 0√
DcomDtype

=

√
Dtype

Dcom
.

Therefore, we should select those frequency components
with the following two characteristics,

1. Dtype/Dcom should be as large as possible in order to
obtain larger correlation ρ(Acom, Atype).

2. In addition, the magnitude of Dtype should be as large
as possible. LargerDtype means the difference on Atype

among different instruction types is more significant,
which is easier to be captured.

Evaluating Dcom and Dtype. First, evaluating Dcom is
simple, because Acom value can be obtained by transforming
the raw power signal from time domain to frequency domain.
Second, although we cannot measure Atype directly, Dtype

can be evaluated as follows. Because Aother and Atype are
independent, if Aother keeps constant during sampling, the
conditional variance of Acom in this case is equal to Dtype,
according to Equation 4. As a result, to evaluate Dtype, we
can sample Acom by randomly changing instruction types
while keeping instruction operand and previous executed in-
struction fixed. To make environmental noise constant, we
can measure the power trace for every instruction instance
multiple times and use the averaged power trace instead.
To further improve the accuracy, we can calculate Dtype

multiple times with different configurations of instruction
operands and previous executed instruction, and use the av-
eraged value when comparing different components.

Filtering. Once the appropriate frequency components are
selected, it is straightforward to obtain the filtered power
signal. That is, we can obtain the frequency amplitude spec-
trum of one power trace with Fast Fourier Transformation,

Figure 4: Observation Symbol Design Flow.

zero out the amplitude values of those inappropriate fre-
quency components, and generate the filtered power trace
by Inverse Fast Fourier Transformation.

5.2 Overall Design Flow
Figure 4 shows our observation symbol design flow. The

input is a set of power traces with various instruction in-
stances. Among these instruction instances, the instruction
type, the instruction operand and instruction executed prior
to the sampled instruction are all randomly changed.

First, we conduct signal extraction according to the given
set of power traces and generate the filtered power traces.
Next, we conduct dimension reduction with principle com-
ponent analysis (PCA) [33]. PCA can generate a linear
transformation function that maps high-dimensional power
signal to a lower-dimensional signal, while the transforma-
tion preserves useful information as much as possible. When
applying PCA, we need to decide the dimensionality of the
obtained lower-dimensional signal. To solve this problem, we
evaluate how dimensionality affects instruction type recog-
nition rate with statistical classifiers, e.g., Naive Bayes clas-
sifier, and use the smallest dimensionality contributing to
the highest recognition rate.

Finally, we use the low-dimensional signal obtained after
applying PCA as our observation symbol. For each instruc-
tion type, we fit its emission distribution with Multivari-
ate Gaussian Distribution Model, based on the above power
trace set.

6. ABNORMAL EXECUTION TRACKING
Till now, we have shown how to recover the instruction

sequence, and solve the normal execution tracking problem.
In this section, we discuss how to detect abnormal execu-
tion, based on the fact that in abnormal execution cases,
the most probable sequences typically have a reduced like-
lihood compared to the normal execution cases. Then, we
discuss the possibility that attackers can evade our tracking
method.

6.1 Detection via Likelihood Sequence
When invalid control transfers are introduced by control

flow hijacking attack, our revised Viterbi algorithm would
recognize the actual instruction sequence, deviating from
CFG, as another valid instruction sequence that obeys CFG
and has the largest probability to generate the observation
sequence. Because the actual instruction sequence, contain-
ing abnormal execution, intends to implement a malicious
function that does not exist in the original CFG, the actual
instruction sequence’s instruction type sequence is usually
different from that of any valid instruction sequence defined
by the CFG. Therefore, the type sequence of the actual
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instruction sequence is different from that of the reported
instruction sequence. With the above, when tracking ab-
normal execution, some instruction instances in the actual
sequence would be incorrectly recognized as the wrong type
of instruction instances in the reported sequence. This phe-
nomenon can thus be used for abnormal execution tracking.

Ideal Case. Ideally, when tracking normal execution, in-
struction instances should be all correctly recognized. Hence,
if we could distinguish between correctly recognized instruc-
tion instances and incorrect ones, we are able to detect ab-
normal execution. In order to achieve this objective, we
examine the likelihood of the reported instruction instance
m given the corresponding observation v, i.e., e(v,m), which
is also the conditional probability of v given m. When m is
reported with incorrect recognition, the corresponding ob-
servation, denoted by vinc, is actually generated by another
instruction of different type. Because different instruction
types usually generate different observations, m is not likely
to generate vinc. If m is reported with correct recognition,
the corresponding observation, denoted by vc is generated
by m itself. Hence, we have e(vinc,m) < e(vc,m).

Calibrated Likelihood. Motivated by the above, for each
instruction instance in the code, we record its average like-
lihood value in normal execution. When detecting abnor-
mal execution, for each instruction instance in the reported
instruction sequence, we subtract the recorded average like-
lihood for this instruction instance from its current likeli-
hood value, and we name the obtained difference as cal-
ibrated likelihood. Then, the calibrated likelihood se-
quence is given by

{e(o1, q1)− h(q1), e(o2, q2)− h(q2), . . . , e(oT , qT )− h(qT )},

where h(qt) is the average likelihood value of the instruction
instance qt in normal execution.

If the instruction instance is correctly recognized, its cal-
ibrated likelihood should be around zero. Otherwise, the
calibrated likelihood for incorrectly recognized instruction
instance should be biased to be negative.

Note that, although an additional average likelihood num-
ber is recorded for each instruction instance, this overhead is
much smaller than that of building and recording individual
emission distribution function for each instruction instance.

6.2 Security Analysis
Given different instruction types may have the same power

emission model, an attacker may try to launch a mimic at-
tack, which evades our detection by constructing adversarial
instruction sequence whose power consumption fingerprint
happens to be valid. In this section, we discuss the proba-
bility of such attack.

Threat Model. To construct a malicious sequence to ful-
fill an adversary’s hidden agenda from scratch is challenging.
We imagine that an adversary will utilize the well-known at-
tack (i.e., Call-Preceded Return-Oriented- Programming, in
short CPROP [25]) to reuse the existing code to accomplish
this goal. Thus, for illustration purpose, we analyze the like-
lihood of mimic attackers that utilize CPROP. CPROP mali-
ciously redirects the target of the ret instruction to a wrong
instruction whose preceding instruction is a call instruc-
tion. Without loss of generality, suppose all control trans-
fers in a program are caused by function calls or returns.
Then CPROP constructs adversarial instruction sequence

by introducing invalid transitions among basic blocks. We
assume attackers know the power fingerprint of every basic
block in the code.

We assume that the target program has m basic blocks,
each basic block has n instructions (excluding the final con-
trol transfer instruction), and each basic block has v (v ≤ m)
valid next basic blocks in CFG (i.e., outdegree of any node in
CFG is v). Given different instruction types may have the
same power emission, we assume that the instruction set
contains a instruction types in total and can be divided into
b groups, where each group contains a/b instruction types on
average and the instruction types in the same group have the
same power emission. We can only distinguish instruction
types from different groups via power side-channel.

When CPROP wants to insert a malicious basic block af-
ter a legitimate basic block, she creates an invalid transition.
To evade detection, CPROP should create the malicious ba-
sic block so that its power fingerprint is the same as one of
the original v valid ones. In the worst case, CPROP can use
one of the m−v basic blocks (i.e., the ones that create invalid
transition) as the malicious one and the resulting adversarial
instruction sequence only deviates from the valid instruction
sequence by a single basic block. Let us denote the prob-
ability that such adversarial sequence evades detection by
Pevade. If the instructions in basic blocks are randomly and
independently distributed,

Pevade = 1− [1− (
1

b
)n]v(m−v). (5)

The second term in Equation 5 gives the probability that
any of the m− v malicious candidates has a different power
fingerprint from those of v valid ones, i.e., the probability
of detecting the adversarial sequence. We can expand this
term in Binomial series, then

Pevade = kx−
k∑

t=2

[(−1)t
k(k − 1) . . . (k − t+ 1)xt

t!
], (6)

where x = (
1

b
)nand k = v(m− v).

When kx < 1, the absolute value of (−1)t k(k−1)...(k−t+1)xt

t!
decreases as t increases. Hence, the second term on the right
hand side of Equation 6 is always positive. Then we have

Pevade < kx =
v(m− v)

bn
.

For the code size m and the basic block size n that are
typical for mid-size embedded devices, the magnitude of kx
is small and Pevade is close to 0 with the following reasons.
First, bn is exponentially proportional to n. Second, differ-
ent instruction types’ power emissions usually provide suf-
ficient diversity and b is large. For example, b ≈ 102 for
the MCU used in our experiments, because a = 152 and the
accuracy of classifying instruction types can be estimated
by b/a, which is 70% in our case as shown in Section 7.2.3.
Third, k ≤ 0.25m2, kx ≤ m2/4bn. Hence, kx is small for a
typical code size m and a basic block size n. For instance,
for a target code of 106 basic blocks, we only need n > 7
to guarantee Pdetect > 99.75% with the MCU used in our
experiments.

Thus, the probability of constructing an adversarial in-
struction sequence with a valid power consumption finger-
print is close to 0 in general.
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7. EVALUATION
In this section, we conduct various experiments to evalu-

ate the proposed solution. First, we describe the hardware
and software platforms used for evaluation and introduce
the performance metrics used in this work. The evaluation
results are divided into four parts: designing observation
symbol, tracking normal execution, tracking abnormal exe-
cution, and tracking execution on different chips.

7.1 Experimental Setup
MCU under test. The method proposed in this paper
actually can be applied to any MCU model, as long as the
execution time of every instruction is a constant. Many
MCU architectures in current market satisfy this require-
ment, such as PIC12 [13] , 8bit AVR [32] and Intel’s 8051 [34].
STC89C52, an implementation of 8051 architecture, is used
in this evaluation. Since there is no external RAM on its
evaluation board, instructions relevant to external RAM
(e.g., MOVX) are excluded from evaluation. Most instructions
in this MCU cost only one machine cycle. For instructions
costing 2 or 4 machine cycles, we treat them as 2 or 4 dif-
ferent single-cycle instructions. As a result, the effective
instruction set contains 152 different single-cycle instruction
types. This MCU is clocked at 11.0592MHz using an ex-
ternal oscillator.

Power measurement. To measure the power consumption
of the MCU under test, a resistor of 46.7Ω is placed between
VCC pin of the MCU and its power supply, and the volt-
age drop over it is measured using a Tektronix MDO3034
oscilloscope with sampling rate of 1.25GS/s.

Benchmark programs. Our benchmark suite consists
of 9 programs, in which eight of them are from Dalton
Project [35] that is used to evaluate the performance of 8051
MCUs. The remaining one is an implementation of AES-128
encryption algorithm migrated to our MCU. The details of
these nine programs are shown in Table 1, including the
number of instruction instances (# of Inst.), the number of
basic blocks (# of BB.), and the length of instruction se-
quence tracked during program execution (Measured Inst.).
For the programs matrix, aes, pid and dct, we only mea-
sure 7065 executed instructions, because their power traces
for a complete execution will go beyond the maximal length
that can be measured with our experimental setup. For all
the other programs, power traces of a complete execution
are recorded.

Evaluation Metrics. We evaluate our method with two
metrics. The first one is Instruction Sequence Accuracy
(ISA), which demonstrate the accuracy of the recognized in-
struction instance in the reported instruction sequence. The
second metric is Type Sequence Accuracy (TSA), which only
measures the accuracy of the recognized instruction types.
TSA is a more important metric, because the performance
of some configurations (to be introduced below) cannot be
measured by ISA and our method relies on the instruction
type information to track program execution.

We compare our work with the method proposed in [13],
which recovers the instruction type sequence by treating ev-
ery instruction type as a state in classic HMM, and instruc-
tion type transition probabilities are extracted from code
under test. Their observation symbol is obtained by con-
ducting dimension reduction on raw power signal directly.

Name Description # of # of Measured
Inst. BB. Inst.

aes AES-128 1427 55 7065
sqroot Square root 1002 98 3800
sort Bubble sort 233 37 4430
matrix Matrix 413 30 7065

multiplication
pid Simulate cruise 1572 199 7065

control in car
dct Discrete cosine 560 51 7065

transform
gcd Euclidean 69 11 135

algorithm
fib Fibonacci 159 24 782

sequence
csumex Cumulative 89 12 665

sum chart

Table 1: Benchmark suite.

Figure 5: (a) Normalized Dtype/Dcom and Dtype for differ-
ent frequency components. (b) Classifying instruction type
after PCA, when signal extraction is used (E) and not used
(NOE).

We denote the HMM defined in [13] with prefix TYPE and
our proposed HMM with prefix BB (means Basic Block).
We use suffix E and NOE to indicate whether signal extrac-
tion technique is used or not in designing observation sym-
bol. Therefore, there are four configurations to be evalu-
ated: TYPE NOE, TYPE E, BB NOE and BB E, where
TYPE NOE corresponds to the method in [13]. All the four
configurations run on the same server with Intel Xeon E5-
2609 CPU and 16GB RAM.

7.2 Observation Symbol Design
In this section, we demonstrate how to design observa-

tion symbol and its impact on instruction type recognition
accuracy. In our experiment, the set of power traces used
for designing observation symbol consists of about 180,000
power traces from various instruction instances, measured
on the same chip.

7.2.1 Signal Extraction
Let us first estimate Dtype/Dcom and Dtype. We obtain

the frequency amplitude spectrum of the power traces with
Fast Fourier Transofrmation. Figure 5(a) showsDtype/Dcom

and Dtype within frequency range 0 ∼ 100MHz, where the
value of Dtype/Dcom and Dtype are normalized for presen-
tation. Based on our discussion in Section 5.1, we only select
frequency components within range (0MHz, 11.38MHz), be-
cause both Dtype/Dcom and Dtype within this range are
larger than those outside of this range and they are used
for instruction type recognition.
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Configuration TSA(%) Average
aes csumex dct fib gcd matrix pid sort sqroot

TYPE NOE 48.09 99.52 73.26 56.59 81.18 86.69 37.04 92.20 56.42 70.11
TYPE E 57.72 99.61 70.77 93.48 78.53 95.62 56.57 97.89 57.62 78.65
BB NOE 99.89 100.00 100.00 100.00 98.24 99.97 93.43 100.00 99.75 99.03
BB E 99.88 100.00 100.00 100.00 100.00 99.98 99.80 100.00 99.78 99.94

ISA(%)
BB NOE 90.55 100.00 100.00 100.00 98.24 99.97 92.81 100.00 97.04 97.62
BB E 90.49 100.00 100.00 100.00 100.00 99.98 99.48 100.00 97.09 98.56

Table 2: TSA and ISA in normal execution tracking. The last column shows the average value for each row.

7.2.2 Dimension Reduction with PCA
To decide the dimensionality of the final low-dimensional

signal, we examine the instruction type recognition rate with
Naive Bayes classifier and Gaussian Bayes classifier.

Figure 5(b) shows the instruction type recognition rates
for different classifiers after applying PCA, when signal ex-
traction is used and not used, respectively. For both clas-
sifiers that we have tested, cases with signal extraction re-
quire only about 10 dimensions to achieve the maximum
recognition rate, meanwhile the non-filtered cases require
much more dimensions (about 35 shown in the figure) to
achieve the same value. Given this, if signal extraction is
used, we use signals consisting of the first 10 dimensions af-
ter applying PCA as observation symbol, otherwise we use
signal consisting of first 35 dimensions after applying PCA
as observation symbol. For both cases, emission distribution
function of each instruction type is built with Multivariate
Gaussian Model.

7.2.3 Effectiveness of Signal Extraction
We have another two observations from Figure 5(b). First,

as fewer dimensions are required when signal extraction is
used, it means our signal extraction technique can reduce
the complexity in building the emission distribution func-
tion with Multivariate Gaussian Model. Second, with Naive
Bayes classifier, the maximal recognition rate for case with
signal extraction is larger than that of case without signal
extraction. This means, by selecting frequency components
of larger Dtype/D and Dtype, we can recognize instruction
types more accurately. But the improvement on the max-
imum recognition rate almost disappears for the Gaussian
Bayes classifier case, where the maximum recognition rate
is about 70% for both cases. One possible reason is that,
Gaussian Bayes classifier considers the dependency among
different dimensions that can help instruction type recogni-
tion, and the improvement introduced by signal extraction
is thus much smaller.

7.3 Normal Execution Tracking
Table 2 lists the accuracy of normal execution tracking for

different configurations with different programs. For each
configuration and each program, we track its execution for
five times and the average accuracy value is reported in the
table. From table 2, we have the following observations.

First, using BB model can always achieve higher TSA
than using TYPE model. No matter whether signal extrac-
tion technique is used or not, with BB model, the TSA for
tracking all 9 programs is over 93%. In particular, when
BB E configuration is used, the TSA is always over 99.7%.
For configurations with TYPE model, TSA varies a lot and
is quite low in some cases. For example, TYPE NOE only

achieves 37.04% TSA for pid, while it achieves 99.52% TSA
for csumex. On average, our most powerful method BB E
can outperform TYPE NOE by 42.55%. This is consistent
with our expectation, because BB model preserves more
knowledge from CFG and hence it has a higher probabil-
ity to track the execution correctly.

Second, on average, signal extraction technique can im-
prove TSA by 12.18% for TYPE model, and 0.92% for BB
model. Earlier we observed that the maximum recognition
rate with Gaussian classifier almost keeps unchanged, no
matter whether signal extraction is used or not. This is not
contradictory to our observation here. The difference lies
in experimental setup, i.e., in instruction type classification
experiment, the instruction type is uniformly distributed,
which is different from the distributions in actual programs.

Third, configurations with BB model can also achieve very
high ISA, which is over 97% on average. It demonstrates
that, by precisely recovering the executed instruction’s type,
it is sufficient for our method to track which instruction in-
stance in the code is executed. On some programs, ISA is
lower than TSA, such as aes. We manually check the results
of aes case, and find there are two basic blocks in the pro-
gram which only differ at one location in their instruction
type sequences. At this location, one block uses XRL A,R0

instruction and the other one uses XRL A,direct instruc-
tion. These two instructions both implement exclusive-or
function, differ in addressing mode, and belong to differ-
ent types. When one of them is incorrectly recognized as
the other one, TSA only treats this XRL instruction is incor-
rectly recognized while ISA regards all the instructions in
the basic block are incorrectly recognized. Therefore, ISA is
much smaller than TSA in this case.

To sum up, our BB model outperforms the original TYPE
model significantly. The signal extraction technique further
improves execution tracking accuracy.

7.4 Abnormal Execution Tracking
Because designing a full-fledged CFI method is beyond

the scope of this work, in this subsection, we mainly demon-
strate that abnormal execution could decrease the reported
calibrated likelihood values, compared to that of normal ex-
ecution cases.

We use firmware modification attack as an example. In-
tuitively, less modification on the original code is more dif-
ficult to be detected. Given this, we first study single in-
struction replacement, insertion and deletion cases on aes

program, which do not change the control transfers after
modification. In these three cases, we respectively replace
one NOP instruction with an ADD A,0x00 instruction, insert a
new NOP instruction, and delete an existing NOP instruction.
All these modifications are conducted at the beginning of
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Figure 6: Calibrated log likelihood of the first 4000 instruction instances in reported instruction sequence for (a) normal
execution, (b) single instruction replacement, (c) single instruction insertion, and (d) multi-instruction modification.

SubByte function in aes program, which is called 16 times
within one measurement. Next, to study multi-instruction
modification case, we simulate an attack that replaces aes

with dct during execution. Each power measurement covers
7065 instructions and BB E configuration is used as execu-
tion tracking method.

Figure 6 shows the calibrated log likelihood sequences in
the attack cases and the normal execution case. Because
the magnitude of the original likelihood value is sometimes
quite small, we perform calibration on log likelihood instead.
From the results, we have the following observations.

For the normal execution case (Figure 6(a)), the cali-
brated likelihood for most instruction instances are close
to zero and the mean value is -0.0284. Although several
calibrated likelihood values in the sequence deviate from
zero a lot, indicated by green circle, all these values cor-
respond to the same instruction instance whose type is MOVC
A,@A+DPTR, and their mean value is -43. Most registers
in 8051 are 8-bit registers, but DPTR consists of 16 bits.
Hence, the power consumption of MOVC is more sensitive to
operands than other instructions, and its calibrated likeli-
hood varies more significantly.

For the replacement case (Figure 6(b)), the distribution of
the calibrated likelihood is significantly biased with a large
negative mean value. Based on the reported instruction se-
quence, we can group the multiple occurrences of the same
instruction instance and observe its calibrated likelihood’s
distribution. The ADD A,0x00 instruction after replacement
is incorrectly recognized as NOP. All sixteen occurrences of
the replaced NOP, indicated by blue cross in the figure, have
negative calibrated likelihood value, and their mean is -
287. This replaced NOP can be easily distinguished from
the above-mentioned MOVC instruction. The calibrated like-
lihood values of MOVC instruction instance can be both neg-
ative and positive, indicated by green circle, and their mean
value is -56.

For the insertion and deletion cases, the observations are
similar and the result for the insertion case is given in Fig-
ure 6(c) as an example. We observe that the calibrated like-
lihood for many instruction instances around the inserted
(or deleted) NOP, indicated by blue dash line, is biased to
a large negative value. This is because, instruction inser-
tion/deletion can cause multiple instruction instances around
it to be incorrectly recognized. For example, if we delete the
first instruction from a 4-instruction basic block, the second
instruction in this basic block can be incorrectly considered
as the start of this state during tracking, and the remain-
ing three instructions in this basic block together with one
instruction from the next basic block in the actual execu-

tion flow may be incorrectly recognized as one state, which
affects the following basic block.

For the multi-instruction modification case (Figure 6(d)),
the calibrated likelihood for most instruction instances is bi-
ased to be negative, and the mean value is -87.7743, which
is much smaller than that in the normal execution case. The
degradation of the calibrated likelihood here is more signifi-
cant than the single instruction modification cases, which is
consistent with the intuition that multi-instruction modifi-
cation is easier to be detected.

7.5 Execution Tracking on Different Chips

Chip TSA(%)
No. TYPE NOE TYPE E BB NOE BB E
Chip1 44.84 79.04 93.66 99.94
Chip2 75.28 79.57 99.62 99.93
Chip3 67.94 79.51 99.60 99.93
Chip4 73.26 71.50 99.62 99.92

Avg. 65.33 77.40 98.13 99.93
STD 14.007 3.943 2.976 0.007

Table 3: Average TSA for four configurations on different
chips. The last two rows show the average and standard
deviation for each column.

In this subsection, we demonstrate that emission distri-
bution function built with power traces from one chip (e.g.,
Chip0) can be used to track code executions on other chips
(e.g., Chips 1∼4) from the same architecture family. Results
for normal execution tracking on Chip0 are listed in Table 2,
and the TSA results on Chip1∼4 using the same emission
distribution model derived from Chip0 are shown in Table 3.
These data can lead us to the following observations.

First, the emission distribution model derived from Chip0
work very well on Chips 1∼4. When comparing the average
TSA accuracy of all chips (e.g., the Avg. row in table 3 and
the last column of table 2), we found that they are very close
to each other, even though applying the model to different
chips can still introduce small accuracy loss (the largest TSA
degradation is 6.82% with TYPE NOE, and the degradation
for BB E is almost zero). There are two possible reasons
for such similarity. First, the power consumption of each
instruction is largely determined by its instruction types,
bacause instructions of the same type share many on-chip
hardware modules that contribute most of the overall power
consumption, as shown in Figure 5. Second, different chips
used in this experiment have the same architecture and sim-
ilar layouts, so power consumptions of each instruction type
are very close among different chips. Although they may
still have some unique features, the variances introduced by
such differences are small.
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Another observation is that the TSA values for configura-
tions with signal extraction techniques are more stable. This
is shown by the standard deviation (i.e., the STD row) in
Table 3 where BB E and TYPE E have much smaller stan-
dard deviation than BB NOE and TYPE NOE does. This is
because signal extraction facilitates to eliminate certain fre-
quency components that are more sensitive to the difference
between multiple chips (e.g., the static power corresponding
to frequency 0).

8. LIMITATIONS AND FUTURE WORK
Though our method has significantly reduced the compu-

tational complexity compared to the naive solution, it can
still induce undesired overhead when the target program is
large and contains a large number of instructions and basic
blocks. Such a situation can get exacerbated when inter-
rupts are enabled during execution, because interrupts can
be triggered at any time during code execution and cre-
ate various valid control transfers from every instruction in-
stance to the beginning of interrupt service routines. Under
such circumstances, every instruction instance in the code
becomes one individual basic block and it results in a larger
number of states. To tackle this problem, a hierarchical
code execution tracking method can be used. For instance,
when an interrupt is triggered, a processor needs to perform
special operations, e.g., context switching. It is possible to
first identify such operations from power traces, determine
the power traces corresponding to the execution of interrupt
service routines, and remove them. Then, we can concate-
nate the remaining power trace segments, and conduct code
execution tracking on the newly-constructed power trace.

In our experiments, the execution of the benchmark pro-
grams do not use peripheral devices, and hence the mea-
sured power trace is mainly contributed by the MCU itself.
When peripheral devices are used, however, the correlation
between instruction type and measured power trace would
decrease and it may result in reduced accuracy in code ex-
ecution tracking. As a direction for our future work, one
can increase the measuring points of power traces. That
is, instead of measuring the overall power consumption of
the system, we would collect power traces from multiple
power pins on the MCU and investigate their correlations
with the executed instructions, thereby mitigating the im-
pact of the peripheral devices on proposed code execution
tracking method.

9. RELATED WORKS
In this section, we briefly discuss related works, includ-

ing execution tracking via digital channels, normal execu-
tion tracking with side-channels, abnormality detection, and
code reverse engineering.

Execution Tracking via Digital Channel. Some ARM-
based MCUs (e.g., Cortex-M3) contain a dedicated hard-
ware unit for code execution tracking, namely embedded
trace macrocell (ETM) [36]. However, it is usually not prac-
tical to cycle-accurately track code execution at normal CPU
speed with ETM. Moreover, many MCUs do not have such
hardware support for execution tracking.

Normal Execution Tracking via Side-channel. Eisen-
barth et al. [13] utilized HMM to recover the instruction type
sequence during code execution. It treats an instruction type

as a state, and extracts transition probabilities between in-
struction types. However, solely recovering instruction type
is not able to locate instruction instance. Msgna et al. [32]
tried to track execution flow by modeling one basic block in
CFG as a state with classic HMM. However, their method
cannot tackle the general case where basic blocks have un-
equal length. Compared to the above works, our code ex-
ecution tracking method can locate the exact instruction
instance during execution accurately.

Abnormality Detection via Side-Channel. Some works
detect abnormal execution by calculating the cross correla-
tion between examined execution’s side-channel trace, e.g.,
power trace [37, 38] and RF trace [39, 40], and the corre-
sponding side-channel trace of golden execution. In prac-
tice, however, it is difficult to determine the exact golden
execution flow because embedded system’s execution usu-
ally interacts with changeable environment and varies a lot
in different runs. By contrast, the detection technique based
on our tracking method has no such requirement. WattsUp-
Doc [41] uses statistical tools to classify every 5-second power
trace chunk’s corresponding execution to be normal or ab-
normal, where features, such as mean and variance, are used
for classification. We have shown calibrated likelihood is a
good feature for abnormal execution detection, and it can
be used to enhance WattsUpDoc.

Side-channel Based Code Reverse Engineering. These
methods focus on recovering the code in the system, instead
of tracking the execution flow for a given code. Vermon et
al. [42] recovered the bytecodes running on a Java smart
card. However, this method requires calculating the av-
erage power trace of the targeted sequence of bytecodes,
which is impractical for the general cases. Novak [43] and
Clavier [44] showed how to recover the substitution tables
of secret A3/A8 algorithm, but their method is limited to
recovering the look-up table part. Goldack and Paar [45]
proposed to recover the type of single instruction instance
by building power consumption templates for every instruc-
tion type. However, their template models the distribution
of raw power signal after simple dimension reduction. We
have demonstrated that dimension reduction itself does not
lead to high recognition accuracy, but it can be improved by
our signal extraction technique.

10. CONCLUSION
This paper proposes a non-intrusive yet highly-accurate

code execution tracking method for embedded systems uti-
lizing power-side channel. This is achieved with signal ex-
traction scheme to improve instruction type recognition and
a revised Viterbi algorithm for effective instruction sequence
extraction. Experimental results show that our method is
able to track code execution accurately in normal execution
tracking and effectively capture code modification in abnor-
mal execution tracking.
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[7] Ú. Erlingsson, et al. XFI: software guards for system
address spaces. In Proc.s of Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[8] Y. Cheng, et al. Ropecker: A generic and practical
approach for defending against ROP attacks. In Proc. of
Network and Distributed System Security Symposium
(NDSS), 2014.

[9] V. Pappas, et al. Transparent ROP exploit mitigation
using indirect branch tracing. In Proc. of USENIX Security
Symposium (USENIX Security), 2013.

[10] L. Davi, et al. HAFIX: hardware-assisted flow integrity
extension. In Proc. of Design Automation Conference
(DAC), 2015.

[11] M. Milenkovic, et al. Hardware support for code integrity
in embedded processors. In Proc. of International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), 2005.

[12] F. A. T. Abad, et al. On-chip control flow integrity check
for real time embedded systems. In Proc. of Cyber-Physical
Systems, Networks, and Applications (CPSNA), 2013.

[13] T. Eisenbarth, et al. Building a side channel based
disassembler. Transactions on Computational Science,
2010.

[14] OpenSSL. https://www.openssl.org/.

[15] D. Genkin, et al. RSA key extraction via low-bandwidth
acoustic cryptanalysis. In Proc. of Advances in Cryptology
(CRYPTO), 2014.

[16] N. Benhadjyoussef, et al. The research of correlation power
analysis on a aes implementations. Journal of Intelligent
Computing Volume, 2011.

[17] E. Brier, et al. Correlation power analysis with a leakage
model. In Proc. of Cryptographic Hardware and Embedded
Systems (CHES), 2004.

[18] J. Balasch, et al. An in-depth and black-box
characterization of the effects of clock glitches on 8-bit
mcus. In Proc. of Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2011.

[19] A. Dehbaoui, et al. Electromagnetic transient faults
injection on a hardware and a software implementations of
AES. In Proc. of Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2012.

[20] NIST FIPS Pub. Advanced encryption standard (AES).
Federal Information Processing Standards Publication,
2001.

[21] P. Derbez, et al. Meet-in-the-middle and impossible
differential fault analysis on AES. In Proc. of Cryptographic
Hardware and Embedded Systems (CHES), 2011.

[22] Y. Liu, et al. DERA: yet another differential fault attack
on cryptographic devices based on error rate analysis. In
Proc. of Design Automation Conference (DAC), 2015.

[23] R. Lashermes, et al. A DFA on AES based on the entropy
of error distributions. In Proc. of Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2012.

[24] A. Moradi, et al. A generalized method of differential fault
attack against AES cryptosystem. In Proc. of
Cryptographic Hardware and Embedded Systems (CHES),
2006.

[25] N. Carlini and D. Wagner. ROP is still dangerous:
breaking modern defenses. In Proc. of USENIX Security
Symposium (USENIX Security), 2014.

[26] T. K. Bletsch, et al. Jump-oriented programming: a new
class of code-reuse attack. In Proc. of Symposium on
Information, Computer and Communications Security
(ASIACCS), 2011.

[27] A. One. Smashing the stack for fun and profit. Phrack
magazine, 1996.

[28] N. Carlini, et al. Control-flow bending: On the
effectiveness of control-flow integrity. In Proc. of USENIX
Security Symposium (USENIX Security), 2015.

[29] F. E. Allen. Control flow analysis. In ACM Sigplan
Notices, 1970.

[30] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of
the IEEE, 1989.

[31] C. Zhang, et al. Practical control flow integrity and
randomization for binary executables. In Proc. of
Symposium on Security and Privacy (SP), 2013.

[32] M. Msgna, et al. The b-side of side channel leakage:
Control flow security in embedded systems. In Proc. of
Security and Privacy in Communication Networks (ICST),
2013.

[33] I. Jolliffe. Principal component analysis. 2002.

[34] I. S. MacKenzie. The 8051 microcontroller. 1998.

[35] UCR Dalton Project. http://www.cs.ucr.edu/˜dalton/.

[36] Embedded Trace Macrocells. http://www.arm.com/
products/system-ip/debug-trace/trace-macrocells-etm/.
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