
Lower Bounds on Messages and Rounds for Network Authentication Protocols

Li Gong

SttI International
Computer Science Laboratory

333 Ravenswood Avenue
Menlo Park, California 94025 U.S.A.

Abstract

Research in authentication protocols has largely focused on
developing and analyzing protocols that are secure against
certain types of attacks. There is little and only scattered
discussion on protocol efficiency. This paper presents results
on the lower bounds on the numbers of messages and rounds
required for network authentication. For each proven lower
bound, an authentication protocol achieving the bound is
also given, thus proving that the bound is a tight bound if
the given optimal protocol is secure.

1 Introduction

Authentication is by definition a process to verify one's clMm
of identity. Since authentication is usually a prelude to
further communication and computation, an authentication
protocol often arranges that the protocol participants, once
their identities are verified, agree upon an encryption key--
a temporary key--for later use (e.g., within a user session).
Thus an authentication protocol is sometimes also called a
key distribution protocol.

Current research in authentication protocols has largely
focused on the security of protocols, and there is only scat-
tered published discussion on the issue of protocol efficiency
(e.g., [Bird 93, Birrell 85, Gong 89, Gong 93, Neuman 93,
Yahalom 93]). The treatment of efficiency or performance
is generally given a low priority and is often rather ad hoc.
One possible explanation is that since such protocols tend
to involve only a few messages, optimization is not seen as
a very urgent requirement.

However, as in the field of algorithm complexity, it is
natural and beneficial to inquire whether a protocol that
achieves authentication in a particular environment is also
in some sense minimal or optimal. For example, eliminating
one message from a five-message protocol represents a 20%
reduction in the number of messages and possibly a similar
amount of reduction in the overall running time of the pro-
tocol. Even for those who do not care for reduction of one
or two messages, it is useful to know that the protocols they
use are not too far from being optimal. Moreover, instead

Permission to copy without fee all or part of this materiel is
granted provided that the copies ere not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication end its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires • fee
and/or specific permission.

1st Conf.- Computer & Comm. Sccu~y '93-I1/93 -VA,USA
© 1993 ACM 0-89791-629-8/93/0011...$1.50

26

of dealing with each individual protocol, it is desirable that
some general results on lower bounds are proven, which can
serve as a reference for system and protocol designers.

To give just one example of how this type of result can
be useful, assume (fictitiously) the% for a particular environ-
ment, no protocols can be both message-optimal and round-
optimal. Faced with this impossibility result, a system can
provide a flexible authentication service that can give clients
the option to make dynamic trade-offs according to individ-
ual need. For example, a client who needs immediate au-
thentication may elect to run the version of the authentica-
tion protocol that uses more messages but has fewer rounds
and is thus faster to complete. On the other hand, when
the network is unreliable and retransmission is frequent or
when there is a very slow network link (such as a 2400 baud
modem connection) on the critical path, a client who is ex-
periencing communication problems may wish to run the
version that uses fewer messages. No known authentication
system has such flexibility.

In this paper, we attempt to investigate the issue of ef-
ficiency in a more systematic manner. In section 2, we first
describe the system model and specify some important as-
sumptions we make about the environment. We then select
a few settings in which authentication normally takes place,
and describe the most common objectives or goals of au-
thentication. After that, we define two metrics of efficiency,
the number of messages and the number of rounds. In sec-
tion 3, we prove lower bounds of the metrics for each setting
and each set of goals. For each proven lower bound, we also
give an optimal protocol achieving the bound, thus show-
ing that the bound is a tight bound if the protocol given is
secure. We then discuss the use of partial or independent
handshakes, of uncertified keys, and of public-key or mixed-
key systems. In section 7, we generalize our results to the
case with multiple clients setting up group keys. Finally, we
conclude with a discussion of future work.

Whenever we cannot find a published protocol that is op-
timal for the particular setting, we provide an example pro-
tocol, to demonstrate the achievability of the lower bound
rather than to suggest a practical protocol for use in a real
distributed system.

2 Preliminaries

2.1 System Model and Assumptions

The environment we assume is a distributed system where
parties (e.g., processes, users, machines) communicate with
each other only by sending and receiving messages via c o r n -

municat ion l inks between them. We assume tha t the un-
derlying cryptographic mechanisms are not vulnerable with
regard to message secrecy and integri ty so tha t we do not
consider attacks such as cryptanalysis and message slicing.
Any principal can place or inject a message on any link at
any time; cart see all exchanged messages; can delete, alter,
or redirect any message being passed along any link; can
init iate communicat ions with another party; and can replay
messages recorded from past communicat ions.

The model of authent icat ion taken here is the common
one often found in the l i tera ture (e.g., [Needham 78]). There
are three participants: two clients, denoted by A and B,
and an authent icat ion server S via which A and B agree
upon a t empora ry key. We assume tha t client A is always
the originator of the protocol execution, and we call B the
responder.

Both conventional cryptosystems (e.g., DES [NBS 77])
and public-key systems (e.g., RSA [Pdvest 78]) are useful
in authenticat ion protocols [Needham 78]. We concentra te
first on the use of conventional cryptosystems and will ana-
lyze the use of public key or mixed-key systems later. Sim-
ilarly, we s tar t with mutual authent icat ion and will discuss
other variations later.

When part icipants use only conventional encrypt ion sys-
tems, we assume tha t before an execution of the authen-
t ication protocol each client shares a secret key with the
server, but the two clients do not share any secret. Af ter
the successful complet ion of the protocol, the clients share
a secret, often known as a session or t empora ry key, to be
used for future communicat ion. Thus authent icat ion here
means identification plus key or certificate distr ibution via
the t rusted authent icat ion server.

We assume tha t the t empora ry key is for conventional
cryptosystems only. We fur ther assume tha t a client will not
accept or act upon a t empora ry key (or a candidate tempo-
rary key) unless the client can determine tha t the message
in which the key is dis tr ibuted is fresh. Such a key whose
"goodness" remains unconfirmed until it is fur ther used is
called an "uncertified key" [Burrows 89, p.32]. We discuss
its usage in section 5.

2.2 Settings

There are two impor tan t set t ing parameters to consider.
The first parameter is the mechanism each part icipant uses
to establish the freshness of messages. Broadly speaking,
there are two well-known mechanisms. One is based on
synchronized clocks [Denning 81] 1 , the other uses nonces
[Needham 78]. We discuss the two cases separately.

Except for a brief discussion toward the end of the paper,
we will not consider sett ings when one part icipant relies on
clocks and another relies on nonces, because the results of
this sett ing can be derived from the two simpler settings.
Other hybrid schemes not discussed include use of a times-
t amp as a nonce or for dual purposes, or the set t ing in which
one par ty has the opt ion to use a t imes tamp or a nonce, de-
pending on environmental restrictions, e.g., whether it is
possible to piggyback a "challenge" in a previous message,
as in Kerberos [Neuman 93].

The second parameter is concerned with the question of
who chooses the t empora ry key. We consider three possibil-
ities. One is tha t the server chooses the key. The second

1 Clock synchronization mechanisms often do not address their own
security problems. For a more detailed discussion and more references
on the risks of using clocks, see [Gong 92].

is that any one client can choose the key. The third is tha t
both clients par t ic ipate in choosing the key.

If the client is competent , let t ing a client choose a key can
shorten protocol. However, if one client does not necessarily
t rust the other, then both must par t ic ipate in choosing a
key.

Lett ing the server S and one or both clients be involved
in choosing the key is thought to be unnecessary in using
conventional cryptosystems, because S is in a position to
know all clients' secrets, including both long-term and tem-
porary keys, and thus must be t rusted not to divulge such
secrets. Also, the server is generally assumed to be bet ter
at generat ing quality keys. However, in the case of using
public-key systems, let t ing clients be involved in choosing
the keys can improve security, because S no longer has to
know all the secrets.

2.3 Goals

The goals of authenticat ion have been carefully studied, and
a protocol usually falls in one of two levels [Burrows 89]. We
will briefly discuss other variations in section 4.

A protocol at the first level can be viewed as authentica-
tion only. T h a t is, after complet ing the protocol, each client
will have received a key in a t imely or fresh message, and
the client believes tha t the key is suitable to be shared with
the other client.

A protocol at the second level can be called authentica-
tion with handshake. T h a t is, after complet ing the protocol,
each client will also believe tha t the other client has received
the key properly and believes in the suitabili ty of the key.
This ext ra requirement is generally met by a handshake ex-
change at the end of the protocol.

2.4 Metrics

In this paper we focus on two impor tan t efficiency metr ics
of a protocol: the total number of messages and the number
of rounds. We now define these metr ics more precisely.

A message is a da ta i tem sent by one client to a single
destination at one time. A message may contain headers to
indicate its source and destination. In some implementa-
tions, if the size of the da ta i tem is too large, the message
is actually f ragmented at a lower level into many packets.
We will still count this as one message. A message being
forwarded will count as a new message sent by the inter-
mediate party. A broadcast to many destinations will be
viewed as the same message being sent to those destinations
separately and thus will count as many messages.

We count a broadcast as many messages because in a
typical implementat ion, a broadcast will result in multiple
messages that add a system and network load many t imes
greater than load added by a simple message. Also, the
multiple recipients of a broadcast all must respond, e.g., by
examining the incoming message, changing s ta te if neces-
sary, and possibly replying to the sender or sending another
message according to the protocol specification. We aim to
include all messages tha t consume non-negligible system re-
sources so that minimizing the number of messages makes
more efficient uses of these resources.

Let us assume tha t the network is uniformly connected so
a message will always travel to its dest inat ion in one unit of
time, no mat te r where the source and the dest inat ion are.
We neglect the computa t ion t ime at each node. A round
consists of all messages tha t can be sent and received in
parallel within one t ime unit. Thus a part icipant can simul-
taneously send different messages to different dest inations in

27

one round, and so can multiple participants send messages
in one round. The number of rounds in a protocol is the
total number of time units from the instant that the orig-
inator sends the first message till the instant that the last
message is received, under the best execution scenario.

This metric is important because the number of rounds in
a protocol is an indirect measure of the worst-case protocol
execution time. In some applications, a client may wish to
trade other metrics, such as the number of messages, for a
faster protocol completion time.

2.5 Proof Methods

Based on the assumptions (especially the one excluding un-
certified keys), we make the following observations which are
vital to our proof methods:

1. A client cannot send out a handshake message before it
has received the temporary key. Thus, the last hand-
shake message cannot be sent before all clients have
received the temporary key.

2. A cheat without a synchronized clock cannot accept a
temporary key before it sends out a nonce.

3. The protocol responder (client) or the server cannot
send out any message (e.g., a nonce) before the proto-
col originator sends out a notification message.

Based on the above observations, our main proof tech-
nique for the lower bound on the number of messages is
to identify crucial messages that are necessary for comple-
tion of a protocol execution but which could not be further
combined. For example, for one client, the following three
messages cannot be combined: the message to send out a
nonce, the one to receive a temporary key, and the one for
handshake.

The main proof technique for the lower bound on the
number of rounds is to identify a critical path - a causal
chain of messages - that cannot be further shortened. For
example, the sequence of sending out a nonce, later receiving
a temporary key, and finally sending a handshake message
cannot be shorten to less than three rounds.

3 Lower Bounds on Messages and Rounds

Since there are two setting parameters with a total of six
settings, and two levels of authentication goals, there are 12
cases to consider. [Readers uninterested in detailed proofs
may wish to skip to section 3.13 for a summary.] For ease in
enumerating all 12 cases, we use some shorthand notation
(see Table 1 below) to denote these cases.

In our proofs, we give only brief and informal arguments. 2
For each proven lower bound, we give an optimal protocol
to show that the bound is actually achievable. When we
cannot find a published protocol that is optimal for the par-
ticular setting, we will provide an example protocol solely
to demonstrate the achievability of the lower bound rather
than to suggest a practical protocol for use in a real dis-
tributed system.

Besides pointing out that M1 these protocols are carefully
designed to resist known types of attacks, we choose not to
devote much space to discuss the security of these protocols,
since efficiency rather than security is the central theme of

2It is always debatable as to what constitutes a proof. The essays
by Lakatos [Lakatos 76] provide excellent philosophical, logical, and
historical perspectives of theorem proving.

AO authentication only
A H authentication with handshake
SO server choosing the temporary key
CO one client choosing the temporary key
CC
T B
N B

Kas
Na
Jl

K
K1, K2

~,y
A - - ~ B : x

both clients choosing the temporary key
clock-based
nonce-based

encryption key shared between A and S
nonce generated by A
timestamp taken from A's clock
temporary key
candidate temporary keys chosen by A, B

x concatenated with y
A sending message x to B

Table 1: Notation

28

this paper. Because the lower bounds are proven indepen-
dently of the security of the example protocols, these bounds
are in fact tight bounds ff the security of the given optimal
protocols can be established. If an example protocol is later
shown to be insecure, the lower bound still stands, but a new
protocol would be needed to demonstrate the achievability
of the lower bound.

For adequate protection, all messages (except those cited
from previously published protocols) have the following stan-
dard format:

{Sender, Recipient, C1, K, C2, Freshness - id}K~r

Each separately encrypted portion of a message contains
the identity of its sender, followed by that of the intended
recipient. This ensures that an attacker cannot redirect a
message without being detected. A message distributing
a temporary key contains a 3-tuple {clientl, key, client2)
which indicates that the key being distributed is for the two
clients herein named. This ensures that an attacker can-
not cause misunderstandings of the meaning of the message
by replaying and redirecting messages. The last part of the
message is a freshness identifier, which can be either a times-
tamp taken from the sender's clock or a nonce previously
generated by the intended recipient. This defeats replay of
past messages. The whole message is encrypted with Ksr ,
a key shared between the sender and the recipient. Each
message should also carry a unique identifier (not shown in
the above format) specifying the protocol name and ver-
sion number, and the sequence or position number of the
message within the protocol. This identifier, together with
the freshness identifier, prevents an attacker from mixing
messages from different protocols or different protocol runs.
Obviously, this overly conservative arrangement is unlikely
to result in the shortest messages.

3.1 Case 1: TB+AO-I-SO

Messages. The originator has to notify S of starting the
protocol, who then needs to send at least two more messages
to the two clients to distribute the temporary key. Thus a
lower bound is three messages. The Denning-Sacco protocol
[Denning 81] achieves this lower bound.

R o u n d s . Key distribution cannot happen before S is
notified by the originator, thus two rounds is a lower bound.

We can rearrange the messages in the Denning-Sacco proto-
col so that S sends the key directly to B instead of sending
it via A, resulting in the following protocol which achieves
the lower bound because messages 2 and 3 can be sent con-
currently.

1°

2.
3.

A --* S: A, B

S -+ A: {B, K, Ts}K~,
S --* B: {A, K, Ts}Kbs

The above protocol is both message and round opti-
mal. For illustration purposes, we group together the mes-
sages belonging to the same round and separate the different
rounds with blank lines.

3.2 Case 2: TB+AH+SO

Case 2 differs from Case 1 only in that a handshake is now
needed.

Messages . The orignator has to notify the server, who
must distribute a key to both clients in at least two more
messages. The last handshake message cannot be sent out
before both clients have received the key. Thus a lower
bound is four messages. The following protocol achieves
this lower bound.

1. A --+ S: A, B
2. S --* A: {S,A,A,K,B, Ts}K~,,

{S, B,A,K,B,Ts}Kbs
3. A ---* B: {S,B,A,K,B, Ts}Kb,,

{A, B, Ta}K
4. B --* A: {B, A, Tb}K

R o u n d s . The three stages of protocol initiation, key
distribution, and handshake cannot happen concurrently,
thus three rounds is a lower bound. The following proto-
col, which is derived from previous protocol by rearranging
the messages, achieves this lower bound because messages 2
and 3, and messages 4 and 5, can be sent concurrently.

1. A ~ S: A, B

2. S --+ A: {S,A,A,K,B, Ts}Ka,
3. S -+ B: {S,B,A,K,B, Ts}Kb,

4. A --* B: {A, B, Ta}K
5. B --~ A: {B,A, Tb}K

3.3 Case 3: TB+AO+CO

This case differs from Case 1 only in that now any client can
choose the temporary key.

Messages . One client needs to choose the key and send
it to the other client via the server. Thus two messages is a
lower bound. The wide-mouthed-frog protocol [Burrows 89]
achieves this lower bound.

R o u n d s . The two messages for key distribution can
only be sent sequentially with the server as the intermedi-
ate party; thus two rounds is a lower bound, which is also
achieved in the wide-mouthed-frog protocol.

3.4 Case 4: TB+AH+CO

This case differs from Case 3 only in that now a handshake
is needed.

Messages. Distributing the key needs at least two mes-
sages, and the final handshake message requires an extra
one; thus three messages is a lower bound. Adding one
more message (message 3) to the wide-mouthed-frog proto-
col achieves this bound.

1. A --* S: A,B, {B,K, Ta}Ka,, {A, Ta}K
2. S --+ B: A, B, {A, K, TS}Kb,, {A, Ta}K
3. B --* A: {B, Tb}K

R o u n d s . The two messages for key distribution must
be sent sequentially because the server acts as a broker, and
the final handshake message cannot be sent before the key
is distributed; thus three rounds is a lower bound, which is
also achieved in the above protocol.

3.5 Case 5: TB-I-AO+CC

When both clients participate in choosing the temporary
key, client A chooses the candidate temporary key K1, a~d
B chooses K2. Later, they can derive a temporary key K
from the two candidate keys, possibly using a one-way hash
function such as K -- h(K1, K2), for use in future commu-
nications.

Messages. Each client has to send its contribution in
selecting the temporary key to the server who then forwards
it onto the other client. Thus four messages is a lower bound.
The protocol below achieves this bound.

1. A ~ S: A,B,{A,S,A, K1,B, Ta}K~8
2. S --~ B: {S,B,A, K1,B, Ts}Kb~
3. B --~ S: {B, S, B, K2, A, Tb}Kb8
4. S --+ A: {S, A, B, K2, A, Ts}Ka~

R o u n d s . The responder has to be notified before it
can proceed to key selection. Then its contribution must
be sent to the server first before being forwarded to the
originator. Thus three rounds is a lower bound. Messages in
the above protocol can be rearranged to achieve this bound.
Here messages 1 and 2, and 3 and 4 can be sent concurrently.

1. A --+ S: A, B, {A, S, A, K1, B, Ta}gas
2. A .--* B:A,B

3. S --* B:
4. B ---* S:

5. S --*A:

{S, B, A, K1, B, TS}Kbs
{ B, S, B, K2, A, Tb } Kb~

{S, A, B, K2, A, Ts}Kas

29

3.6 Case 6: TB+AH+CC

This case differs from Case 5 only in that now a handshake
is needed.

Messages. As in Case 5, four messages are needed to
exchange key selections of A and B. After the last of these
messages has been received, at least one more message is
necessary to complete a two-way handshake. Thus five mes-
sages is a lower bound, which is achieved in the following
protocol.

1. A --+ S: A,B,{A,S,A, K1,B, Ta}K,~s
2. S --+ B: {S,B,A, K1,B, Ts}Kb,
3. B ~ S: {B,S,B, K2,A, Tb}Kb~, {B,A, Tb}K
4. S --* A: {S, A, B, K2, A, Ts}Kas, {B, A, Tb}g
5. A ~ B: {A, B, Ta}K

Again, K is the temporary key computed from K1 and
K2. Note that Ta in messages 2 and 5 both represent the
reading from A's clock, but the actual values in the two
messages may differ.

R o u n d s . The responder has to be notified before it can
proceed to key selection. Then its contribution must be sent
to the server first before being forwarded on to the origina-
tor. Only after that can the originator send a handshake
message. Thus four rounds is a lower bound. Messages in
the above protocol can be rearranged to achieve this bound.
Messages 1 and 2, 3 and 4, and 5 and 6 can be sent concur-
rently.

1. A --* S: A, B, {A, S, A, K1, B, Ta}K,,~
2. A --+ B : A , B

3. S --* B:
4. B --+ S:

{S, B, A, K1, B, TS}Kbs
{B, S, B, K2, A, Tb}Kb~

5. S --* A: {S, A, B, K2, A, Ts}Kas
6. B --* A: {B, A, Tb}K

7. A --+ B: {A, B, Ta}K

3.7 Case 7: NB+AO+SO

All cases from this point on are nonce-based. We recall the
principle that each party concerned with freshness needs to
choose a nonce of its own [Needham 87].

Messages . Each client has to choose a nonce and send
it out, and each expects to receive a message from the server
containing its nonce as well as the temporary key; therefore
four messages is a lower bound. A protocol in the style of
the Otway-Rees protocol [Otway 87] (i.e., 2 nested RPCs)
achieves this lower bound:

1. A --* B: A, B, Na
2. B --~ S: A, B, Na, Nb
3. S -+ B: {S,B,A,K,B, Nb}Kb,,

{S, A, A, K, B, Na}gas
4. B --* A: {S, A, A, K, B, Na}K,,~

R o u n d s .
send out its
three rounds
protocol can

The responder has to be notified before it can
nonce and later receive a fresh message; thus
is a lower bound. The messages in the above
be rearranged to achieve this bound.

1. A --+ B: A, B, Na

2. B --* S: A, B, Na, Nb

3. S --~ A: {S,A,A,K,B, Na}K,,~
4. S ~ B: {S, B, A, K, B, Nb}Kb8

The above protocol is both message and round optimal.

3.8 Case 8: NB+AH-t-SO

Messages . Compared with Case 7, at least one more mes-
sage is needed to complete the two-way handshake (after
both clients have received the temporary key). Thus five
messages is a lower bound, which is achieved in the follow-
ing protocol:

1. A ~ B : A , B , Na
2. B ~ S: A,B, Na, Nb
3. S ---* B: {S, B, A, K, B, Nb}gbs,

{S, A, A, K, B,'Na}Kas
4. S --* A: {S,A,A,K,B, Na}K,,8,{B,A, Na}K, Nb
5. A ~ B: {A, B, Nb}g

R o u n d s . As we found for the number of messages, at
least one more round is needed than in Case 7 to complete
the handshake; thus four rounds is a lower bound, which is
achieved by rearranging the messages in the above proto-
col. Note that messages 3 and 4, and 5 and 6, can be sent
concurrently.

1. A --* B: A, B, Na

2. B --+ S: A, B, Na, Nb

3. S --+ A: {S, A, A, K, B, Na}gas, Nb
4. S --* B: {S, B, A, K, B, Nb}Kbs

5. A --* B: {A, B, Nb}K
6. B --* A: {B, A, Na}g

3.9 Case 9: NB+AO+CO

Messages . Since one client chooses the temporary key, only
the other client who later receives the key needs to choose
and send a nonce. These exchanges account for two mes-
sages. But since the clients initially do not share any secret,
the key has to be sent via the authentication server, which
requires one more message and brings the lower bound to
three messages. The following protocol achieves this bound:

1. A ~ B : A , B , Na
2. B -* S: A, B, {B, S, A, K, B, Na}gbs
3. S -* A: {S, A, A, K, B, Na}Kas

Note that although S cannot tell if message 2 is a re-
play, A will detect any replay after receiving message 3. In
this and some subsequent protocols (including all CC cases),
A acts as a message gateway, decrypting and reencrypting
messages as needed.

R o u n d s . If the originator chooses the key, then the re-
sponder must be notified before choosing a nonce and later
receiving the key. If the responder chooses the key, then
after being notified, it must send the key via the authen-
tication server. Thus in either scenario, three rounds is a
lower bound, which is achieved in the above protocol.

3.10 Case 10: N B + A H + C O

Messages . Compared with Case 9, an extra handshake
stage costs at least one more message, and the lower bound
of four messages is achieved in the following protocol:

1. A -* B: A, B, Na
2. B --* S: A, B, Na, Nb,

{S, S, A, K, B, Na}gb,, {S, A, Na}g
3. S ~ A: {S,A,A,K,B, Na}Kas,{B,A, Na}K, Nb
4. A --* B: {A, B, Nb}g

R o u n d s . As we found for the number of messages, at
least one more round than in Case 9 is needed to complete
the handshake. This lower bound of four rounds is achieved
in the above protocol.

30

3.11 Case 11: NB+AO+CC

Messages . Each client sends out its nonce and later re-
ceives a candidate key (chosen by the other client) together
with its nonce. This requires at least three messages. How-
ever, the authentication server must mediate key exchange;
thus two more messages, or a total of five messages, are
needed. The following protocol achieves this lower bound.

1. A - * B :
2. B - * S :
3. S - * A :
4. A - * S :
5. S - * B :

A,B, Na
A, B, Nb, {B, S, B, K2, A, Na}Kt, s
{S, A, B, K2, A, Na}Ka~, Nb
{A, S, A, K1, B, Nb}Ka8
{S, B, A, K1, B, Nb}gbs

lower bound
msg/round

clock-based (TB)
nonce-based (NB)

lower bound
msg/round

clock-based (TB)
nonce-based

authentication only (AO)
key chooser

server I °ne client I (SO) (CO) both clients (CC)

3/2 2/2 , 4/3
4/3 ' 3/3 t 5/4

authentication + handshake (AH)
key chooser

server one client both clients
(so), (co) (cc)
4/3 3/3 5/4
5!4 4[4 6/5

R o u n d s . The responder must be notified before it can
send its nonce to the originator and later receive the key cho-
sen by the originator. This process requires three rounds.
Since the key must be exchanged via the authentication
server, one more round is needed. Thus four rounds is a
lower bound, which can be achieved by rearranging the mes-
sages in the above protocol. Note that messages 2 and 3,
and 4 and 5, can be sent concurrently.

1. A -* B: A, B, Na

2. B -* A: Nb
3. B -* S: A,B,{B,S,B, K2,A, Na}Kbs

4. S -* A: {S, A, B, K2, A, Na}Kas
5. A ~ S: {A, S, A, K1, B, Nb}gas

6. S -* B: {S, B, A, K1, B, Nb}gbs

3.12 Case 12: NB+AH+CC

Messages . The handshake requires at least one more mes-
sage than in Case 11; thus six messages is a lower bound,
which can be achieved in the following protocol:

1. A - * B :
2. B - * S :
3. S - * A :
4. A - * S :
5. S ---* B:
6. B ---~ A:

A, JB, Na
A, B, Nb, {B, S, B, K2, A, Na}Kbs
{S, A, B, K2, A, Na}gas, Nb
{A, S, A, g l , B, Nb}Kas, {A, B, gb}g
{S, B, A, g l , B, Nb}gb~, {A, B, Nb}K
{B, A, ga}K

R o u n d s . Similarly, the handshake requires at least one
more round than in Case 11; thus five rounds is a lower
bound, which can be achieved by rearranging the messages
in the above protocol. Note that messages 2 and 3, and 4
and 5, can be sent concurrently.

1. A -* B: A, B, Na

2. B -* A: Nb
3. B -* S: A,B,{B,S,B, K2,A, Na}Kb8

4. S - * A: {S,A,B, K2,A, Na}Kc, s, Nb
5. A -* S: {A, S, A, K1, B, Nb}gas, {A, B, Nb}g

6. S -* B: {S,B,A, K1, B, Nb}Kbs,{A,B, Nb}K

7. B -* A: {B, A, Na}K

Table 2: Lower Bounds on Numbers of Messages and Rounds

3.13 Summary and Observations

Table 2 summarizes the proven results about lower bounds
on the numbers of messages and rounds.

It has long been suspected that nonce-based protocols re-
quire at least one more message than clock-based ones. The
analysis in this paper confirms that clock-based protocols
save exactly one message in all of the 12 scenarios.

Conducting a handshake consumes only one more mes-
sage, since the first half of the handshake can always be
piggy-backed on an earlier message.

Letting the authentication server choose the temporary
key reduces one message from the case when both clients
participate in choosing the temporary key. Letting any one
client choose the temporary key further reduces the number
of messages by one.

The actual time to complete a round of message ex-
changes depends on the network latency in message deliv-
ery; thus a lower bound on the rounds indirectly reflects the
worst-case protocol execution time - the lapse between the
time a protocol is initiated and the time the last message is
received at its intended destination.

Nonce-based protocols requires exactly one round more
than clock-based protocols. Also, in nonce-based protocols,
the lower bounds are the same for letting the server or a
client choose the temporary key, but one more round is
needed if both clients participate in choosing the key.

We have obtaSned achievable lower bounds in the case
of letting either client choose the temporary key. If, as re-
quired in a particular environment, one or the other client is
predesignated to be the key chooser, these lower bounds are
not necessarily achievable, and better lower bounds for such
situations can be easily worked out with our proof methods.

For example, in clock-based cases (TB + A O +CO and
TB+AH+CO) , the proven lower bounds are achieved by
letting the protocol originator choose the temporary key. It
is easy to see that if the protocol responder must choose the
key, then one more (notification) message from the origina-
tor to the responder, and thus one more round, is needed,
since essentially the two clients now switch roles after the ini-
tial notification message. Interestingly, in nonce-based cases
(NB+AO+CO and NB+AH+CO), the proven lower bounds
are achieved by letting the protocol responder choose the
temporary key. Similarly, one more message and one more
round are needed if the originator must choose the key.

Finally, when there is a single trusted server and conven-
tional cryptosystem is used, letting both clients participate
in choosing the temporary key is generally not a good idea

3]

because it costs more (than let t ing the server choose the
key) but gains nothing in security - the server knows all
the secrets anyway and is generally be t te r at choosing good
encryption keys.

4 Partial Handshakes and Independent Handshakes

The handshake we have discussed is mutua l handshake, in
that clients inform each other tha t they have received the
temporary key. Sometimes, only a part ial handshake is
needed, in that only one par ty is concerned about the re-
ceipt of the temporary key by the other party. One such
case is when subsequent communica t ion immedia te ly fol-
lows authent icat ion and thus automat ical ly completes the
full handshake.

It is not difficult to analyze the achievable lower bounds
in such cases, since if the direction of the part ial hand-
shake is the same as tha t of the last message, then no more
message or round is needed than in the authent icat ion-only
(AO) cases: the handshake can always be piggy-backed on
the last message. However, if the two directions are oppo-
site each other, then the lower bounds are the same as the
authent ica t ion-wi th-handshake (AH) cases.

In the discussion so far, handshake is t rea ted as an ex-
tension of basic authent icat ion in tha t clients use handshake
messages to inform each other tha t the t emporary key has
been satisfactorily received. Handshakes can also be used to
show the part ies ' presence to each other. Again, somet imes
only a part ial handshake is needed in tha t only one par ty ' s
presence must be shown to the o ther party. For example,
after initial authenticat ion completes and the clients share a
t emporary key, the clients may want to perform handshake
at a later stage, or perform handshake repeatedly over a
period of t ime [Needham 78]. Therefore, it is worthwhile
to examine the cost of such independent and possibly par-
tial handshakes with regard to the use of t imes tamps and
nonces, without the possibility of piggybacking handshake
on earlier messages. The results can be easily worked out,
and we skip the details and summarize the results in the
following table.

number of msg / round
half handshake
full handshake

clock-based
1/]
2/2

nonce-based
3/2
3/3

Table 3: Lower Bounds for Independent Handshakes

Here the benefit of using t ime , tamps is greater than be-
fore - in the case of par t ia l handshake, two out of three
messages can be reduced. This is reminiscent of one-way
authenticat ion [Needham 78], which cannot be done only
with nonces.

In light of the above observation, perhaps the most eco-
nomical scheme is to include clock synchronization (if clocks
are not already synchronized) as part of the initial authenti-
cation and use t imes tamps in all following communications.
For example, in Kerberos if the client 's initial message con-
tains a wrong t imestamp, the server rejects the request but
returns a current t imes tamp to the client for synchronizing
the clock and preparing a subsequent request [Neuman 93].

5 Using Unc,,ertified Keys

We now examine the case we excluded earlier: the use of nn-
certified keys. I t does not make sense to exchange uncertiffed
keys when all parties have synchronized clocks, since all tha t
is necessary is to include a t imestarnp in the key distribu-
tion message. Thus, we only consider nonce-based scenarios.
Moreover, i t is insecure to let a client use an uncertiffed key
solely genera ted by another client, because at tacks replay-
ing past messages will succeed. However, when both clients
par t ic ipate in choosing the final t empora ry key (CC), it is
safe to t ry a t empora ry key derived f rom a received uncer-
tiffed key and a self-generated key as long as the la t te r is
secret and fresh. Therefore, we need to consider only two
scenarios, N B + A O + C C and N B + A H + C C .

Similar to the analysis performed so far, we can clear see
tha t to merely exchange uncertiffed keys (via the server),
four messages and three rounds are opt imal in the case of
N B + C C . These numbers are identical to those in the clock-
based authent ica t ion-only (T B + A O + C C) case. This is not
surprising since exchanging uncertiffed keys removes the de-
mand for freshness identifiers and thus can be as efficient
as when all part ies have synchronized clocks. However, ex-
changing an uncertiffed key is not equivalent to key distribu-
tion (i.e., authent icat ion-only) because the t empora ry key is
yet uncertiffed.

For the N B + A H + C C case, at least one more message
is needed than the above simple case, and it is not difficult
to const ruct a protocol to achieve the five-message lower
bound.

1. A --* S: A, B, {A, S, A, K1, B}Kas, Na
2. S --* B: A,B,{S,B,A, K1,B}Kbs, Na
3. B ~ S: {B,S,B, K2,A}K~,~,{B,A, Na}K,Nb
4. S --* A: {S, A, B, K2, A}K,~, {B, A, Na}K
5. A ~ B: {A, B, Nb}g

As for the number of rounds, the responder has to be
notified first, then choose and send a candidate t empora ry
to the originator via the server (which requires two rounds),
and finally receive a handshake message. Thus four rounds
is a lower bound. We can rearrange the messages in the
above protocol to achieve this lower bound.

1. A --* B: A, B, Na
2. A ~ S: A, B, {A, S, A, K1, B}K,,s

3. S ~ B: A, B, {S, B, A, K1, B}Kbs, Na
4. B --+ S: {B,S,B, K2,A}Kbs,{B,A, Na}K, Nb

5. S ~ A: {S,A,B, K2,A}K,,s,{B,A, Na}K

6. A ---, B: {A, B, Nb}K

To summarize (see Table 4 below), compared with the
authent icat ion-only case N B W A O + C C , exchanging uncer-
tiffed keys uses one less message and one less round but
functionally achieves less because t empora ry keys remain
uncertiffed to at least one client. 3

3It can be arranged so that one client can certify the key with
four messages and three rounds. For example, in the above message-
optimal protocol, A can detect replay attacks after receiving message
4 by checking if that handshake message contains Na. To detect
replay without the handshake message, we can include Na in the
two key distribution messages 3 and 4, as in {B, S, B, K2, A, Na}Kbo
and {S, A, B, K2, A, Na}K~,s, since B would know Na after receiving
message 2. A similar modification can be made to the above round-
optimal protocol.

32

I msg/round Key Exchange Only
NB+CC I 4/3 I AH5/4 [

Table 4: Lower Bounds When Using Uncertified Keys

client public keys is identical in terms of messages and rounds
to the case when the server chooses the temporary key (SO).

If both clients wish to choose a temporary public key to
be distributed to the other client, it is easy to check that this
case is identical to when both clients part icipate in choosing
the temporary key (CC).

In the case of N B + A H + C C , however, using uncertified
keys can save one message and one round while achieving
the same functionality as when uncertified keys are not al-
lowed (compare Table 4 with Table 2). However, these ad-
vantages are only theoretical, because, as we have already
pointed out at the end of section 3.13, when there is a single
trusted server and conventional cryptosystem is used, let-
ting both c lea t s participate in choosing the temporary key
costs more but gains nothing in security. In fact, lett ing
the server choose the key is preferable to using uncertified
keys, because the former is more efficient and probably more
secure than the latter.

6 Using Publlc-Key or Mixed-Key Systems

When users and systems are sutficiently equipped (in hard-
ware or software), they may wish to take advantage of the
public-key systems, since the authent icat ionserver no longer
has to know clients' private keys and thus does not neces-
sarily know the temporary keys. The server may still im-
personate clients by giving false information about a client's
public key, but cannot compromise the security of a connec-
tion that has been legitimately established. 4

The use of public-key systems does not obscure the need
for traditional cryptosystems. For example, a privileged user
who is equipped with a smart card will want to use public-
key systems for improved security, but on the day he leaves
the card at home, he should still be able to authenticate
"normally" with his password. The flexibility for clients
to choose dynamically between public-key and conventional
systems is not generally available in today's authentication
systems.

We now investigate the possible impacts on the numbers
of messages and rounds if public-key or mixed-key systems
are used. We assume that before an execution of the au-
thentication protocol, a client and the server do not share a
secret key, but each knows the other 's public key, and one
client does not know the other client's public key. There are
several possible scenarios to consider.

6.1 Exchanging Prereglstered or Dynamic Public Keys

In the simplest scenario, the purpose of authentication is
to let the two clients know each other 's public key (e.g., by
way of a certificate issued by the server) after the protocol
completes. The clients may or may not want a handshake at
this stage, because presumably they will use the distributed
public keys to estabhsh a temporary key for future commu-
nication.

Note that a handshake message using public key systems
has a different format from that when using conventional
cryptosystems. A handshake message from client A to B
includes a freshness identifier signed with A's private key
and then encrypted with B 's private key.

I t is not difficult to check that , with or without hand-
shake, letting the server distribute two previously registered

4 F o r a d iscuss ion of how to use dis tr ibuted a u t h e n t i c a t i o n to dea l
w i th p o t e n t i a l l y d i shones t servers , see [G o n g 93].

33

6.2 Diffie-Hellman Type Key Exchange

After receiving each other 's public key, the clients may wish
to establish a temporary key in the style of Diffie-Hellman.
In section 5, we discussed the use of uncertified keys in con-
ventional cryptosystems. Diffie-Hellman key-exchange pro-
tocols also use uncertified keys, but in public-key systems.
For the two clients to exchange their independently chosen
random numbers [Diffie 76], clearly two messages and two
rounds axe optimal. Again, this is not equivalent to the case
of authentication only (AO) because the temporary key is
yet uncertified. To certify the temporary key, at least one
more message and one more round axe needed. We can eas-
ily check that three messages and three rounds are indeed
achievable lower bounds. Note that in the Diffie-Hellman
key exchange, the random number each client chooses is
supposed to be fresh, so no other separate freshness identi-
fiers are necessary, and thus there is no difference between
TB and NB cases. The results are shown in Table 5 below.

I msg/round I Key Exchange Only 2/2 I AH 3/31

Table 5: Diffie-Hellman Type Key Exchange

6.3 Using Mixed-Key Systems

It is quite possible that the two clients will wish to establish
a secret temporary key (for a conventional cryptosystem)
directly, without first exchanging their public keys. In the
analysis given for the 12 cases (for using conventional cryp-
tosystems), the lower bounds on messages and rounds are
constrained mainly by freshness requirement (i.e., the de-
livery of nonces) and are independent of the cryptosystems
used; thus the lower bounds remain the same in all 12 cases
for the mixed-key system just described, all proofs are still
valid, and protocols achieving the bounds can be easily con-
structed. We can further deduce that if the two clients com-
municate with the server with two different types of cryp-
tosystems, no improvement in efficiency will be gained or
lost, except that encryption and decryption are typically
less efficient for public-key systems than for conventional
cryptosystems.

In mixed-key systems, it makes sense to let the server
and the clients participate in choosing the temporary key so
that the server does not know the final temporary key. Let
us use SC to denote the case when the server and one client
choose the key, and use SCC to denote that all three parties
choose the key. We have worked through all clock-based
cases, and, without bothering the reader with details, we
conclude that the (achievable) lower bounds for the case SC
are identical to those for the case SO, and the (achievable)
lower bounds for case SCC are identical to those for the case
CC. We have yet to examine all the nonce-based cases.

6.4 Summary

In Table 6 below, we summarize the equivalence (in terms
of lower bound) between protocols using public key systems
and those using conventional systems.

pubfic-key or mixed-key system conventional system
preregistered public keys SO

dynamic public keys CC
mixed-key T B + S C T B + S O

mixed-key T B + S C C T B + C C

Table 6: Systems Equivalent in Lower Bounds

7 Multiple Clients Establishing Group Keys

We now generalize our previous analysis to multiple clients.
We discuss only the use of conventional cryptosystems and,
as before, results on pubfic-key or mixed-key systems can be
similarly worked out. We keep the argument brief and, in-
stead of specifying example protocols in full, we only outline
the non-trivial ones. All lower bounds proven are achievable.

Suppose that a total of n clients want to establish a group
key and n _> 3. Now CC stands for the scenario in which all
clients contribute to the choice of the temporary key, and
AH means that every client receives a handshake message
from every other client. To distinguish these cases about set-
ting up group keys from previous cases, we add prefix G +
to all cases' names here, so we have case G + T B + A O + S O
instead of T B + A O + S O . We designate client A as the pro-
tocol originator. For the ease of description, we line up the
clients with A at the head of the fine and chent B at the
end of the line. We exclude the use of uncertified keys.

We can now analyze the lower bounds on messages and
rounds using similar techniques as before. For example, af-
ter the last key distribution message, at least (n - 1) more
messages and one more round are needed to complete the
handshake process. We recall that, in nonce-based cases,
when a chent contributes to the choice of the temporary key,
it must include all other clients' nonces and its key choice in
a single encrypted message to the server (to be forwarded to
other clients). Otherwise, the server would have difficulty in
binding a key to a nonce, and this has security implications.
As a result, the client can only complete sending out its key
choice after receiving nonces from all other clients.

7.1 Case G+TB+AO+SO

The server has to be notified and, after that, n messages are
needed to distribute the group key; thus n + 1 messages is
a lower bound. The protocol is simple: A notifies the server
who then sends n messages to distribute a key to all clients.
Trivially, two rounds is a lower bound.

7.2 Case G + T B + A H + S O

Compared with the above case (G + T B + A O + S O) , at least
n - 1 more messages (for the last handshake) are needed;
thus 2n messages is a lower bound, which is achieved in the
following protocol.

A notifies S who then prepares a package of n separately
encrypted key distribution messages, each addressed to a
different chent, and returns the whole package to A in a
single message. A takes out the message addressed to it,

3 , *

obtains the temporary key to compute a handshake message,
puts this handshake message back into the package, and
passes the package down the fine of clients. Every client
repeats this process until B is reached. B now has all the
handshake messages (including its own) and passes them
back up the line until A is reached. The total number of
messages is 1 + n + (n - 1) = 2u.

Compared with case G + T B + A O + S O , one more round is
needed for handshake; thus three rounds is a lower bound.
The following protocol achieves this bound. A notifies S
who in the second round distributes keys to all the clients.
In round three, every client broadcasts a handshake message
to all other clients.

7.3 Case G + T B + A O + C O

The client who is the key chooser has to distribute the group
key via the server, thus n messages is a lower bound. The
protocol is simply that A chooses a key and sends it to S
who forwards it to the other n - 1 clients. Trivially, two
rounds is a lower bound.

7.4 Case G+TB+AH+CO

Compared with case G + T B + A O + C O , n - 1 more messages
are needed for the last handshake; thus 2n -- 1 messages is
a lower bound, which is achieved in the following protocol.

A sends its selection of the group key together with a
handshake message to S, who then prepares a package of
n - 1 key distribution messages and sends it together with
A's handshake message to the client next to A (in the fine
of chents). Starting from there, every client picks up the
key distribution message for it, puts back in a handshake
message, and passes the package down the fine. B then
passes all the handshake messages up the line again. The
total number of messages in this protocol is 1 + 1 + (n - 2) +
(. - 1) = 2 . - 1 .

One more round is needed than case G + T B + A O + C O
thus three rounds is a lower bound which is achieved by let-
ting S send A's choice of the group key to all other clients in
parallel and letting the clients exchange handshake messages
in the third round.

7.5 Case G+TB+AO+CC

Each client has to send its choice of key to other clients via
the server and receive the choices of others via the server,
thus 2n messages is a lower bound which is achieved in the
following protocol.

Starting from A, each client chooses its key. encrypts it
for S to read, and passes it down the hne. B passes the whole
package to S. S then puts all key distribution messages in
one package and sends it to B. Starting from B, each client
picks up the message for it and passes the rest up the fine.
The total cost is 2n messages.

One round of messages is needed to notify all the clients
and two more rounds are needed to exchange keys via the
server; thus three rounds is a lower bound which is trivially
achievable.

7.6 Case G+TB+AH+CC

The extra handshake process needs n - 1 more messages
than case G + T B + A O + C C , thus 3n - 1 messages is a lower
bound, which is achieved in the following protocol, which is
adapted from the one in case G + T B + A O + C C .

When the key distr ibution package is passed back up
the line, each client picks up its key distr ibut ion message
and puts back in its handshake message before passing on
the package. Once the package (containing all handshake
messages) reaches A, the package is passed back down the
line to B.

One more round is needed than case G + T B + A O + C C ,
so four rounds is a lower bound.

7.7 Case G+NB+AO+SO

Every client has to send a nonce to the server and later
gets back a key from the server, thus 2n messages is a lower
bound. To see why these messages cannot be fur ther com-
bined, one client 's sending a nonce and receiving a key must
be done with two distinct messages. Moreover, if a client 's
sending a nonce is done in the same message with another
client 's receiving a key, then the former client has to receive
the la t te r cl ient 's key from somewhere else with a message
that cannot be combined with another message; thus we
can arrange so tha t the la t te r client receives its key directly,
without using the former client has an in termedia te party.
In other words, combining the 2n messages will not reduce
the total number of messages required.

The following protocol achieves the lower bound. Star t-
ing from A, each client selects its nonce and passes the pack-
age down the line. (These messages also serve to notify
responders.) B then sends the whole package to S. The
server sends the key distr ibution messages in one package
to B. Star t ing from B, each client picks up the message
addressed for it and passes the rest of the package up the
line. This requires a to ta l of 2n messages.

A responder has to be notified before it can send out a
nonce and then receives a key; thus three rounds is a lower
bound.

7.8 Case G+NB+AH+SO

Compared with case G + N B + A O + S O , another n - 1 mes-
sages are needed for the handshake; so 3n - 1 messages is
a lower bound which is achieved in the following protocol.
In the protocol for case G + N B + A O + S O , a client takes out
its key message and puts back a handshake message before
passing the package up the line. A passes the entire package
of handshake messages back down the line again.

One more round is required than case G + N B + A O + S O ,
so four rounds is a lower bound which can be easily achieved.

7.9 Case G+NB+AO+CO

Every client (except the key chooser) has to send out a nonce
and receive a key via the server. This requires 2(n - 1) mes-
sages (recall the proof argument in case G + N B + A O + S O) .
The key chooser must distr ibute the key via the server, re-
quiring one more message. Thus 2n - 1 messages is a lower
bound, which is achieved in the following protocol.

Star t ing from A, every client adds a nonce to the package
and passes it down the line to B. B chooses a key, and sends
all (n - 1) nonces and the key in one encrypted message to
S. The server then prepares n - 1 key distr ibution messages
and passes them to the client just before B in the line of
clients (call it C). Star t ing from C, each client takes out
the message for it and passes the rest of the package up the
line. The to ta l number of messages is 2n - 1.

Those clients who are not the protocol originator or the
key chooser need to be notified before being able to send
out their nonces. These exchanges use two rounds. Two

35

more rounds are needed for them to receive the keys via the
server, thus four rounds is a lower bound (when n > 3),
which is trivial' to achieve.

7.10 Case G + N B + A H + C O

Compared with case G + N B + A O + C O , n - 1 more mes-
sages are needed for handshake; thus 3n - 2 messages is
a lower bound, which is achieved with the protocol for case
G + N B + A O + C O with the following modification. Together
with the n - 1 nonces, B also sends its handshake message
to S, who then includes it in the package sent to C later.
Start ing from C, every client takes out its message and puts
back in a handshake message before passing the package up
the line. A passes all the handshake messages down the line
again.

One more round is needed than case G + N B + A O + C O ,
thus five rounds is a lower bound (when n _> 3) which is also
easy to achieve.

7.11 Case G+NB+AO+CC

Each client has to send out a nonce to all o ther clients. This
requires 2 (n - 1) messages because n - 1 messages are needed
for one client to send a nonce to all other clients and the last
client receiving the nonce will need a fur ther n - 1 messages
to distr ibute his nonce. This last client will then need n
more messages to receive n - 1 keys via the server. Thus
3n - 1 messages is a lower bound.

The protocol achieving the lower bound is as follows.
Start ing from A, every client adds a nonce to the package
and sends it down the line. Star t ing f rom B, every client uses
all the nonces in the package to prepare its key distr ibution
message (to be sent to S), adds this message to the package,
and sends it up the line again. A then forwards to S all
key distribution messages, who then returns key distr ibution
messages addressed to individual clients in a whole package
to A. A picks up the message for it and passes the rest down
the line. This requires a to ta l of 3n - 1 messages.

Two rounds are needed for a responder to be notified
and to send a nonce. Two more rounds are needed for the
clients to send keys via the server, thus four rounds is a lower
bound which is trivially achievable.

7.12 Case G+NB+AH+CC

Compared with case G + N B + A O + C C , n - 1 more mes-
sages are needed for handshake. The lower bound of 4n - 2
messages is achieved by modifying the protocol for case
G + N B + A O + C C in the following way. Star t ing from A,
after picking up the key distr ibution message, every client
puts back in its handshake message before passing the pack-
age down the line. B then passes the entire handshake mes-
sage up the line again. One more round is needed than case
G + N B + A O + C C , thus five rounds is a lower bound which
is trivial to achieve.

7.13 Summary

The above results on establishing group keys are summa-
rized in Table 7.

We can see tha t nonce-based cases cost n - 1 more mes-
sages than the corresponding clock-based cases, and proto-
cols completing handshakes cost n - 1 more messages than
similar protocols with no or only part ial handshakes. More-
over, CO cases use one less message than the corresponding

msg/ authentication only (AO)
round SO CO CC

TB n + l / 2 ' n /2 2n/3
NB [2n/3 : 2n-1/4 3n-1/4

msg/ authentication with handshake (AH)
round ' SO CO CC

TB ' 2n/3 ' 2n-1/3 , 3n-1/4
NB : 3n-1/4 : 3n-2/5 ! 4n-2/5

Table 7: Multiple Clients (n > 3) with One Server

SO cases, while CC cases use n - 1 more messages than the
corresponding SO cases.

We can also observe that the results on lower bound on
messages in the above table are consistent with our previous
analysis (see Table 2) if n = 2.

Results on lower bound on rounds are identical to previ-
ous analysis, except in the cases of G + N B + A O + C O and
G + N B + A H + C O where one more round is needed when
n_>3.

8 Conclusions and Future Work

We have conducted a systematic study of the optimality (in
terms of the numbers of messages and rounds) of network
authentication protocols. Our analysis is based on a set of
typical security-related assumptions in distributed systems
and is aimed at a set of typical authentication scenarios. Our
results not only confirm some widely held beliefs regard-
ing the relative merits of some authentication techniques
but also can guide system and protocol designers in provid-
ing optimal authentication services or flexible authentication
systems with which clients can, according to individual need,
make dynamic trade-offs between efficiency parameters.

For future work, it is desirable to identify protocols that
are both message-optimal and round-optimal, such as the
protocols in cases 1, 3, 4, 7, 9, and 10. I t seems unlikely
that there exist message-optimal and round-optimal proto-
cols for all cases, especially the group key cases; thus some
impossibility results will be very interesting.

Another possibility is to investigate metrics or scenar-
ios other than those already discussed. For example, how
many encryptions are needed in any particular scenario?
Since it has been shown that mutual authentication can be
achieved based on one-way hash functions [Gong 89], what
is a suitable definition of encryption? Or, is there an op-
timal sequence of messages in the sense that more and/or
higher order of beliefs [Burrows 89] can be achieved with the
same number of messages? Minimizing interactions with the
(probably heavily loaded) server can also be beneficial.

Finally, we note that the efficiency of a protocol cannot
be fully characterized independently of its implementation
details. For example, depending on the actual message sizes
and the network environment, adding a few ex t ra bytes may
cost very little, or it may cost a lot by introducing additional
message fragmentation at lower levels. There are other con-
siderations that cannot be easily abstracted. For example,
approaches using t imestamp or verifier-issued t imestamps
(as nonces) reduce the server states per-connection and thus
increase performance [Neuman 93]. Also, a protocol that
can piggyback its last message on the opening message of a
subsequent communication may yield bet ter overall perfor-
mance than another protocol that cannot piggyback, even if

36

they have the same numbers of messages and rounds.

Acknowledgments

I s tarted working on these lower bounds as a research stu-
dent under Professors D.J. Wheeler and R.M. Needham at
Cambridge University, who reviewed the original manuscript
("Minima in Authentication Protocols," unpublished, March
1989). I also benefited from discussions with many other col-
leagues. Cliff Neuman and Stuart Stubblebine of USC/ISI
provided detailed comments on a more recent draft.

References

[Birrell 85]

[Bird 93]

[Burrows 89]

[Denning 81]

[Diffie 76]

[Gong 89]

[Gong 92]

[Gong 93]

[Lakatos 76]

[NBS 77]

[Needham 78]

A.D. Birrell, "Secure Communications Using
Remote Procedure Calls," A CM Transactions
on Computer Systems, Vol.3, No.l , February
1985, pp.l-14.

B. Bird, I. Gopal, A. Herzberg, P. Janson, S.
Kutten, R. Molva, and M. Yung, "Systematic
Design of a Family of Attack-Resistant Au-
thentication Protocols," to appear in IEEE
Journal on Selected Areas in Communica-
tions, 1993.

M. Burrows, M. Abadi, and R.M. Needham,
"A Logic for Authentication," DEC System
Research Center Technical Report No. 39,
February 1989.

D.E. Denning and G.M. Sacco, "Timestamps
in Key Distribution Protocols," Communica-
tions of the ACM, Vol.24, No.8, August 1981,
pp.533-536.

W. Diffie and M.E. Hellman, "New Directions
in Cryptography," IEEE Transactions on In-
formation Theory, Vol. IT-22, No.6, Novem-
ber 1976, pp.644-654.

L. Gong, "Using One-Way Functions for Au-
thentication," A C M Computer Communica-
tion Review, Vol.19, No.5, October 1989,
pp.8-11.

L. Gong, "A Security Risk of Depending on
Synchronized Clocks," A CM Operating Sys-
tems Review, Vol.26, No.l , January 1992,
pp.49-53.

L. Gong, "Increasing Availability and Se-
curity of an Authentication Service," IEEE
Journal on Selected Areas in Communica-
tions, Vol. l l , No.5, June 1993.

I. Lakatos, "Proofs and Refutations," J. Wor-
rail and E. Zahar (Eds.), Cambridge Univer-
sity Press, 1976.

U.S. National Bureau of Standards, "Data
Encryption Standard," U.S. Federal Informa-
tion Processing Standards Publication, FIPS
PUB 46, January 1977.

R.M. Needham and M.D. Schroeder, "Using
Encryption for Authentication in Large Net-
works of Computers," Communications of the
ACM, Vol.21, No.12, December 1978, pp.993-
999.

[Needham 87]

[Neuman 93]

[Otway 87]

[Rivest 78]

[Yahalom 93]

R.M. Needham and M.D. Schroeder, "Au-
thentication Revisited," A CM Operating Sys-
tems Review, Vol.21, No.l, January 1987, p.7.

B.C. Neuman and S.G. Stubblebine, "A Note
on the Use of Timestamps as Nonces," ACM
Operating Systems Review, Vol.27, No.2,
April 1993, pp.10-14.

D. Otway and O. Rees, "Efficient and Timely
Mutual Authentication," ACM Operating
Systems Review, Vol.21, No.l, January 1987,
pp.8-10.

R.L. Rivest, A. Shamir, and L. Adleman,
"A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems," Communi-
cations of the ACM, Vol.21, No.2, February
1978, pp.120-126.

R. Yahalom, "Optimality of Multi-Domain
Protocols" (draft), April 1993, to appear in
this proceedings.

37

