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Abstract 

Research in authentication protocols has largely focused on 
developing and analyzing protocols that are secure against 
certain types of attacks. There is little and only scattered 
discussion on protocol efficiency. This paper presents results 
on the lower bounds on the numbers of messages and rounds 
required for network authentication. For each proven lower 
bound, an authentication protocol achieving the bound is 
also given, thus proving that the bound is a tight bound if 
the given optimal protocol is secure. 

1 Introduction 

Authentication is by definition a process to verify one's clMm 
of identity. Since authentication is usually a prelude to 
further communication and computation, an authentication 
protocol often arranges that  the protocol participants, once 
their identities are verified, agree upon an encryption key--  
a temporary key--for later use (e.g., within a user session). 
Thus an authentication protocol is sometimes also called a 
key distribution protocol. 

Current research in authentication protocols has largely 
focused on the security of protocols, and there is only scat- 
tered published discussion on the issue of protocol efficiency 
(e.g., [Bird 93, Birrell 85, Gong 89, Gong 93, Neuman 93, 
Yahalom 93]). The treatment of efficiency or performance 
is generally given a low priority and is often rather ad hoc. 
One possible explanation is that since such protocols tend 
to involve only a few messages, optimization is not seen as 
a very urgent requirement. 

However, as in the field of algorithm complexity, it is 
natural and beneficial to inquire whether a protocol that 
achieves authentication in a particular environment is also 
in some sense minimal or optimal. For example, eliminating 
one message from a five-message protocol represents a 20% 
reduction in the number of messages and possibly a similar 
amount of reduction in the overall running time of the pro- 
tocol. Even for those who do not care for reduction of one 
or two messages, it is useful to know that the protocols they 
use are not too far from being optimal. Moreover, instead 
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of dealing with each individual protocol, it is desirable that 
some general results on lower bounds are proven, which can 
serve as a reference for system and protocol designers. 

To give just one example of how this type of result can 
be useful, assume (fictitiously) the% for a particular environ- 
ment, no protocols can be both message-optimal and round- 
optimal. Faced with this impossibility result, a system can 
provide a flexible authentication service that can give clients 
the option to make dynamic trade-offs according to individ- 
ual need. For example, a client who needs immediate au- 
thentication may elect to run the version of the authentica- 
tion protocol that uses more messages but has fewer rounds 
and is thus faster to complete. On the other hand, when 
the network is unreliable and retransmission is frequent or 
when there is a very slow network link (such as a 2400 baud 
modem connection) on the critical path, a client who is ex- 
periencing communication problems may wish to run the 
version that uses fewer messages. No known authentication 
system has such flexibility. 

In this paper, we attempt to investigate the issue of ef- 
ficiency in a more systematic manner. In section 2, we first 
describe the system model and specify some important as- 
sumptions we make about the environment. We then select 
a few settings in which authentication normally takes place, 
and describe the most common objectives or goals of au- 
thentication. After that, we define two metrics of efficiency, 
the number of messages and the number of rounds. In sec- 
tion 3, we prove lower bounds of the metrics for each setting 
and each set of goals. For each proven lower bound, we also 
give an optimal protocol achieving the bound, thus show- 
ing that the bound is a tight bound if the protocol given is 
secure. We then discuss the use of partial or independent 
handshakes, of uncertified keys, and of public-key or mixed- 
key systems. In section 7, we generalize our results to the 
case with multiple clients setting up group keys. Finally, we 
conclude with a discussion of future work. 

Whenever we cannot find a published protocol that is op- 
timal for the particular setting, we provide an example pro- 
tocol, to demonstrate the achievability of the lower bound 
rather than to suggest a practical protocol for use in a real 
distributed system. 

2 Preliminaries 

2.1 System Model and Assumptions 

The environment we assume is a distributed system where 
parties (e.g., processes, users, machines) communicate with 
each other only by sending and receiving messages via c o r n -  



municat ion l inks  between them.  We assume tha t  the  un- 
derlying cryptographic  mechanisms are not  vulnerable with 
regard to message secrecy and integri ty so tha t  we do not 
consider attacks such as cryptanalysis  and message slicing. 
Any principal can place or inject  a message on any link at 
any time; cart see all exchanged messages; can delete, alter, 
or redirect any message being passed along any link; can 
init iate communicat ions  with another  party; and can replay 
messages recorded from past  communicat ions.  

The  model  of authent icat ion taken here is the common 
one often found in the  l i tera ture  (e.g., [Needham 78]). There  
are three participants:  two clients, denoted by A and B,  
and an authent icat ion server S via which A and B agree 
upon a t empora ry  key. We assume tha t  client A is always 
the originator of the protocol  execution, and we call B the 
responder. 

Both conventional  cryptosystems (e.g., DES [NBS 77]) 
and public-key systems (e.g., RSA [Pdvest 78]) are useful 
in authenticat ion protocols [Needham 78]. We concentra te  
first on the  use of conventional  cryptosystems and will ana- 
lyze the use of public key or mixed-key systems later. Sim- 
ilarly, we s tar t  with mutual  authent icat ion and will discuss 
other  variations later.  

When part icipants  use only conventional  encrypt ion sys- 
tems, we assume tha t  before an execution of the  authen- 
t ication protocol each client shares a secret key with the 
server, but  the two clients do not  share any secret.  Af ter  
the successful complet ion of the protocol,  the clients share 
a secret, often known as a session or t empora ry  key, to be 
used for future communicat ion.  Thus  authent icat ion here 
means identification plus key or certificate distr ibution via 
the t rusted authent icat ion server. 

We assume tha t  the t empora ry  key is for conventional 
cryptosystems only. We fur ther  assume tha t  a client will not 
accept or act upon a t empora ry  key (or a candidate  tempo-  
rary key) unless the client can determine  tha t  the message 
in which the key is dis tr ibuted is fresh. Such a key whose 
"goodness" remains unconfirmed until  it is fur ther  used is 
called an "uncertified key" [Burrows 89, p.32]. We discuss 
its usage in section 5. 

2.2 Settings 

There  are two impor tan t  set t ing parameters  to consider. 
The  first parameter  is the mechanism each part icipant  uses 
to establish the  freshness of messages. Broadly speaking, 
there are two well-known mechanisms. One is based on 
synchronized clocks [Denning 81] 1 , the other  uses nonces 
[Needham 78]. We discuss the  two cases separately. 

Except  for a brief discussion toward the end of the  paper, 
we will not  consider sett ings when one part icipant  relies on 
clocks and another  relies on nonces, because the  results of 
this sett ing can be derived from the two simpler settings. 
Other  hybrid schemes not  discussed include use of a times- 
t amp  as a nonce or for dual purposes, or the set t ing in which 
one par ty  has the opt ion to use a t imes tamp or a nonce, de- 
pending on environmental  restrictions, e.g., whether  it is 
possible to piggyback a "challenge" in a previous message, 
as in Kerberos [Neuman 93]. 

The  second parameter  is concerned with the question of 
who chooses the  t empora ry  key. We consider three possibil- 
ities. One is tha t  the server chooses the key. The  second 

1 Clock synchronization mechanisms often do not address their own 
security problems. For a more detailed discussion and more references 
on the risks of using clocks, see [Gong 92]. 

is that  any one client can choose the key. The  third is tha t  
both  clients par t ic ipate  in choosing the key. 

If  the client is competent ,  let t ing a client choose a key can 
shorten protocol. However, if  one client does not  necessarily 
t rust  the other, then both  must  par t ic ipate  in choosing a 
key. 

Lett ing the server S and one or both  clients be involved 
in choosing the key is thought  to be unnecessary in using 
conventional cryptosystems,  because S is in a position to 
know all clients'  secrets, including both long-term and tem- 
porary keys, and thus must  be t rusted not to divulge such 
secrets. Also, the server is generally assumed to be bet ter  
at generat ing quality keys. However, in the case of using 
public-key systems, let t ing clients be involved in choosing 
the keys can improve security, because S no longer has to 
know all the secrets. 

2.3 Goals 

The  goals of authenticat ion have been carefully studied, and 
a protocol  usually falls in one of two levels [Burrows 89]. We 
will briefly discuss other  variations in section 4. 

A protocol at the first level can be viewed as authentica-  
tion only. T h a t  is, after complet ing the protocol,  each client 
will have received a key in a t imely or fresh message, and 
the client believes tha t  the key is suitable to be shared with 
the other  client. 

A protocol  at the second level can be called authentica- 
tion with handshake. T h a t  is, after complet ing the protocol,  
each client will also believe tha t  the other  client has received 
the key properly and believes in the suitabili ty of the key. 
This  ext ra  requirement  is generally met  by a handshake ex- 
change at the end of the protocol.  

2.4 Metrics 

In this paper  we focus on two impor tan t  efficiency metr ics  
of a protocol: the total  number  of messages and the number  
of rounds. We now define these metr ics  more precisely. 

A message is a da ta  i tem sent by one client to a single 
destination at one time. A message may contain headers to 
indicate its source and destination.  In some implementa-  
tions, if the size of the da ta  i tem is too large, the message 
is actually f ragmented at a lower level into many packets. 
We will still count this as one message. A message being 
forwarded will count as a new message sent by the  inter- 
mediate  party. A broadcast  to many destinations will be 
viewed as the same message being sent to those destinations 
separately and thus will count as many messages. 

We count a broadcast  as many messages because in a 
typical implementat ion,  a broadcast  will result  in multiple 
messages that  add a system and network load many t imes 
greater  than load added by a simple message. Also, the 
multiple recipients of a broadcast  all must  respond, e.g., by 
examining the incoming message, changing s ta te  if neces- 
sary, and possibly replying to the sender or sending another  
message according to the protocol  specification. We aim to 
include all messages tha t  consume non-negligible system re- 
sources so that  minimizing the  number  of messages makes 
more efficient uses of these resources. 

Let us assume tha t  the network is uniformly connected so 
a message will always travel to its dest inat ion in one unit of 
time, no mat te r  where the source and the dest inat ion are. 
We neglect the computa t ion  t ime at each node. A round 
consists of all messages tha t  can be sent and received in 
parallel within one t ime unit.  Thus a part icipant  can simul- 
taneously send different messages to different dest inations in 
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one round, and so can multiple participants send messages 
in one round. The number of rounds in a protocol is the 
total number of time units from the instant that the orig- 
inator sends the first message till the instant that the last 
message is received, under the best execution scenario. 

This metric is important because the number of rounds in 
a protocol is an indirect measure of the worst-case protocol 
execution time. In some applications, a client may wish to 
trade other metrics, such as the number of messages, for a 
faster protocol completion time. 

2.5 Proof Methods 

Based on the assumptions (especially the one excluding un- 
certified keys), we make the following observations which are 
vital to our proof methods: 

1. A client cannot send out a handshake message before it 
has received the temporary key. Thus, the last hand- 
shake message cannot be sent before all clients have 
received the temporary key. 

2. A cheat without a synchronized clock cannot accept a 
temporary key before it sends out a nonce. 

3. The protocol responder (client) or the server cannot 
send out any message (e.g., a nonce) before the proto- 
col originator sends out a notification message. 

Based on the above observations, our main proof tech- 
nique for the lower bound on the number of messages is 
to identify crucial messages that are necessary for comple- 
tion of a protocol execution but which could not be further 
combined. For example, for one client, the following three 
messages cannot be combined: the message to send out a 
nonce, the one to receive a temporary key, and the one for 
handshake. 

The main proof technique for the lower bound on the 
number of rounds is to identify a critical path - a causal 
chain of messages - that cannot be further shortened. For 
example, the sequence of sending out a nonce, later receiving 
a temporary key, and finally sending a handshake message 
cannot be shorten to less than three rounds. 

3 Lower Bounds on Messages and Rounds 

Since there are two setting parameters with a total of six 
settings, and two levels of authentication goals, there are 12 
cases to consider. [Readers uninterested in detailed proofs 
may wish to skip to section 3.13 for a summary.] For ease in 
enumerating all 12 cases, we use some shorthand notation 
(see Table 1 below) to denote these cases. 

In our proofs, we give only brief and informal arguments. 2 
For each proven lower bound, we give an optimal protocol 
to show that the bound is actually achievable. When we 
cannot find a published protocol that is optimal for the par- 
ticular setting, we will provide an example protocol solely 
to demonstrate the achievability of the lower bound rather 
than to suggest a practical protocol for use in a real dis- 
tributed system. 

Besides pointing out that M1 these protocols are carefully 
designed to resist known types of attacks, we choose not to 
devote much space to discuss the security of these protocols, 
since efficiency rather than security is the central theme of 

2It is always debatable as to what constitutes a proof. The essays 
by Lakatos [Lakatos 76] provide excellent philosophical, logical, and 
historical perspectives of theorem proving. 

AO authentication only 
A H  authentication with handshake 
SO server choosing the temporary key 
CO one client choosing the temporary key 
CC 
T B  
N B  

Kas  
Na  
Jl 

K 
K1, K2 

~,y 
A - - ~ B : x  

both clients choosing the temporary key 
clock-based 
nonce-based 

encryption key shared between A and S 
nonce generated by A 
timestamp taken from A's clock 
temporary key 
candidate temporary keys chosen by A, B 

x concatenated with y 
A sending message x to B 

Table 1: Notation 
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this paper. Because the lower bounds are proven indepen- 
dently of the security of the example protocols, these bounds 
are in fact tight bounds ff the security of the given optimal 
protocols can be established. If an example protocol is later 
shown to be insecure, the lower bound still stands, but  a new 
protocol would be needed to demonstrate the achievability 
of the lower bound. 

For adequate protection, all messages (except those cited 
from previously published protocols) have the following stan- 
dard format: 

{Sender, Recipient, C1, K, C2, Freshness  - id}K~r 

Each separately encrypted portion of a message contains 
the identity of its sender, followed by that of the intended 
recipient. This ensures that an attacker cannot redirect a 
message without being detected. A message distributing 
a temporary key contains a 3-tuple {clientl, key, client2) 
which indicates that the key being distributed is for the two 
clients herein named. This ensures that an attacker can- 
not cause misunderstandings of the meaning of the message 
by replaying and redirecting messages. The last part of the 
message is a freshness identifier, which can be either a times- 
tamp taken from the sender's clock or a nonce previously 
generated by the intended recipient. This defeats replay of 
past messages. The whole message is encrypted with Ksr ,  
a key shared between the sender and the recipient. Each 
message should also carry a unique identifier (not shown in 
the above format) specifying the protocol name and ver- 
sion number, and the sequence or position number of the 
message within the protocol. This identifier, together with 
the freshness identifier, prevents an attacker from mixing 
messages from different protocols or different protocol runs. 
Obviously, this overly conservative arrangement is unlikely 
to result in the shortest messages. 

3.1 Case 1: TB+AO-I-SO 

Messages.  The originator has to notify S of starting the 
protocol, who then needs to send at least two more messages 
to the two clients to distribute the temporary key. Thus a 
lower bound is three messages. The Denning-Sacco protocol 
[Denning 81] achieves this lower bound. 

R o u n d s .  Key distribution cannot happen before S is 
notified by the originator, thus two rounds is a lower bound. 



We can rearrange the messages in the Denning-Sacco proto- 
col so that S sends the key directly to B instead of sending 
it via A, resulting in the following protocol which achieves 
the lower bound because messages 2 and 3 can be sent con- 
currently. 

1° 

2. 
3. 

A --* S: A, B 

S -+ A: {B, K, Ts}K~, 
S --* B: {A, K, Ts}Kbs 

The above protocol is both message and round opti- 
mal. For illustration purposes, we group together the mes- 
sages belonging to the same round and separate the different 
rounds with blank lines. 

3.2 Case 2: TB+AH+SO 

Case 2 differs from Case 1 only in that a handshake is now 
needed. 

Messages .  The orignator has to notify the server, who 
must distribute a key to both clients in at least two more 
messages. The last handshake message cannot be sent out 
before both clients have received the key. Thus a lower 
bound is four messages. The following protocol achieves 
this lower bound. 

1. A --+ S: A, B 
2. S --* A: {S,A,A,K,B, Ts}K~,, 

{S, B,A,K,B,Ts}Kbs 
3. A ---* B: {S,B,A,K,B, Ts}Kb,, 

{A, B, Ta}K 
4. B --* A: {B, A, Tb}K 

R o u n d s .  The three stages of protocol initiation, key 
distribution, and handshake cannot happen concurrently, 
thus three rounds is a lower bound. The following proto- 
col, which is derived from previous protocol by rearranging 
the messages, achieves this lower bound because messages 2 
and 3, and messages 4 and 5, can be sent concurrently. 

1. A ~ S: A, B 

2. S --+ A: {S,A,A,K,B, Ts}Ka, 
3. S -+ B: {S,B,A,K,B, Ts}Kb, 

4. A --* B: {A, B, Ta}K 
5. B --~ A: {B,A, Tb}K 

3.3 Case 3: TB+AO+CO 

This case differs from Case 1 only in that now any client can 
choose the temporary key. 

Messages .  One client needs to choose the key and send 
it to the other client via the server. Thus two messages is a 
lower bound. The wide-mouthed-frog protocol [Burrows 89] 
achieves this lower bound. 

R o u n d s .  The two messages for key distribution can 
only be sent sequentially with the server as the intermedi- 
ate party; thus two rounds is a lower bound, which is also 
achieved in the wide-mouthed-frog protocol. 

3.4 Case 4: TB+AH+CO 

This case differs from Case 3 only in that now a handshake 
is needed. 

Messages.  Distributing the key needs at least two mes- 
sages, and the final handshake message requires an extra 
one; thus three messages is a lower bound. Adding one 
more message (message 3) to the wide-mouthed-frog proto- 
col achieves this bound. 

1. A --* S: A,B, {B,K, Ta}Ka,, {A, Ta}K 
2. S --+ B: A, B, {A, K, TS}Kb,, {A, Ta}K 
3. B --* A: {B, Tb}K 

R o u n d s .  The two messages for key distribution must 
be sent sequentially because the server acts as a broker, and 
the final handshake message cannot be sent before the key 
is distributed; thus three rounds is a lower bound, which is 
also achieved in the above protocol. 

3.5 Case 5: TB-I-AO+CC 

When both clients participate in choosing the temporary 
key, client A chooses the candidate temporary key K1, a~d 
B chooses K2. Later, they can derive a temporary key K 
from the two candidate keys, possibly using a one-way hash 
function such as K -- h(K1, K2), for use in future commu- 
nications. 

Messages.  Each client has to send its contribution in 
selecting the temporary key to the server who then forwards 
it onto the other client. Thus four messages is a lower bound. 
The protocol below achieves this bound. 

1. A ~ S: A,B,{A,S,A, K1,B, Ta}K~8 
2. S --~ B: {S,B,A, K1,B, Ts}Kb~ 
3. B --~ S: {B, S, B, K2, A, Tb}Kb8 
4. S --+ A: {S, A, B, K2, A, Ts}Ka~ 

R o u n d s .  The responder has to be notified before it 
can proceed to key selection. Then its contribution must 
be sent to the server first before being forwarded to the 
originator. Thus three rounds is a lower bound. Messages in 
the above protocol can be rearranged to achieve this bound. 
Here messages 1 and 2, and 3 and 4 can be sent concurrently. 

1. A --+ S: A, B, {A, S, A, K1, B, Ta}gas 
2. A .--* B:A,B 

3. S --* B: 
4. B ---* S: 

5. S --*A: 

{S, B, A, K1, B, TS}Kbs 
{ B, S, B, K2, A, Tb } Kb~ 

{S, A, B, K2, A, Ts}Kas 
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3.6 Case 6: TB+AH+CC 

This case differs from Case 5 only in that now a handshake 
is needed. 

Messages.  As in Case 5, four messages are needed to 
exchange key selections of A and B. After the last of these 
messages has been received, at least one more message is 
necessary to complete a two-way handshake. Thus five mes- 
sages is a lower bound, which is achieved in the following 
protocol. 

1. A --+ S: A,B,{A,S,A, K1,B, Ta}K,~s 
2. S --+ B: {S,B,A, K1,B, Ts}Kb, 
3. B ~ S: {B,S,B, K2,A, Tb}Kb~, {B,A, Tb}K 
4. S --* A: {S, A, B, K2, A, Ts}Kas, {B, A, Tb}g 
5. A ~ B: {A, B, Ta}K 



Again, K is the temporary key computed from K1 and 
K2. Note that Ta in messages 2 and 5 both represent the 
reading from A's clock, but the actual values in the two 
messages may differ. 

R o u n d s .  The responder has to be notified before it can 
proceed to key selection. Then its contribution must be sent 
to the server first before being forwarded on to the origina- 
tor. Only after that can the originator send a handshake 
message. Thus four rounds is a lower bound. Messages in 
the above protocol can be rearranged to achieve this bound. 
Messages 1 and 2, 3 and 4, and 5 and 6 can be sent concur- 
rently. 

1. A --* S: A, B, {A, S, A, K1, B, Ta}K,,~ 
2. A --+ B : A , B  

3. S --* B: 
4. B --+ S: 

{S, B, A, K1, B, TS}Kbs 
{B, S, B, K2, A, Tb}Kb~ 

5. S --* A: {S, A, B, K2, A, Ts}Kas 
6. B --* A: {B, A, Tb}K 

7. A --+ B: {A, B, Ta}K 

3.7 Case 7: NB+AO+SO 

All cases from this point on are nonce-based. We recall the 
principle that each party concerned with freshness needs to 
choose a nonce of its own [Needham 87]. 

Messages .  Each client has to choose a nonce and send 
it out, and each expects to receive a message from the server 
containing its nonce as well as the temporary key; therefore 
four messages is a lower bound. A protocol in the style of 
the Otway-Rees protocol [Otway 87] (i.e., 2 nested RPCs) 
achieves this lower bound: 

1. A --* B: A, B, Na 
2. B --~ S: A, B, Na, Nb 
3. S -+ B: {S,B,A,K,B, Nb}Kb,, 

{S, A, A, K, B, Na}gas 
4. B --* A: {S, A, A, K, B, Na}K,,~ 

R o u n d s .  
send out its 
three rounds 
protocol can 

The responder has to be notified before it can 
nonce and later receive a fresh message; thus 
is a lower bound. The messages in the above 
be rearranged to achieve this bound. 

1. A --+ B: A, B, Na 

2. B --* S: A, B, Na, Nb 

3. S --~ A: {S,A,A,K,B, Na}K,,~ 
4. S ~ B: {S, B, A, K, B, Nb}Kb8 

The above protocol is both message and round optimal. 

3.8 Case 8: NB+AH-t-SO 

Messages .  Compared with Case 7, at least one more mes- 
sage is needed to complete the two-way handshake (after 
both clients have received the temporary key). Thus five 
messages is a lower bound, which is achieved in the follow- 
ing protocol: 

1. A ~  B : A , B ,  Na  
2. B ~ S: A,B, Na, Nb 
3. S ---* B: {S, B, A, K, B, Nb}gbs, 

{S, A, A, K, B,'Na}Kas 
4. S --* A: {S,A,A,K,B, Na}K,,8,{B,A, Na}K, Nb 
5. A ~ B: {A, B, Nb}g 

R o u n d s .  As we found for the number of messages, at 
least one more round is needed than in Case 7 to complete 
the handshake; thus four rounds is a lower bound, which is 
achieved by rearranging the messages in the above proto- 
col. Note that messages 3 and 4, and 5 and 6, can be sent 
concurrently. 

1. A --* B: A, B, Na 

2. B --+ S: A, B, Na, Nb 

3. S --+ A: {S, A, A, K, B, Na}gas, Nb 
4. S --* B: {S, B, A, K, B, Nb}Kbs 

5. A --* B: {A, B, Nb}K 
6. B --* A: {B, A, Na}g 

3.9 Case 9: NB+AO+CO 

Messages .  Since one client chooses the temporary key, only 
the other client who later receives the key needs to choose 
and send a nonce. These exchanges account for two mes- 
sages. But since the clients initially do not share any secret, 
the key has to be sent via the authentication server, which 
requires one more message and brings the lower bound to 
three messages. The following protocol achieves this bound: 

1. A ~  B : A , B ,  Na  
2. B -* S: A, B, {B, S, A, K, B, Na}gbs 
3. S -* A: {S, A, A, K, B, Na}Kas 

Note that although S cannot tell if message 2 is a re- 
play, A will detect any replay after receiving message 3. In 
this and some subsequent protocols (including all CC cases), 
A acts as a message gateway, decrypting and reencrypting 
messages as needed. 

R o u n d s .  If the originator chooses the key, then the re- 
sponder must be notified before choosing a nonce and later 
receiving the key. If the responder chooses the key, then 
after being notified, it must send the key via the authen- 
tication server. Thus in either scenario, three rounds is a 
lower bound, which is achieved in the above protocol. 

3.10 Case 10: N B + A H + C O  

Messages .  Compared with Case 9, an extra handshake 
stage costs at least one more message, and the lower bound 
of four messages is achieved in the following protocol: 

1. A -* B: A, B, Na 
2. B --* S: A, B, Na, Nb, 

{S, S, A, K, B, Na}gb,, {S, A, Na}g 
3. S ~ A: {S,A,A,K,B, Na}Kas,{B,A, Na}K, Nb 
4. A --* B: {A, B, Nb}g 

R o u n d s .  As we found for the number of messages, at 
least one more round than in Case 9 is needed to complete 
the handshake. This lower bound of four rounds is achieved 
in the above protocol. 
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3.11 Case 11: NB+AO+CC 

Messages .  Each client sends out its nonce and later re- 
ceives a candidate key (chosen by the other client) together 
with its nonce. This requires at least three messages. How- 
ever, the authentication server must mediate key exchange; 
thus two more messages, or a total of five messages, are 
needed. The following protocol achieves this lower bound. 

1. A - * B :  
2. B - * S :  
3. S - * A :  
4. A - * S :  
5. S - * B :  

A,B, Na 
A, B, Nb, {B, S, B, K2, A, Na}Kt, s 
{S, A, B, K2, A, Na}Ka~, Nb 
{A, S, A, K1, B, Nb}Ka8 
{S, B, A, K1, B, Nb}gbs 

lower bound 
msg/round 

clock-based (TB) 
nonce-based (NB) 

lower bound 
msg/round 

clock-based (TB) 
nonce-based 

authentication only (AO) 
key chooser 

server I °ne client I (SO) (CO) both clients (CC) 

3/2 2/2 , 4/3 
4/3 ' 3/3 t 5/4 

authentication + handshake (AH) 
key chooser 

server one client both clients 
(so), (co) (cc) 
4/3 3/3 5/4 
5!4 4[4 6/5 

R o u n d s .  The responder must be notified before it can 
send its nonce to the originator and later receive the key cho- 
sen by the originator. This process requires three rounds. 
Since the key must be exchanged via the authentication 
server, one more round is needed. Thus four rounds is a 
lower bound, which can be achieved by rearranging the mes- 
sages in the above protocol. Note that messages 2 and 3, 
and 4 and 5, can be sent concurrently. 

1. A -* B: A, B, Na 

2. B -* A: Nb 
3. B -* S: A,B,{B,S,B,  K2,A, Na}Kbs 

4. S -* A: {S, A, B, K2, A, Na}Kas 
5. A ~ S: {A, S, A, K1, B, Nb}gas 

6. S -* B: {S, B, A, K1, B, Nb}gbs 

3.12 Case 12: NB+AH+CC 

Messages .  The handshake requires at least one more mes- 
sage than in Case 11; thus six messages is a lower bound, 
which can be achieved in the following protocol: 

1. A - * B :  
2. B - * S :  
3. S - * A :  
4. A - * S :  
5. S ---* B: 
6. B ---~ A: 

A, JB, Na 
A, B, Nb, {B, S, B, K2, A, Na}Kbs 
{S, A, B, K2, A, Na}gas, Nb 
{A, S, A, g l ,  B, Nb}Kas, {A, B, gb}g 
{S, B, A, g l ,  B, Nb}gb~, {A, B, Nb}K 
{B, A, ga}K 

R o u n d s .  Similarly, the handshake requires at least one 
more round than in Case 11; thus five rounds is a lower 
bound, which can be achieved by rearranging the messages 
in the above protocol. Note that messages 2 and 3, and 4 
and 5, can be sent concurrently. 

1. A -* B: A, B, Na 

2. B -* A: Nb 
3. B -* S: A,B,{B,S,B,  K2,A, Na}Kb8 

4. S - *  A:  {S,A,B, K2,A, Na}Kc, s, Nb 
5. A -* S: {A, S, A, K1, B, Nb}gas, {A, B, Nb}g 

6. S -* B: {S,B,A, K1, B, Nb}Kbs,{A,B, Nb}K 

7. B -* A: {B, A, Na}K 

Table 2: Lower Bounds on Numbers of Messages and Rounds 

3.13 Summary and Observations 

Table 2 summarizes the proven results about lower bounds 
on the numbers of messages and rounds. 

It has long been suspected that nonce-based protocols re- 
quire at least one more message than clock-based ones. The 
analysis in this paper confirms that clock-based protocols 
save exactly one message in all of the 12 scenarios. 

Conducting a handshake consumes only one more mes- 
sage, since the first half of the handshake can always be 
piggy-backed on an earlier message. 

Letting the authentication server choose the temporary 
key reduces one message from the case when both clients 
participate in choosing the temporary key. Letting any one 
client choose the temporary key further reduces the number 
of messages by one. 

The actual time to complete a round of message ex- 
changes depends on the network latency in message deliv- 
ery; thus a lower bound on the rounds indirectly reflects the 
worst-case protocol execution time - the lapse between the 
time a protocol is initiated and the time the last message is 
received at its intended destination. 

Nonce-based protocols requires exactly one round more 
than clock-based protocols. Also, in nonce-based protocols, 
the lower bounds are the same for letting the server or a 
client choose the temporary key, but one more round is 
needed if both clients participate in choosing the key. 

We have obtaSned achievable lower bounds in the case 
of letting either client choose the temporary key. If, as re- 
quired in a particular environment, one or the other client is 
predesignated to be the key chooser, these lower bounds are 
not necessarily achievable, and better lower bounds for such 
situations can be easily worked out with our proof methods. 

For example, in clock-based cases ( TB + A O +CO and 
TB+AH+CO) ,  the proven lower bounds are achieved by 
letting the protocol originator choose the temporary key. It 
is easy to see that if the protocol responder must choose the 
key, then one more (notification) message from the origina- 
tor to the responder, and thus one more round, is needed, 
since essentially the two clients now switch roles after the ini- 
tial notification message. Interestingly, in nonce-based cases 
(NB+AO+CO and NB+AH+CO),  the proven lower bounds 
are achieved by letting the protocol responder choose the 
temporary key. Similarly, one more message and one more 
round are needed if the originator must choose the key. 

Finally, when there is a single trusted server and conven- 
tional cryptosystem is used, letting both clients participate 
in choosing the temporary key is generally not a good idea 
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because it  costs more ( than let t ing the server choose the 
key) but  gains nothing in security - the server knows all 
the secrets anyway and is generally be t te r  at choosing good 
encryption keys. 

4 Partial Handshakes and Independent Handshakes 

The handshake we have discussed is mutua l  handshake, in 
that  clients inform each other  tha t  they have received the 
temporary  key. Sometimes,  only a part ial  handshake is 
needed, in that  only one par ty  is concerned about  the re- 
ceipt of the temporary  key by the other  party. One such 
case is when subsequent communica t ion  immedia te ly  fol- 
lows authent icat ion and thus automat ical ly  completes  the  
full handshake. 

It  is not  difficult to analyze the achievable lower bounds 
in such cases, since if the direction of the part ial  hand- 
shake is the same as tha t  of the last message, then no more 
message or round is needed than  in the  authent icat ion-only 
(AO) cases: the handshake can always be piggy-backed on 
the last message. However, if the  two directions are oppo- 
site each other,  then the lower bounds are the same as the  
authent ica t ion-wi th-handshake (AH) cases. 

In the discussion so far, handshake is t rea ted  as an ex- 
tension of basic authent icat ion in tha t  clients use handshake 
messages to inform each other  tha t  the  t emporary  key has 
been satisfactorily received. Handshakes can also be used to 
show the part ies '  presence to each other.  Again, somet imes 
only a part ial  handshake is needed in tha t  only one par ty ' s  
presence must  be shown to the  o ther  party. For example,  
after initial authenticat ion completes  and the clients share a 
t emporary  key, the clients may  want  to perform handshake 
at a later stage, or perform handshake repeatedly over a 
period of t ime [Needham 78]. Therefore,  it is worthwhile 
to examine the cost of such independent  and possibly par- 
tial handshakes with regard to the use of t imes tamps  and 
nonces, without  the possibility of piggybacking handshake 
on earlier messages. The  results can be easily worked out,  
and we skip the details and summarize  the results in the 
following table. 

number  of msg / round  
half handshake 
full handshake 

clock-based 
1/] 
2/2 

nonce-based 
3/2 
3/3 

Table 3: Lower Bounds for Independent  Handshakes 

Here the benefit of using t ime ,  tamps  is greater  than be- 
fore - in the case of par t ia l  handshake, two out  of three 
messages can be reduced. This  is reminiscent of one-way 
authenticat ion [Needham 78], which cannot  be done only 
with nonces. 

In light of the above observation, perhaps the most  eco- 
nomical scheme is to include clock synchronization (if clocks 
are not  already synchronized) as part  of the initial authenti-  
cation and use t imes tamps  in all following communications.  
For example,  in Kerberos if the client 's  initial message con- 
tains a wrong t imestamp,  the server rejects the request  but  
returns a current t imes tamp to the client for synchronizing 
the clock and preparing a subsequent request [Neuman 93]. 

5 Using Unc,,ertified Keys 

We now examine the case we excluded earlier: the use of nn- 
certified keys. I t  does not  make sense to exchange uncertiffed 
keys when all parties have synchronized clocks, since all tha t  
is necessary is to include a t imestarnp in the key distribu- 
tion message. Thus,  we only consider nonce-based scenarios. 
Moreover,  i t  is insecure to let a client use an uncertiffed key 
solely genera ted  by another  client, because at tacks replay- 
ing past  messages will succeed. However, when both clients 
par t ic ipate  in choosing the final t empora ry  key (CC),  it is 
safe to t ry  a t empora ry  key derived f rom a received uncer- 
tiffed key and a self-generated key as long as the la t te r  is 
secret and fresh. Therefore,  we need to consider only two 
scenarios, N B + A O + C C  and N B + A H + C C .  

Similar to the  analysis performed so far, we can clear see 
tha t  to merely exchange uncertiffed keys (via the server), 
four messages and three  rounds are opt imal  in the case of 
N B + C C .  These  numbers  are identical  to those in the clock- 
based authent ica t ion-only  ( T B + A O + C C )  case. This  is not  
surprising since exchanging uncertiffed keys removes the  de- 
mand  for freshness identifiers and thus can be as efficient 
as when all part ies have synchronized clocks. However, ex- 
changing an uncertiffed key is not  equivalent  to key distribu- 
tion (i.e., authent icat ion-only)  because the  t empora ry  key is 
yet uncertiffed. 

For the  N B + A H + C C  case, at least one more message 
is needed than  the  above simple case, and it  is not difficult 
to const ruct  a protocol  to achieve the  five-message lower 
bound. 

1. A --* S: A, B,  {A, S, A, K1,  B}Kas, Na 
2. S --* B: A,B,{S,B,A, K1,B}Kbs, Na 
3. B ~ S: {B,S,B, K2,A}K~,~,{B,A, Na}K,Nb 
4. S --* A: {S, A, B, K2, A}K,~, {B, A, Na}K 
5. A ~ B: {A, B, Nb}g 

As for the number  of rounds, the responder  has to be 
notified first, then choose and send a candidate  t empora ry  
to the originator  via the server (which requires two rounds),  
and finally receive a handshake message. Thus  four rounds 
is a lower bound.  We can rearrange the  messages in the 
above protocol  to achieve this lower bound.  

1. A --* B: A, B, Na 
2. A ~ S: A, B, {A, S, A, K1, B}K,,s 

3. S ~ B: A, B,  {S, B,  A, K1,  B}Kbs, Na 
4. B --+ S: {B,S,B, K2,A}Kbs,{B,A, Na}K, Nb 

5. S ~ A: {S,A,B, K2,A}K,,s,{B,A, Na}K 

6. A ---, B: {A, B,  Nb}K 

To summarize  (see Table 4 below), compared  with the 
authent icat ion-only case N B W A O + C C ,  exchanging uncer- 
tiffed keys uses one less message and one less round but  
functionally achieves less because t empora ry  keys remain 
uncertiffed to at least one client. 3 

3It can be arranged so that one client can certify the key with 
four messages and three rounds. For example, in the above message- 
optimal protocol, A can detect replay attacks after receiving message 
4 by checking if that handshake message contains Na. To detect 
replay without the handshake message, we can include Na in the 
two key distribution messages 3 and 4, as in {B, S, B, K2, A, Na}Kbo 
and {S, A, B, K2, A, Na}K~,s, since B would know Na after receiving 
message 2. A similar modification can be made to the above round- 
optimal protocol. 
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I msg/round Key Exchange Only 
NB+CC I 4/3 I AH5/4 [ 

Table 4: Lower Bounds When Using Uncertified Keys 

client public keys is identical in terms of messages and rounds 
to the case when the server chooses the temporary key (SO). 

If both clients wish to choose a temporary public key to 
be distributed to the other client, it  is easy to check that  this 
case is identical to when both clients part icipate in choosing 
the temporary key (CC). 

In the case of N B + A H + C C ,  however, using uncertified 
keys can save one message and one round while achieving 
the same functionality as when uncertified keys are not al- 
lowed (compare Table 4 with Table 2). However, these ad- 
vantages are only theoretical, because, as we have already 
pointed out at the end of section 3.13, when there is a single 
trusted server and conventional cryptosystem is used, let- 
ting both c lea t s  participate in choosing the temporary key 
costs more but gains nothing in security. In fact, lett ing 
the server choose the key is preferable to using uncertified 
keys, because the former is more efficient and probably more 
secure than the latter.  

6 Using Publlc-Key or Mixed-Key Systems 

When users and systems are sutficiently equipped (in hard- 
ware or software), they may wish to take advantage of the 
public-key systems, since the authent icat ionserver  no longer 
has to know clients' private keys and thus does not neces- 
sarily know the temporary keys. The server may still im- 
personate clients by giving false information about a client's 
public key, but cannot compromise the security of a connec- 
tion that  has been legitimately established. 4 

The use of public-key systems does not obscure the need 
for traditional cryptosystems. For example, a privileged user 
who is equipped with a smart  card will want to use public- 
key systems for improved security, but on the day he leaves 
the card at home, he should still be able to authenticate 
"normally" with his password. The flexibility for clients 
to choose dynamically between public-key and conventional 
systems is not generally available in today's  authentication 
systems. 

We now investigate the possible impacts on the numbers 
of messages and rounds if public-key or mixed-key systems 
are used. We assume that  before an execution of the au- 
thentication protocol, a client and the server do not share a 
secret key, but each knows the other 's  public key, and one 
client does not know the other client's public key. There are 
several possible scenarios to consider. 

6.1 Exchanging Prereglstered or Dynamic Public Keys 

In the simplest scenario, the purpose of authentication is 
to let the two clients know each other 's  public key (e.g., by 
way of a certificate issued by the server) after the protocol 
completes. The clients may or may not want a handshake at  
this stage, because presumably they will use the distributed 
public keys to estabhsh a temporary key for future commu- 
nication. 

Note that  a handshake message using public key systems 
has a different format from that  when using conventional 
cryptosystems. A handshake message from client A to B 
includes a freshness identifier signed with A's  private key 
and then encrypted with B 's  private key. 

I t  is not difficult to check that ,  with or without hand- 
shake, letting the server distribute two previously registered 

4 F o r  a d iscuss ion  of  how to  use dis tr ibuted a u t h e n t i c a t i o n  to  dea l  
w i th  p o t e n t i a l l y  d i shones t  servers ,  see [ G o n g  93]. 
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6.2 Diffie-Hellman Type Key Exchange 

After receiving each other 's  public key, the clients may wish 
to establish a temporary key in the style of Diffie-Hellman. 
In section 5, we discussed the use of uncertified keys in con- 
ventional cryptosystems. Diffie-Hellman key-exchange pro- 
tocols also use uncertified keys, but in public-key systems. 
For the two clients to exchange their independently chosen 
random numbers [Diffie 76], clearly two messages and two 
rounds axe optimal. Again, this is not equivalent to the case 
of authentication only (AO) because the temporary key is 
yet uncertified. To certify the temporary key, at least one 
more message and one more round axe needed. We can eas- 
ily check that  three messages and three rounds are indeed 
achievable lower bounds. Note that  in the Diffie-Hellman 
key exchange, the random number each client chooses is 
supposed to be fresh, so no other separate freshness identi- 
fiers are necessary, and thus there is no difference between 
TB and NB cases. The results are shown in Table 5 below. 

I msg/round I Key Exchange Only 2/2 I AH 3/31 

Table 5: Diffie-Hellman Type Key Exchange 

6.3 Using Mixed-Key Systems 

It is quite possible that  the two clients will wish to establish 
a secret temporary key (for a conventional cryptosystem) 
directly, without first exchanging their public keys. In the 
analysis given for the 12 cases (for using conventional cryp- 
tosystems), the lower bounds on messages and rounds are 
constrained mainly by freshness requirement (i.e., the de- 
livery of nonces) and are independent of the cryptosystems 
used; thus the lower bounds remain the same in all 12 cases 
for the mixed-key system just  described, all proofs are still 
valid, and protocols achieving the bounds can be easily con- 
structed. We can further deduce that  if the two clients com- 
municate with the server with two different types of cryp- 
tosystems, no improvement in efficiency will be gained or 
lost, except that  encryption and decryption are typically 
less efficient for public-key systems than for conventional 
cryptosystems. 

In mixed-key systems, it makes sense to let the server 
and the clients participate in choosing the temporary key so 
that  the server does not know the final temporary key. Let 
us use SC to denote the case when the server and one client 
choose the key, and use SCC to denote that  all three parties 
choose the key. We have worked through all clock-based 
cases, and, without bothering the reader with details, we 
conclude that  the (achievable) lower bounds for the case SC 
are identical to those for the case SO, and the (achievable) 
lower bounds for case SCC are identical to those for the case 
CC. We have yet to examine all the nonce-based cases. 



6.4 Summary 

In Table 6 below, we summarize the equivalence (in terms 
of lower bound) between protocols using public key systems 
and those using conventional systems. 

pubfic-key or mixed-key system conventional system 
preregistered public keys SO 

dynamic public keys CC 
mixed-key T B + S C  T B + S O  

mixed-key T B + S C C  T B + C C  

Table 6: Systems Equivalent in Lower Bounds 

7 Multiple Clients Establishing Group Keys 

We now generalize our previous analysis to multiple clients. 
We discuss only the use of conventional cryptosystems and, 
as before, results on pubfic-key or mixed-key systems can be 
similarly worked out. We keep the argument brief and, in- 
stead of specifying example protocols in full, we only outline 
the non-trivial ones. All lower bounds proven are achievable. 

Suppose that  a total of n clients want to establish a group 
key and n _> 3. Now CC stands for the scenario in which all 
clients contribute to the choice of the temporary key, and 
AH means that every client receives a handshake message 
from every other client. To distinguish these cases about set- 
ting up group keys from previous cases, we add prefix G +  
to all cases' names here, so we have case G + T B + A O + S O  
instead of T B + A O + S O .  We designate client A as the pro- 
tocol originator. For the ease of description, we line up the 
clients with A at the head of the fine and chent B at the 
end of the line. We exclude the use of uncertified keys. 

We can now analyze the lower bounds on messages and 
rounds using similar techniques as before. For example, af- 
ter the last key distribution message, at least (n - 1) more 
messages and one more round are needed to complete the 
handshake process. We recall that, in nonce-based cases, 
when a chent contributes to the choice of the temporary key, 
it must include all other clients' nonces and its key choice in 
a single encrypted message to the server (to be forwarded to 
other clients). Otherwise, the server would have difficulty in 
binding a key to a nonce, and this has security implications. 
As a result, the client can only complete sending out its key 
choice after receiving nonces from all other clients. 

7.1 Case G+TB+AO+SO 

The server has to be notified and, after that, n messages are 
needed to distribute the group key; thus n + 1 messages is 
a lower bound. The protocol is simple: A notifies the server 
who then sends n messages to distribute a key to all clients. 
Trivially, two rounds is a lower bound. 

7.2 Case G + T B + A H + S O  

Compared with the above case ( G + T B + A O + S O ) ,  at least 
n - 1 more messages (for the last handshake) are needed; 
thus 2n messages is a lower bound, which is achieved in the 
following protocol. 

A notifies S who then prepares a package of n separately 
encrypted key distribution messages, each addressed to a 
different chent, and returns the whole package to A in a 
single message. A takes out the message addressed to it, 
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obtains the temporary key to compute a handshake message, 
puts this handshake message back into the package, and 
passes the package down the fine of clients. Every client 
repeats this process until B is reached. B now has all the 
handshake messages (including its own) and passes them 
back up the line until A is reached. The total number of 
messages is 1 + n + (n - 1) = 2u. 

Compared with case G + T B + A O + S O ,  one more round is 
needed for handshake; thus three rounds is a lower bound. 
The following protocol achieves this bound. A notifies S 
who in the second round distributes keys to all the clients. 
In round three, every client broadcasts a handshake message 
to all other clients. 

7.3 Case G + T B + A O + C O  

The client who is the key chooser has to distribute the group 
key via the server, thus n messages is a lower bound. The 
protocol is simply that  A chooses a key and sends it to S 
who forwards it to the other n - 1 clients. Trivially, two 
rounds is a lower bound. 

7.4 Case G+TB+AH+CO 

Compared with case G + T B + A O + C O ,  n - 1 more messages 
are needed for the last handshake; thus 2n -- 1 messages is 
a lower bound, which is achieved in the following protocol. 

A sends its selection of the group key together with a 
handshake message to S, who then prepares a package of 
n - 1 key distribution messages and sends it together with 
A's handshake message to the client next to A (in the fine 
of chents). Starting from there, every client picks up the 
key distribution message for it, puts back in a handshake 
message, and passes the package down the fine. B then 
passes all the handshake messages up the line again. The 
total number of messages in this protocol is 1 + 1 + (n - 2) + 
( .  - 1 )  = 2 .  - 1 .  

One more round is needed than case G + T B + A O + C O  
thus three rounds is a lower bound which is achieved by let- 
ting S send A's choice of the group key to all other clients in 
parallel and letting the clients exchange handshake messages 
in the third round. 

7.5 Case G+TB+AO+CC 

Each client has to send its choice of key to other clients via 
the server and receive the choices of others via the server, 
thus 2n messages is a lower bound which is achieved in the 
following protocol. 

Starting from A, each client chooses its key. encrypts it 
for S to read, and passes it down the hne. B passes the whole 
package to S. S then puts all key distribution messages in 
one package and sends it to B. Starting from B, each client 
picks up the message for it and passes the rest up the fine. 
The total cost is 2n messages. 

One round of messages is needed to notify all the clients 
and two more rounds are needed to exchange keys via the 
server; thus three rounds is a lower bound which is trivially 
achievable. 

7.6 Case G+TB+AH+CC 

The extra handshake process needs n - 1 more messages 
than case G + T B + A O + C C ,  thus 3n - 1 messages is a lower 
bound, which is achieved in the following protocol, which is 
adapted from the one in case G + T B + A O + C C .  



When the  key distr ibution package is passed back up 
the line, each client picks up its key distr ibut ion message 
and puts  back in its handshake message before passing on 
the package. Once the  package (containing all handshake 
messages) reaches A, the package is passed back down the 
line to B.  

One more round is needed than case G + T B + A O + C C ,  
so four rounds is a lower bound. 

7.7 Case G+NB+AO+SO 

Every client has to send a nonce to the server and later 
gets back a key from the  server, thus 2n messages is a lower 
bound. To see why these messages cannot  be fur ther  com- 
bined, one client 's  sending a nonce and receiving a key must  
be done with two distinct messages. Moreover, if  a client 's 
sending a nonce is done in the same message with another  
client 's receiving a key, then the former client has to receive 
the la t te r  cl ient 's  key from somewhere else with a message 
that  cannot  be combined with another  message; thus we 
can arrange so tha t  the la t te r  client receives its key directly, 
without  using the  former client has an in termedia te  party. 
In other  words, combining the 2n messages will not  reduce 
the total  number  of messages required. 

The  following protocol  achieves the lower bound.  Star t-  
ing from A, each client selects its nonce and passes the pack- 
age down the line. (These messages also serve to notify 
responders.) B then sends the whole package to S. The  
server sends the key distr ibution messages in one package 
to B.  Star t ing from B, each client picks up the message 
addressed for it  and passes the rest of the package up the 
line. This  requires a to ta l  of 2n messages. 

A responder has to be notified before it  can send out a 
nonce and then receives a key; thus three rounds is a lower 
bound. 

7.8 Case G+NB+AH+SO 

Compared  with case G + N B + A O + S O ,  another  n - 1 mes- 
sages are needed for the handshake; so 3n - 1 messages is 
a lower bound which is achieved in the following protocol. 
In the protocol  for case G + N B + A O + S O ,  a client takes out  
its key message and puts back a handshake message before 
passing the package up the line. A passes the entire package 
of handshake messages back down the line again. 

One more round is required than case G + N B + A O + S O ,  
so four rounds is a lower bound which can be easily achieved. 

7.9 Case G+NB+AO+CO 

Every client (except the key chooser) has to send out  a nonce 
and receive a key via the server. This requires 2(n - 1) mes- 
sages (recall the proof  argument  in case G + N B + A O + S O ) .  
The  key chooser must  distr ibute the key via the server, re- 
quiring one more message. Thus  2n - 1 messages is a lower 
bound, which is achieved in the following protocol.  

Star t ing from A, every client adds a nonce to the  package 
and passes it down the line to B.  B chooses a key, and sends 
all (n - 1) nonces and the key in one encrypted message to 
S. The  server then prepares n - 1 key distr ibution messages 
and passes them to the client just  before B in the line of 
clients (call it C).  Star t ing from C, each client takes out  
the message for it and passes the  rest of the package up the 
line. The  to ta l  number  of messages is 2n - 1. 

Those clients who are not  the protocol originator or the 
key chooser need to be notified before being able to send 
out their  nonces. These exchanges use two rounds. Two 
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more rounds are needed for them to receive the keys via the 
server, thus four rounds is a lower bound (when n > 3), 
which is trivial'  to  achieve. 

7.10 Case G + N B + A H + C O  

Compared  with case G + N B + A O + C O ,  n - 1 more mes- 
sages are needed for handshake; thus 3n - 2 messages is 
a lower bound, which is achieved with the  protocol  for case 
G + N B + A O + C O  with the  following modification. Together  
with the n - 1 nonces, B also sends its handshake message 
to S, who then includes it in the package sent to C later. 
Start ing from C, every client takes out  its message and puts  
back in a handshake message before passing the package up 
the line. A passes all the  handshake messages down the line 
again. 

One more round is needed than case G + N B + A O + C O ,  
thus five rounds is a lower bound (when n _> 3) which is also 
easy to achieve. 

7.11 Case G+NB+AO+CC 

Each client has to send out  a nonce to all o ther  clients. This  
requires 2 ( n - 1 )  messages because n - 1  messages are needed 
for one client to send a nonce to all other  clients and the last 
client receiving the  nonce will need a fur ther  n - 1 messages 
to distr ibute his nonce. This last client will then need n 
more messages to receive n - 1 keys via the  server. Thus 
3n - 1 messages is a lower bound. 

The  protocol  achieving the lower bound is as follows. 
Start ing from A, every client adds a nonce to the package 
and sends it down the  line. Star t ing f rom B,  every client uses 
all the nonces in the package to prepare its key distr ibution 
message (to be sent to S),  adds this message to the  package, 
and sends it up the line again. A then  forwards to S all 
key distribution messages, who then returns key distr ibution 
messages addressed to individual clients in a whole package 
to A. A picks up the message for it  and passes the rest down 
the line. This  requires a to ta l  of 3n - 1 messages. 

Two rounds are needed for a responder  to be notified 
and to send a nonce. Two more rounds are needed for the 
clients to send keys via the server, thus four rounds is a lower 
bound which is trivially achievable. 

7.12 Case G+NB+AH+CC 

Compared  with case G + N B + A O + C C ,  n - 1 more mes- 
sages are needed for handshake. The  lower bound of 4n - 2 
messages is achieved by modifying the protocol  for case 
G + N B + A O + C C  in the following way. Star t ing from A, 
after picking up the key distr ibution message, every client 
puts back in its handshake message before passing the pack- 
age down the line. B then passes the  entire handshake mes- 
sage up the line again. One more round is needed than  case 
G + N B + A O + C C ,  thus five rounds is a lower bound which 
is trivial to achieve. 

7.13 Summary 

The  above results on establishing group keys are summa-  
rized in Table 7. 

We can see tha t  nonce-based cases cost n - 1 more mes- 
sages than the corresponding clock-based cases, and proto- 
cols completing handshakes cost n - 1 more messages than  
similar protocols with no or only part ial  handshakes. More- 
over, CO cases use one less message than  the  corresponding 



msg/ authentication only (AO) 
round SO CO CC 

TB n + l / 2  ' n /2  2n/3 
NB [ 2n/3 : 2n-1/4 3n-1/4 

msg/  authentication with handshake (AH) 
round ' SO CO CC 

TB ' 2n/3 ' 2n-1/3 , 3n-1/4 
NB : 3n-1/4 : 3n-2/5 ! 4n-2/5 

Table 7: Multiple Clients (n > 3) with One Server 

SO cases, while CC cases use n - 1 more messages than the 
corresponding SO cases. 

We can also observe that  the results on lower bound on 
messages in the above table are consistent with our previous 
analysis (see Table 2) if n = 2. 

Results on lower bound on rounds are identical to previ- 
ous analysis, except in the cases of G + N B + A O + C O  and 
G + N B + A H + C O  where one more round is needed when 
n_>3.  

8 Conclusions and Future Work 

We have conducted a systematic study of the optimality (in 
terms of the numbers of messages and rounds) of network 
authentication protocols. Our analysis is based on a set of 
typical security-related assumptions in distributed systems 
and is aimed at a set of typical authentication scenarios. Our 
results not only confirm some widely held beliefs regard- 
ing the relative merits of some authentication techniques 
but also can guide system and protocol designers in provid- 
ing optimal authentication services or flexible authentication 
systems with which clients can, according to individual need, 
make dynamic trade-offs between efficiency parameters. 

For future work, it  is desirable to identify protocols that  
are both message-optimal and round-optimal, such as the 
protocols in cases 1, 3, 4, 7, 9, and 10. I t  seems unlikely 
that  there exist message-optimal and round-optimal proto- 
cols for all cases, especially the group key cases; thus some 
impossibility results will be very interesting. 

Another possibility is to investigate metrics or scenar- 
ios other than those already discussed. For example, how 
many encryptions are needed in any particular scenario? 
Since it has been shown that  mutual  authentication can be 
achieved based on one-way hash functions [Gong 89], what 
is a suitable definition of encryption? Or, is there an op- 
timal sequence of messages in the sense that  more and/or  
higher order of beliefs [Burrows 89] can be achieved with the 
same number of messages? Minimizing interactions with the 
(probably heavily loaded) server can also be beneficial. 

Finally, we note that  the efficiency of a protocol cannot 
be fully characterized independently of its implementation 
details. For example, depending on the actual message sizes 
and the network environment, adding a few ex t ra  bytes may 
cost very little, or it may cost a lot by introducing additional 
message fragmentation at lower levels. There are other con- 
siderations that  cannot be easily abstracted. For example, 
approaches using t imestamp or verifier-issued t imestamps 
(as nonces) reduce the server states per-connection and thus 
increase performance [Neuman 93]. Also, a protocol that  
can piggyback its last message on the opening message of a 
subsequent communication may yield bet ter  overall perfor- 
mance than another protocol that  cannot piggyback, even if 
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they have the same numbers of messages and rounds. 
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