
POSTER: Automatic Generation of Vaccines for Malware

Immunization

Zhaoyan Xu
Texas A&M University

z0x0427@cse.tamu.edu

Jialong Zhang
Texas A&M University

jialong@cse.tamu.edu

Guofei Gu
Texas A&M University

guofei@cse.tamu.edu

Zhiqiang Lin
University of Texas, Dallas

zhiqiang.lin@utdallas.edu

ABSTRACT

Inspired by the biological vaccines, we explore the possibility of

developing similar vaccines for malware immunization. We pro-

vide the first systematic study towards this direction and present a

prototype system, AGAMI, for automatic generation of vaccines

for malware immunization. With a novel use of several dynamic

malware analysis techniques, we show that it is possible to extract a

lightweight vaccine from current malware, and after injecting such

vaccine on clean machines, they can be immune from future in-

fection from the same malware family. We evaluate AGAMI on

a large set of real-world malware samples and successfully extract

working vaccines for many families such as Conficker and Zeus.

We believe it is an appealing complementary technique to existing

malware defense solutions.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection

General Terms

Security

Keywords

Malware analysis, Malware detection

1. INTRODUCTION
Malware is a severe threat to our computer systems. As a mat-

ter of fact, they are the root-cause of most Internet attacks and il-

licit activities. According to a recent security report from Syman-

tec [1], trends of malware are more apt to well-organized infections

to make better profit for cyber criminals. That is, malware tends to

infect a large number of victims and organize themselves into a

controlled zombie army, known as a botnet. Such pandemic propa-

gation can be easily fulfilled with only one malware family.

Currently most malware defense techniques on end hosts focus

on the detection, and they typically fall into two different cate-

gories: signature-based detection and behavior-based detection. A

signature-based approach typically attempts to extract some unique

string patterns from malware binaries. However it is clear that this

approach is hard to keep up with the fast increasing of unique mal-

ware samples each day in the wild due to the wide use of polymor-

Copyright is held by the author/owner(s).
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
ACM 978-1-4503-1651-4/12/10.

phisms/packers in malware. Another more promising approach ex-

tracts the runtime behavior of malware (which supposed to be more

stable within the same family of malware) for detection. This ap-

proach typically requires monitoring all kinds of system calls and it

is typically very expensive and may cause a noticeable performance

overhead on end hosts.

In addition to the detection of malware, another appealing solu-

tion is to prevent the malware from infecting the (clean) machine.

To achieve this goal, a common approach is to patch the known sys-

tem/software vulnerabilities within the machines. However, there

is typically a long time window between the identification of vul-

nerabilities and the release of the corresponding patches, not men-

tion that there are probably many zero-day (unknown) vulnerabil-

ities inside our software. In addition, many recent successful so-

cial engineering attacks (e.g., through Email, IM, web) can exploit

the vulnerability inside humans instead of software. As a result,

our machines are still extremely prone to pandemic malware infec-

tions. The need for new lightweight and complementary techniques

for effective malware prevention is pressing.

Interestingly, if we look at the case of pandemic diseases that can

infect a large-scale human bodies, an effective and successful de-

fense against known notorious diseases is vaccine. Once our body

is immunized with a certain vaccine, we can prevent the further

infection from the same disease. Then can we apply the similar

idea to generate vaccines for malware immunization? At the first

glance, this idea of malware vaccine might not be very appealing

because it is only effective for a specific known malware infection.

However, we observe that at one time, typically there are very few

high-profile malware families that widely propagate across the In-

ternet. If we can successfully generate lightweight vaccines and

quickly deployed them on a wide range of machines, we can suc-

cessfully prevent the infection from the specific malware we target.

This complementary approach thus becomes appealing. At least it

wins us time before we are able to obtain other better defense capa-

bilities, e.g., getting some patches for the vulnerabilities from the

vendors.

Our paper is motivated by the aforementioned question. We find

that indeed there exist similar vaccines for certain malware that can

be used to immunize machines from future infections. For example,

many fast-spreading malware programs (e.g., Conficker worm) will

clearly mark an infected machine as infected so that they can avoid

wasting time and effort in re-infecting the machine again. In this

case, this kind of marks can be considered as an effective and safe

vaccine to immunize a clean machine from the same infection. We

will discuss a representative example in detail in §2.1.

In this paper, we propose new techniques to automatically gen-

erate vaccines for effective and efficient malware immunization.

1037



More specifically, we concentrate on malware’s targeted resources

and design automatic analysis techniques to determine whether the

manipulation of these resources can successfully prevent (or at least

affect) malware’s infection/execution. We treat such resources as

our malware vaccines and derive concrete information needed for

generating vaccines. Furthermore, we discuss how we can prac-

tically deploy our generated vaccines onto the end-host. Previous

work [2] has discussed the possible existence of of virus vaccines.

To the best of our knowledge, this is the first systematic work to

perform program analysis to automatically generate vaccines for

real-world malware immunization.

In summary, our paper makes the following contributions.

• We introduce the concept of generating malware vaccines to

prevent current malware infection. We also present a simple

taxonomy of malware vaccines. We believe this is a promis-

ing complementary approach for malware defense.

• We design and implement the prototype system, AGAMI,

which can automatically generate malware vaccines. With a

novel use of dynamic malware analysis techniques, we show

that it is possible to automatically extract effective vaccines

from current malware.

• We evaluate our system with a large set of real-world mal-

ware samples. Our empirical evaluation shows that it is prac-

tical to generate working vaccines for many real-world mal-

ware families, such as Conficker and Zeus.

2. PROBLEM STATEMENT

2.1 A Motivating Example
We first motivate our research with a real-world high-profile mal-

ware example, Conficker worm [5] (our conficker acsac paper),

which has infected millions of computers during 2008 - 2011. There

is an interesting logic inside of Conficker, the pseudo-code of which

is shown in Figure 1. As we can see clearly that Conficker needs to

check the existence of some mutexes in the system before it actually

starts the infection. And if such mutexes already exist, Conficker

will unconditionally terminate itself. This is mainly because it does

not want to re-infect the machine again if it is already infected

(thus a waste of time and effort, and may also cause undesired

problems with double infections). More specifically, the mutex

names in Conficker follow some specific patterns, e.g., "Global

\ <string>-99", where the <string> is derived from the

CRC32 hash of the host computer name. All Conficker malware

samples within the same family follow such patterns.

Figure 1: Conficker Mutex Checking Logic

While this mutex checking helps Conficker to avoid double in-

fections, we can also use this fact to against it. That is, if we can

deliberately craft the same mutex names on a clean machine, then

this machine can be immune from future Conficker infection. This

is a perfect example of malware vaccines. We start from this moti-

vating example and ask further questions: are there other types of

malware vaccines? are vaccines prevalent in malware? how can we

automatically and efficiently extract vaccines for malware immu-

nization? The desire to answer these questions forms the basis of

this paper.

2.2 Malware Vaccine Background

What is a malware vaccine? The concept of vaccine is originally

from biology, which refers to a biological preparation that improves

immunity to a particular disease, which is done by injecting certain

agent that resembles a disease-causing microorganism. Similarly, a

malware vaccine is a computational preparation that improves im-

munity to a particular malware program. In essence, malware, like

any generic program, conducts a series of operations on system re-

sources and outputs the computing result. These system resources

in the computer system is analogue to the microorganisms in our

body. In this sense, malware-targeted resources (computer organ-

isms) are similar to those disease-causing microorganisms, the es-

sential components of a vaccine. More precisely, we define a mal-

ware vaccine as a specific system resource (or a collection of them)

that is created or used by malware in order for its normal infection

and execution.

How a malware vaccine works? Based on how a malware vaccine

works, we can classify it into two categories:

• It simulates the existence of certain computer organism (sys-

tem resource) such that malware will exit upon the awareness

of such existence, e.g., because it does not want to re-infect

the victim again.

• It prevents malware from creating/accessing certain critical

computer organism such that malware cannot obtain its es-

sential resources to fulfill the functions, thus it will terminate

or its functionalities will be significantly impacted/weakened.

A taxonomy of malware vaccine. Besides the aforementioned

mentioned categories of malware vaccines, we can further define

different types based on different perspectives.

Just like biological vaccines may not guarantee complete pro-

tection from a disease, the effectiveness of a malware vaccine can

vary. Based on the effectiveness, we can classify malware vaccines

into two types: full immunization (e.g., it can completely cease the

malware execution) and partial immunization (e.g., it significantly

affects the execution of some major functions in malware).

In terms of vaccine delivery and deployment, there could be two

types: direct injection and vaccine daemon. The first type is very

lightweight, e.g., a specific mutex name or file name. They can be

simply injected into the target computer once and it will be effective

afterwards. The second type of malware vaccines requires to run a

vaccine daemon on the machine. For example, it will prevent the

creation (or other access types) of certain specific files, registries,

library, system services, windows, processes thus to prevent mal-

ware from obtaining critical resources or information to fulfill its

functionalities.

It is worth noting that an ideal malware vaccine is those with

full immunization and one-time injection. However, other types of

vaccines are also useful, as shown in our evaluation.

2.3 Approach Overview
The goal of this paper is to provide a systematic framework to

automatically and efficiently generate an effective vaccine for a

1038



Figure 2: System Architecture

given malware sample, similar to the production of human body

vaccines in biology. This certainly requires us to well understand

the running behavior of malware. Thus, a basic assumption of our

approach is that we can obtain the malware sample and conduct dy-

namic analysis. This is a reasonable assumption for any malware

analysis research. Furthermore, our current analysis is based on

Windows because it is the most targeted platform by malware. Our

techniques could be applied to other platforms though.

Our approach is illustrated in Figure 2. At the high level, it con-

sists of three phases: Candidate Selection,Vaccine Generation and

Vaccine Deployment.

In the first phase, we will filter out malware samples that are

unlikely to contain vaccines, at the same time profile the normal

execution of the malware to obtain an overview of the malware’s

access to system resources. This provides us with detailed infor-

mation about the sources that are accessed during the malware’s

infection, such as what types of resources and the corresponding

resource-identifier names, what operations (e.g., create, read/write)

on the resources and the corresponding results (e.g., success, fail).

During our profiling, we will also apply a variant of dynamic taint

analysis technique [3] to determine whether the malware’s execu-

tion will be affected by certain resources it has accessed. If no pro-

gram branches depend on any system resource, then we filter this

malware because it does not contain vaccines that we can extract.

At the end of this phase, we obtain a list of candidate resources that

can affect the control flow of the malware execution.

In the second phase, our task is to generate vaccines by testing

their exclusiveness, impact on malware execution, and determin-

ism. It contains three sub-steps.

• This first step is the exclusiveness analysis, mainly used to

filter these resource identifiers that have been used in other

benign software, thus not exclusive to malware itself.

• The second step is to measure the potential impact of a cer-

tain system resource. We start a second-round execution

monitoring by manipulating the result of the specific mal-

ware’s resource operation, which will generate a manipulated

trace. We apply program alignment techniques [4] to com-

pare the concrete execution difference between the manipu-

lated trace with the normal trace, and determine if the system

resource can significantly impact the malware functions, e.g.,

cause malware to stop the execution. At the end of this step,

we generate a list of resources that can effectively stop the

malware’s infection (full immunization), or significantly af-

fect the malware’s certain functions (partial immunization).

• The third step is to measure the determinism of the specific

system resource identifier, e.g., filename or mutex name. An

effective malware vaccine should be deterministic. A deter-

ministic value could be a fixed/static value, or a value that is

generated from a deterministic algorithm (from deterministic

resources). The mutex names in Fig. 1 is a good example.

To tell if a specific resource identifier is deterministic, we

perform backward taint analysis and program slicing tech-

niques to fully understand the identifier generation logic and

the parameters it depends on. Based on that, we can further

analyze the root-cause of the identifier generation, and gen-

erate a program slice responsible for such generation logic.

In the last phase, we need to deploy the malware vaccine for an

end host. There are also two situations: direct injection and vaccine

daemon, as mentioned previously.

3. PRELIMINARY RESULTS AND CONCLU-

SION
In this paper, we imitate the process of biological vaccine pro-

duction and develop an automatic system, AGAMI, to extract pos-

sible malware vaccines from given malware samples with a novel

use of multiple dynamic program analysis techniques. Such vac-

cines can be used to build a immune system at an end host to defend

against the specific malware’s infection.

To demonstrate the real-world practicability, we have conducted

experiments on a large set of real-world malware samples (consist-

ing of over 1, 600 samples collected from various sources). We

show that many malware samples logic is commonly sensitive to

several types of resources such as mutex, file operation, Windows,

process, and library.

We can generate over 500 vaccines that belong to 210 malware

samples. Among them, we find over 300 vaccines have static val-

ues which can be very easily deployed onto the end-host system.

Meanwhile, based on the effectivness of vaccine, there are over 50

vaccines which can fully stop malware’s execution.

Our results are very encouraging as a proof-of-concept study of

malware vaccine generation. We believe it is an appealing comple-

mentary technique in the malware battle.

4. REFERENCES
[1] Symantec.

http://www.symantec.com/threatreport/.

[2] A Pathology of Computer Viruses. Springer-Verlag, 1992.

[3] Thanassis Avgerinos, Edward Schwartz, and David Brumley.

All you ever wanted to know about dynamic taint analysis and

forward symbolic execution (but might have been afraid to

ask). In Proc. of IEEE S&P’10, 2010.

[4] A.Zeller. Isolating cause-effect chains from computer

programs. In Proc. of the 10th ACM SIGSOFT symposium on

Foundations of Software Engineering, 2002.

[5] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An

Analysis of Conficker’s Logic and Rendezvous Points.

http://mtc.sri.com/Conficker/, 2009.

1039




