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ABSTRACT
The COPA authenticated encryption mode was proved to
have a birthday-bound security on integrity, and its instanti-
ation AES-COPA (v1/2) was claimed or conjectured to have
a full security on tag guessing. The Marble (v1.0/1.1/1.2)
authenticated encryption algorithm was claimed to have a
full security on authenticity. Both AES-COPA (v1) and
Marble (v1.0) were submitted to the Competition for Au-
thenticated Encryption: Security, Applicability, and Ro-
bustness (CAESAR) in 2014, and Marble was revised twice
(v1.1/1.2) in the first round of CAESAR, and AES-COPA
(v1) was tweaked (v2) for the second round of CAESAR. In
this paper, we cryptanalyse the basic cases of COPA, AES-
COPA and Marble, that process messages of a multiple of
the block size long; we present collision-based almost univer-
sal forgery attacks on the basic cases of COPA, AES-COPA
(v1/2) and Marble (v1.0/1.1/1.2), and show that the ba-
sic cases of COPA and AES-COPA have roughly at most a
birthday-bound security on tag guessing and the basic case
of Marble has roughly at most a birthday-bound security
on authenticity. The attacks on COPA and AES-COPA do
not violate their birthday-bound security proof on integrity,
but the attack on AES-COPA violates its full security claim
or conjecture on tag guessing. Therefore, the full security
claim or conjecture on tag guessing of AES-COPA and the
full security claim on authenticity of Marble are incorrectly
far overestimated in the sense of a general understanding
of full security of these security notions. Designers should
pay attention to these attacks when designing authenticated
encryption algorithms with similar structures in the future,
and should be careful when claiming the security of an ad-
vanced form of a security notion without making a corre-
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sponding proof after proving the security of the security no-
tion only under its most fundamental form.
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1. INTRODUCTION
In symmetric cryptography, an authenticated encryption

algorithm is an algorithm that transforms an arbitrary-length
data stream (below an upper bound generally), called a mes-
sage or plaintext, into another data stream of the same
length, called a ciphertext, and generates an (authentica-
tion) tag for the message at the same time, under the control
of a secret key [19]. It combines the functionalities of a sym-
metric cipher and a message authentication code (MAC),
and achieves data confidentiality and integrity/authenticity
at one pass. We refer the reader to Bellare and Namprem-
pre’s work [6] for an introduction to authenticated encryp-
tion and a few security notions under provable security,
such as privacy/confidentiality, integrity/authenticity, and
unforgeability, although one may use a different definition
for a security notion.

Like existential and universal forgery attacks [20, 25] on
a MAC, an existential forgery attack on an authenticated
encryption algorithm is to produce a correct ciphertext-tag
pair which is not given before (under the secret key and
some public nonce if any. Thus, during the decryption and
tag verification phase, the message resulted from decrypting
the forged ciphertext can result in the forged tag under the
same key and nonce if any.), while a universal forgery attack
on an authenticated encryption algorithm is to produce the
correct ciphertext-tag pair for any specified message whose
ciphertext-tag pair is not given before (under the secret key
and public nonce if any. Thus, during the decryption and
tag verification phase, the specified message will be gener-
ated from decrypting the forged ciphertext, and result in the
forged tag under the same key and nonce if any). Note that
a universal forgery attack implies an existential forgery at-
tack, and thus an algorithm secure against existential forgery
attacks is also secure against universal forgery attacks, but
not vice versa — a universal forgery attack represents a more
serious security threat and usually has a higher complexity
level than an existential forgery attack. Besides, Dunkel-
man, Keller and Shamir [9] recently introduced the notion
of almost universal forgery attack on MAC, which works for
almost any specified message although not for any.
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Table 1: Main (almost) universal forgery attacks on COPA and Marble, where n is the block length of the
underlying block cipher and e is the base of the natural logarithm.

Algorithm Associated Data Data Memory Time Success Rate Source

variable 2σ + 2φqueries n · 2σbits 2φmemory accesses 1− e−2σ+φ−n

Sect. 3.1

COPA (1 ≤ σ, φ ≤ n
2
)

constant 2θ + 2ϕqueries 3n · 2ϕbits 2ϕsimple operations See Sect. 3.2 Sect. 3.2

(n
2
< θ, ϕ < n)

264queries 269.6bytes 264memory accesses 20% Sect. 3.3§

variable ∼ 263queries 266bytes 262memory accesses 6% Sect. 3.1.4

AES-COPA v1/2 (nonce-respecting) (∼ 264blocks)

constant 2124queries 2120.6bytes 2124simple operations 32% Sect. 3.2.4

(nonce-misuse) ∼ 263 queries 268.6bytes 263memory accesses 6% Sect. 3.3§

(∼ 264blocks)

Marble v1.1/1.2 variable 265queries 268bytes 265memory accesses 32% [10,11]†

Marble v1.0/1.1/1.2 variable 265queries 268bytes 265memory accesses 32% Sect. 4‡

(266.6blocks) [18]‡

†: A forgery is based on modifying associated data. ‡: A forgery is based on modifying message or associated data.
§: Suggested by an anonymous reviewer.

Proposed for parallel architectures such as general-purpose
graphics processing units (GPGPUs), COPA [3] is a block-
cipher-based authenticated encryption mode; and its instan-
tiation with the AES [24] block cipher under 128 key bits is
called AES-COPA (v1) [1]. Marble (v1.0) [12] is an AES-
based COPA-like authenticated encryption algorithm. For
both COPA and Marble, the key length is equal to the
tag length. In March 2014, AES-COPA (v1) and Marble
(v1.0) were submitted to the Competition for Authenticated
Encryption: Security, Applicability, and Robustness (CAE-
SAR) [7]. Shortly later, a revision (v1.1) [13] to Marble was
made in the first round of CAESAR.
The COPA designers [3,4] proved that COPA has (roughly)

a birthday-bound security on integrity (which is mainly as-
sociated with existential forgery) under the assumption that
the underlying block cipher is a strong pseudorandom per-
mutation, put a birthday-bound constraint on the maximum
number of data blocks that AES-COPA (v1) can process
with a single key, and claimed that AES-COPA (v1) had a
full (i.e. 128-bit) security against tag guessing (which is as-
sociated with universal forgery) by writing ‘security against
tag guessing is 128 bits’, in addition to a birthday-bound (i.e.
64-bit) security on integrity. The Marble designer claimed
that Marble achieved a full (i.e. 128-bit) security on pri-
vacy and authenticity. However, in January 2015, Fuhr et
al. [10] presented universal forgery and key recovery attacks
on the revised version (i.e. v1.1) of Marble, and the Mar-
ble designer made another revision (v1.2) [14] to Marble.
In May 2015, Nandi [22] presented an existential forgery
attack on the case of COPA that processes fractional mes-
sages (that is, messages are not a multiple of the block size
long, and thus message padding is required), basing it on
his earlier cryptanalysis result [21] on the XLS [26] pseudo-
random permutation construction. In September 2015, the
AES-COPA designers made a tweak (v2) [2] to the case of
fractional messages for the second round of CAESAR, and
conjectured that ‘security against tag guessing is 128 bits.’

1.1 Our Contributions
In this paper, we cryptanalyse the basic cases of COPA

(as well as AES-COPA v1/2) and Marble (v1.0/1.1/1.2),
that process messages of a multiple of the block size long,
against almost universal forgery, and obtain the following
main cryptanalytic results on COPA, AES-COPA and Mar-
ble, with only chosen queries to their message encryption
and tag generation oracles:

• We present collision-based almost universal forgery at-
tacks on the basic case of COPA under variable associ-
ated data, each of which has a complexity that is very
near the birthday bound, by using an idea similar to
but much simpler than Fuhr et al.’s attack on Marble.
More importantly, when applied to the basic case of
AES-COPA (v1/2) in the nonce-respecting scenario,
each attack requires slightly less than 263 encryption
queries with the total (associated data, message) pairs
having a length slightly less than the maximum block
number 264 that AES-COPA can process with a single
key, and a memory of about 266 bytes, and has a time
complexity of about 262 memory accesses and a success
probability of about 6%. Though the success proba-
bility 6% is not very high, it is not negligible even in
reality, and the attack is of semi-practical significance.

• We present a (multi-)collision-based almost universal
forgery attack on the basic case of COPA under con-
stant or no associated data, by using a novel idea.
When applied to the basic case of AES-COPA (v1/2)
in the nonce-misuse scenario, it requires about 2124 en-
cryption queries and a memory of 2120.6 bytes and has
a computational complexity of about 2124 simple op-
erations and a success probability of about 32%. The
attack is mainly of academic interest, due to its large
data complexity that is far beyond the birthday bound.
Anyway, there is an efficient birthday-bound attack
suggested by an anonymous reviewer.
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• We present collision-based almost universal forgery at-
tacks on the basic case of Marble (v1.0/1.2) under vari-
able associated data (in our earlier work [17, 18]), fol-
lowing Fuhr et al.’s attack [10] on Marble v1.1. Each
attack has a data/time/memory complexity of about
265. However, since Fuhr et al. recently extended
their attack on Marble v1.1 to Marble v1.2 in the final
publication version [11] of the earlier work [10], who
acknowledged our attacks by writing ‘as shown inde-
pendently by ourselves and Lu’, we only focus on a
different forgery way for an almost universal forgery
on Marble v1.0/1.1 in this final publication version of
our work.

Table 1 summarises previously published and our main
(almost) universal forgery attacks on COPA and Marble.
Our attacks on COPA and AES-COPA do not violate their

birthday-bound security proof on integrity, but the attack
on AES-COPA violates its full (i.e. 128-bit) security claim
or conjecture on tag guessing. In summary, our attacks sug-
gest that the full security claim and conjecture on tag guess-
ing of AES-COPA and the full security claim on authentic-
ity of Marble are incorrectly far overestimated in the sense
of a general understanding of full security of these security
notions. More specifically, our attacks have the following
meanings:

1. Our attacks suggest that the AES-COPA designers
should also claim a birthday-bound security on tag
guessing, instead of a full security. Although the AES-
COPA designers proved a birthday-bound security on
integrity (i.e. existential forgery resistance) by refer-
ring to the integrity security proof of COPA, they did
not prove its security on tag guessing (i.e. univer-
sal forgery), but they claimed a full security for it.
Our attacks have a complexity similar to the com-
plexity of the proven birthday-bound security on in-
tegrity, showing that AES-COPA (v1/2) has roughly
(at most) a birthday-bound security against tag guess-
ing in the nonce-respecting scenario, rather than a full
security as the designers claimed or conjectured. (Note
that AES-COPA merged recently with another second
round candidate of CAESAR and the merger [5] went
into the third round of CAESAR in August 2016. The
merger uses a completely different nonce process and
does not make any security claim or conjection on tag
guessing or universal forgery resistance.)

2. The COPA designers proved a birthday-bound security
on integrity (i.e. existential forgery resistance), but
did not specify its security against universal forgery.
As mentioned earlier, existential and universal forgery
attacks represent different threat levels and usually
have different complexity levels. The security claim
and conjecture of AES-COPA (v1/2) indicated that
the designers might have thought that COPA had a
full security against universal forgery (even under the
birthday-bound data constraint), however, our attacks
show that COPA has roughly (at most) a birthday-
bound security against universal forgery, the same se-
curity level as for integrity. Thus, COPA users should
not take it for granted that the general belief of a
full security on universal forgery holds for COPA, and
should not misuse COPA for such a full security in
reality.

3. Our attacks show that Marble has roughly (at most) a
birthday-bound security on authenticity, rather than a
full security that the designer claimed. We would like
to mention that as a consequence, our attacks resulted
partially in the withdrawal of Marble from the CAE-
SAR competition in January 2015, together with Fuhr
et al.’s attack [10].

4. Our attacks are mainly based on the structures of
COPA and Marble, and thus designers should pay at-
tention to these attacks when designing authenticated
encryption algorithms with similar structures in the
future.

5. Lastly, if some security notion of a cryptographic al-
gorithm is proved under its most fundamental form,
it should be careful when claiming the security of an
advanced form of the security notion without making
a corresponding proof, for example, claiming universal
forgery security after proving integrity only under ex-
istential forgery security, claiming key/plaintext/state
recovery security after proving confidentiality/privacy
only under distinguishing attack security [27]. Strictly
speaking, a corresponding proof or justification is also
required for a security claim on such an advanced form.

1.2 Organization
The remainder of the paper is organised as follows. In

the next section, we give the notation used throughout this
paper and briefly describe the basic cases of the COPA and
Marble algorithms that process messages of a multiple of
the block size long. We present our almost universal forgery
attacks on COPA (as well as AES-COPA) and Marble in
Sections 3 and 4, respectively. Section 5 concludes this pa-
per.

2. PRELIMINARIES
In this section, we give the notation used throughout this

paper and briefly describe the concerned basic cases of COPA
and Marble that process messages of a multiple of the block
size long (that is, no message padding is required). We refer
the reader to [1–4,12–14] for detailed specifications of COPA
and Marble.

2.1 Notation
We use the following notation throughout this paper.

⊕ bitwise logical exclusive OR (XOR) operation
∗ polynomial multiplication modulo the polynomial

x128 ⊕ x7 ⊕ x2 ⊕ x⊕ 1 in GF(2128)
|| string concatenation
e the base of the natural logarithm (e = 2.71828 · · · )

2.2 The COPA Authenticated Encryption Al-
gorithm

The COPA [3] authenticated encryption mode was pub-
lished in 2013. Its internal state, key and tag have the same
length as the block size of the underlying block cipher. It has
mainly three phases: processing associated data, message
encryption, and tag generation. Fig. 1 illustrates the mes-
sage encryption and tag generation phase of COPA, where

• EK is an n-bit block cipher with a k-bit user key K;
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Figure 1: Message encryption and tag generation of
COPA

• L = EK(0) is an n-bit secret internal parameter, which
is called subkey sometimes [1, 2];

• S is an n-bit internal state;

• (AD1, AD2, · · · , ADabn) is an associated data of abn
n-bit blocks;

• (M1,M2, · · · ,Mmbn) is a message of mbn n-bit blocks;

• (C1, C2, · · · , Cmbn) is the ciphertext for (M1,M2, · · · ,
Mmbn); and

• T is the tag for (M1,M2, · · · ,Mmbn).

COPA first computes the secret parameter L, and then
generates a number of dummy masks of the form 2i∗3j∗7l∗L
for specific indices i, j and l. During the processing associ-
ated data phase, associated data should be padded if it is
not a multiple of n bits long, by appending first a one then
as many zeros as required to reach a multiple of n; then
the (padded) associated data is divided into a series of n-bit
blocks, each block is XORed with its corresponding mask,
and the XORed value goes though a block cipher encryption
operation EK ; and finally the outputs of the block cipher
encryption operations are XORed and the resulting value
goes though another block cipher encryption operation EK .
During the message encryption phase, the message is divided
into a series of n-bit blocks, each message block is XORed
with its corresponding mask, goes though a block cipher en-
cryption operation EK , is XORed with the most recent state
value (and the parameter L only for the first message block),
and finally the XORed value goes though another block ci-
pher encryption operation EK and is XORed with another
corresponding mask to produce a ciphertext block. Dur-
ing the tag generation phase, the XOR sum of the message
blocks is XORed with the corresponding mask, goes though
a block cipher encryption operation EK , is XORed with the
most recent state value, and finally the XORed value goes
though another block cipher encryption operation EK and
is XORed with another corresponding mask to produce the
tag for the message.
Decryption is the inverse of encryption, and tag verifica-

tion is identical to tag generation. COPA can be used with-
out associated data, by setting the output of the processing
associated data phase to zero.

In 2014, AES-COPA (v1) [1] — an instantiation of COPA
that uses AES with 128 key bits [24]— was submitted to the
CAESAR competition [7], where a nonce of 128 bits long is
used and is appended to associated data, and the resulting
value is treated as the associated data in the COPA mode.
The designers claimed a 128-bit security against tag guessing
for AES-COPA (v1) [1] without giving a proof or explana-
tion on the security. In 2015, the designers made a tweaked
version (v2) [2], and also changed the previous security claim
on tag guessing to a conjecture without explanation. Under
the basic cases that process messages of a multiple of the
block size long, AES-COPA v2 differs from AES-COPA v1
only in that the last mask parameter of the tag generation
phase becomes 2mbn ∗ 7 ∗ L.

2.3 The Marble Authenticated Encryption Al-
gorithm

The Marble [12] authenticated encryption algorithm is
similar to COPA. Marble has four phases: initialization, pro-
cessing associated data, message encryption, and tag gener-
ation. Compared with COPA, Marble has mainly two struc-
tural distinctions at a high level: First, it has three layers of
block cipher encryption operations to have an internal state
that is twice as long as its key or tag in order to achieve a
full security; second, the processing associated data phase
produces anther secret parameter τ , which is to be used in
the tag generation phase. Fig. 2 illustrates the message en-
cryption and tag generation phase of the newest version (i.e.
v1.2) of Marble, where

• each of the operations E1,E2 and E3 is a 4-round re-
duced version of the AES block cipher, with four fixed
round subkeys chosen from the eleven round subkeys
of the AES with 128 key bits;

• the TRANS operation is defined as TRANS(x, y) =
(x⊕ y, 3 ∗ x⊕ y), where x and y are 128-bit inputs;

• Const0, Const1 and Const2 are three 128-bit constants;

• S1 and S2 are two 128-bit internal states;

• (AD1, AD2, · · · , ADabn) is an associated data of abn
128-bit blocks;

• L and τ are 128-bit secret parameters;

• (M1,M2, · · · ,Mmbn) is a message ofmbn 128-bit blocks;

• (C1, C2, · · · , Cmbn) is the ciphertext for (M1,M2, · · · ,
Mmbn); and

• T is the tag for (M1,M2, · · · ,Mmbn).

No nonce is used in Marble. (Note that in the last two
versions (v1.1/1.2) [13, 14] the designer mentioned that one
can opt to replace Const0 with a nonce, but this option
is not recommended by the designer). Decryption is the
inverse of encryption, and tag verification is identical to tag
generation.

Under the basic cases that process messages of a multi-
ple of the block size long, the distinctions among the three
versions of Marble are: (1) associated data with the last
block being full should not be padded in Marble v1.0, but
should also be padded in Marble v1.1/1.2; (2) the mask pa-
rameter before E1 for the last block of associated data is
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Figure 2: Message encryption and tag generation of
Marble

2abn−1 ∗ 33 ∗ L in Marble v1.0/1.2, and is 2abn−1 ∗ 32 ∗ L
in Marble v1.1; and (3) when there is no associated data,
Marble v1.0/1.1 simply sets τ = 0 (but an empty message
is not allowed), while Marble v1.2 processes a padded block
of associated data.

3. (ALMOST) UNIVERSAL FORGERY AT-
TACKS ON THE BASIC CASES OF COPA
AND AES-COPA

In this section, we first present almost universal forgery
attacks on the basic case of COPA (that processes messages
of a multiple of the block size long) under variable associated
data, then present an almost universal forgery attack on the
basic case of COPA under constant (or no) associated data,
and describe their applications to the basic case of AES-
COPA (v1/2); at last, we brief a more efficient attack on
COPA and AES-COPA under constant (or no) associated
data, suggested by an anonymous reviewer. Note that the
distinction between the two versions of AES-COPA does not
make much sense in these attacks.

3.1 (Almost) Universal Forgery Attacks on the
Basic Case of COPA under Variable Asso-
ciated Data

We first describe our attack idea at a high level, then show
how to recover the secret parameter L in a more advanta-
geous way than exhaustive key search, next describe three
ways to make an almost universal forgery once L is recov-
ered, and more importantly we apply them to AES-COPA
(v1/2) in the nonce-respecting scenario.

3.1.1 Attack Idea
Each of the attacks consist of two phases: recovering the

secret parameter L, followed by a forgery if L is recovered,
while the attacks share the same phase of recovering L but
use different ways for a forgery.

To recover L we use an idea similar to but much simpler
than Fuhr et al.’s universal forgery attack on Marble v1.1,
due to the structure of COPA. We fix a one-block message
and choose a set of associated data of one block long and the
other set of associated data of less than one block long which
meet a condition after padding. The two sets of associated
data mean that two different mask parameters are used for
the two sets of associated data by the padding rule. At last,
we recover L by looking for a collision on the ciphertext
blocks.

We then use three ways to make a forgery: modifying only
message, or modifying only associated data, or modifying
both message and associated data.

3.1.2 Recovering the Secret Parameter L

The procedure is as follows, which is illustrated in Fig. 3.

1. Choose 2σ (associated data of one n-bit block long,

fixed message of one n-bit block long) pairs (AD
(i)
1 ,M1)

= (i,M1), where 0 < σ ≤ n
2
and i = 0, 1, · · · , 2σ − 1.

Query the COPA encryption and tag generation or-
acle, and obtain all the ciphertexts and tags for the

2σ (associated data, message) pairs; we denote by C
(i)
1

and T (i) the ciphertext and tag under associated data

AD
(i)
1 , respectively. Store C

(i)
1 into a table indexed by

C
(i)
1 .

2. Choose (2φ − 1) (associated data of less than n bits
long, the same fixed message of one n-bit block long)
pairs such that the (padded associated data, message)

pairs (ÂD
(j)

1 ,M1) = (j × 2
n
2 ,M1), where 0 < φ ≤ n

2
,

j = 1, 2, · · · , 2φ − 1. (The padded associated data
are possible by the padding rule for associated data
of COPA, namely, first a one then as many zeros as
required to reach a multiple of the block size n. Note
that 0 is an impossible value for the block of padded
associated data.) Query the COPA encryption and
tag generation oracle, and obtain all the ciphertexts
and tags for the (2φ − 1) (associated data, message)

pairs; we denote by Ĉ
(j)
1 and T̂ (j) the ciphertext and

tag under associated data ÂD
(j)

1 , respectively.

3. Check whether Ĉ
(j)
1 matches one of the set {C(i)

1 |i =
0, 1, · · · , 2σ−1} for j = 1, 2, · · · , 2φ−1. We denote the

match(es) by (Ĉ
(ω)
1 , C

(µ)
1 ) if any, that is Ĉ

(ω)
1 = C

(µ)
1 .

4. For the match (Ĉ
(ω)
1 , C

(µ)
1 ), we have AD

(µ)
1 ⊕ 34 ∗L =

ÂD
(ω)

1 ⊕ 35 ∗ L by the structure of COPA. Thus, we
can recover L from this equation.

The reason that we use padded associated data in Step 2
is that an input mask (i.e. 35 ∗L) different from the one (i.e.
34 ∗ L) used in Step 1 will be introduced for the first block
of (padded) associated data. This state recovery attack re-
quires approximately 2σ +2φ encryption queries, a memory

of approximately n·2σ bits (as we do not need to store Ĉ
(j)
1 ),

and has a time complexity of about 2φ memory accesses
(from Step 3) and a success probability of approximately

1−
(
2σ·(2φ−1)

0

)
· (2−n)0 · (1− 2−n)2

σ·(2φ−1) ≈ 1− e−2σ+φ−n

.
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Ĉ
(j)

1

2∗L

EK

⊕

M1

3
2 ∗L

⊕

EK

⊕

T̂
(j)

7∗L

L

L

Figure 3: State recovery attack on COPA under
variable associated data

3.1.3 Making an (Almost) Universal Forgery
If the secret parameter L is recovered by the above state

recovery attack, we have three ways to make a universal
forgery attack on COPA with a single query at a 100%
success probability. Below we assume a target (associated
data of abn n-bit blocks long, message of mbn n-bit blocks
long) pair (AD,M) = (AD1, AD2, · · · , ADabn,M1,M2, · · · ,
Mmbn), where abn > 0 and mbn ≥ 0.
One way is similar to Fuhr et al.’s universal forgery at-

tack [10] on Marble v1.1, which is based on modifying only
associated data and can make a forgery on the same message
under different associated data. Its main idea is to insert two
additional blocks of associate data and cancel their outputs
immediately after the first layer of block cipher encryptions,
due to the XOR sum feature of the processing associated
data phase. It works as follows.

1. Query the COPA encryption and tag generation ora-
cle with the (associated data of (abn+ 2) blocks long,

the same message) pair (ÃD,M) = (AD1, AD2, · · · ,
ADabn−1, ÃDabn, ÃDabn ⊕ 2abn ∗ 33 ∗L⊕ 2abn−1 ∗ 33 ∗
L,ADabn⊕2abn−1∗34∗L⊕2abn+1∗34∗L,M1,M2, · · · ,
Mmbn), where ÃDabn is an arbitrary block. Obtain

its ciphertext and tag, denoted respectively by C̃ =

(C̃1, C̃2, · · · , C̃mbn) and T̃ .

2. The ciphertext for (AD,M) is C = (C̃1, C̃2, · · · , C̃mbn),

and the tag for (AD,M) is T̃ .

The second way is based on modifying only message, and
can make a forgery on the same associated data under differ-
ent messages. Its main idea is to append an additional block
of message with a particular value and deduce the correct
tag from the corresponding ciphertext block, due to the fact
that the tag generation phase has the same internal struc-
ture as the two block cipher encryptions after a message
block. It works as follows.

1. Query the COPA encryption and tag generation oracle
with the (the same associated data, message of (mbn+

1) n-bit blocks long) pair (AD, M̃) = (AD1, AD2, · · · ,

ADabn,M1,M2, · · · ,Mmbn, 2mbn ∗ 3 ∗ L ⊕ 2mbn−1 ∗
32 ∗ L ⊕

⊕mbn
i=1 Mi), and obtain its ciphertext C̃ =

(C̃1, C̃2, · · · , C̃mbn, C̃mbn+1).

2. The ciphertext for (AD,M) is C = (C̃1, C̃2, · · · , C̃mbn),

and the tag for (AD,M) is C̃mbn+1 ⊕ 2mbn+1 ∗ L ⊕
2mbn−1 ∗ 7 ∗ L.

The third way is based on modifying both message and
associated data, which is a combination of the first two ways,
and can make a forgery under different associated data and
different messages, as follows.

1. Query the COPA encryption and tag generation oracle
with the (associated data of (abn+2) blocks long, mes-

sage of (mbn + 1) n-bit blocks long) pair (ÃD, M̃) =

(AD1, AD2, · · · , ADabn−1, ÃDabn, ÃDabn ⊕ 2abn ∗ 33 ∗
L⊕ 2abn−1 ∗ 33 ∗L,ADabn ⊕ 2abn−1 ∗ 34 ∗L⊕ 2abn+1 ∗
34 ∗ L,M1,M2, · · · ,Mmbn, 2mbn ∗ 3 ∗ L ⊕ 2mbn−1 ∗
32 ∗ L ⊕

⊕mbn
i=1 Mi), and obtain its ciphertext C̃ =

(C̃1, C̃2, · · · , C̃mbn, C̃mbn+1).

2. The ciphertext for (AD,M) is C = (C̃1, C̃2, · · · , C̃mbn),

and the tag for (AD,M) is C̃mbn+1 ⊕ 2mbn+1 ∗ L ⊕
2mbn−1 ∗ 7 ∗ L.

The correctness of the three ways can be easily verified.
Particularly, when n = 128 and σ = φ = 64, each universal
forgery attack that includes the phase of recovering L re-
quires about 265 encryption queries, a memory of about 268

bytes, and has a time complexity of 264 memory accesses
and a success probability of about 63%. (Here, typically
as suggested in [9, 20], encrypting chosen messages is as-
sociated with the data complexity of an attack and is not
counted as part of the time complexity of the attack. The
same statement applies to subsequent attacks, although we
do not make any further explicit statements. However, if
one would treat the time complexity for encrypting chosen
messages as part of the time complexity of the attack, the
resulting time complexity would be about 265 × 5 ≈ 267.4

block cipher encryptions.)

3.1.4 An Application to AES-COPA in the Nonce-
Respecting Scenario

Different from COPA, AES-COPA (v1/2) has an addi-
tional (public) input parameter called nonce, which has a
constant length of 128 bits. It is appended to associated
data (if any), and then the resulting value is treated as as-
sociated data in COPA. As a consequence, when applying
the state recovery attack of Section 3.1.2 to AES-COPA, we
should obtain associated data satisfying Steps 1 and 2; this
can be easily done, for example:

• In Step 1, we choose (associated data of one 128-bit
block long, nonce of one 128-bit block long) pairs (AD,

N (i)), where N (i) = AD
(i)
1 , (and AD

(i)
1 is from Section

3.1.2);

• In Step 2, we choose the (associated data of less than
128 bits long, nonce of one 128-bit block long) pairs
such that the padded (associated data, nonce) pairs

are (AD,X(j)), where X(j) = ÂD
(j)

1 , (and ÂD
(j)

1 is
from Section 3.1.2);
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• For instance, a value of AD can be (1, · · · , 1, 0) in bi-
nary form, which can guarantee that the nonces in
Step 2 before padding are different (i.e., the rightmost
128 bits after removing the padded one and zero (if

any) bits from the right-hand side of (AD,X(j)) =

((1, · · · , 1, 0)||(j × 2
n
2 )), and the leftmost remaining

bits are chosen associated data).

Then, the first blocks for all the (2σ + 2φ − 1) (padded)
(associated data, nonce) pairs are identical, and the first
block cipher encryption operations produce the same out-
put, and we only need to modify the above state recovery
attack slightly. As a result, the nonces used are different
one another, and the state recovery attack works in the
nonce-respecting scenario. Of course, it can also work in
the nonce-misuse scenario.
For AES-COPA (v1/2), when we set σ = φ to be slightly

smaller than 62 extremely, the attack requires slightly less
than 263 queries with the total (associated data, message)
pairs having a length slightly less than 264 blocks (which is
the maximum number of data blocks that AES-COPA can
process with a single key), and a memory of about 262×16 =
266 bytes, and has a time complexity of about 262 memory
accesses and a success probability of about 6%. (For a longer
(associated data, nonce, message) triple, we need to reduce
the values of σ and φ accordingly.)
Because of the constraint on the maximum number of data

blocks that can be processed with a single key, the success
probability 6% is not very high, but it is not negligible even
in reality and it still represents a semi-practical security con-
cern, considering particularly that COPA was proposed for
GPGPU-like parallel architectures.

3.2 (Almost) Universal Forgery Attack on the
Basic Case of COPA under Constant As-
sociated Data

There are real situations that only allow for constant as-
sociated data, for example, sending some files with the same
public header, where the header is used as associated data.
Thus, the above attacks are not applicable in such situations.
In this subsection, we show how to recover the secret pa-

rameter L in the basic case of COPA under constant as-
sociated data in a more advantageous way than exhaustive
key search, then describe a way to make an almost univer-
sal forgery after L is recovered, and finally brief its appli-
cation to AES-COPA (v1/2) in the nonce-misuse scenario.
We start with our attack idea.

3.2.1 Attack Idea
The attack also consists of two phases: recovering the

secret parameter L, followed by a forgery if L is recovered.
Note that associated data is fixed here.
Different from the idea used in Section 3.1, a novel idea is

used here to recover L. First, we choose a number of two-
block messages, and then from these messages we select a
certain small number of messages whose second ciphertext
blocks are identical, like finding a multi-collision [15, 23] in
hash function cryptanalysis. Next, we choose a number of
three-block messages with the first two blocks fixed to one of
the messages with the second ciphertext blocks being iden-
tical, which means an identical internal state S immediately
after the second block. At last, we recover L by looking for
a general collision between the process of the third blocks

of the three-block messages and the tag generation process
of the two-block messages with the second ciphertext blocks
being identical; this general collision is different in nature
from the general one used in Section 3.1.

To make a forgery on a message, we query with the mes-
sage obtained by modifying the target message so that the
pair of messages make a general collision similar to the one in
the phase of recovering L. Note that here we cannot use the
forgery ways based on modifying associated data and mod-
ifying associated data and message, since associated data is
constant.

3.2.2 Recovering the Secret Parameter L

The procedure for recovering the secret parameter L is as
follows, which is illustrated in Fig. 4. Since the same associ-
ated data is used, we will omit it in the attack description.

1. Choose uniformly at random 2θ messagesM (i) = (M
(i)
1 ,

M
(i)
2 ) of two n-bit blocks long (a specific value of θ

will be given below, and i = 1, 2, · · · , 2θ). Query the
COPA encryption and tag generation oracle, and ob-
tain all the ciphertexts and tags for the 2θ messages;

we denote by C(i) = (C
(i)
1 , C

(i)
2 ) and T (i) the cipher-

text and tag for message M (i), respectively.

2. Select a tuple of δ messages (M (i1),M (i2), · · · ,M (iδ))
such that

C
(i1)
2 = C

(i2)
2 = · · · = C

(iδ)
2 . (1)

(A specific value of δ will be given below.) This can

be done efficiently by storing (M (i), C(i), T (i)) into a

table indexed by C
(i)
2 . Go to Step 1 if there does not

exist such a δ-tuple.

3. Choose two n-bit constants α and β such that

α∗(2∗32∗L⊕22∗3∗L)=β∗(23∗L⊕2∗7∗L).(2)

Observe that the secret parameter L is not required
when solving Eq. (2) for α and β, because it cancels
out.

4. Choose uniformly at random 2ϕ messages M̂ (j) = (M̂
(j)
1 ,

M̂
(j)
2 , M̂

(j)
3 ) of three n-bit blocks long (a specific value

of ϕ will be given below, and j = 1, 2, · · · , 2ϕ), such
that M̂

(j)
l = M

(i1)
l for 1 ≤ l ≤ 2; that is, M̂ (j) =

(M
(i1)
1 ,M

(i1)
2 , M̂

(j)
3 ). Query the COPA encryption and

tag generation oracle, and obtain all the ciphertexts

and tags for the 2ϕ messages; we denote by Ĉ(j) =

(Ĉ
(j)
1 , Ĉ

(j)
2 , Ĉ

(j)
3 ) and T̂ (j) the ciphertext and tag for

message M̂ (j), respectively.1 Since the same user key

and constant associated data are used, clearly Ĉ
(j)
l =

C
(i1)
l for 1 ≤ l ≤ 2; i.e., Ĉ(j) = (C

(i1)
1 , C

(i1)
2 , Ĉ

(j)
3 ).

5. Select the message-ciphertext pair (M̂ (j), Ĉ(j)) such
that the following two equations hold for some t, here
1 ≤ t ≤ δ:

M̂
(j)
3 ⊕ 22 ∗ 3 ∗ L =

2⊕
l=1

M
(it)
l ⊕ 2 ∗ 32 ∗ L; (3)

Ĉ
(j)
3 ⊕ 23 ∗ L = T (it) ⊕ 2 ∗ 7 ∗ L. (4)

1The tags for the 2ϕ chosen messages are not required in
this attack.
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Figure 4: State recovery attack on COPA under con-
stant associated data

This can be partially done efficiently by checking whether

α∗ M̂ (j)
3 ⊕β∗ Ĉ(j)

3 =α∗
2⊕

l=1

M
(it)
l ⊕β∗ T (it); (5)

we denote the qualified message-ciphertext pair(s) by

(M̂ (ω), Ĉ(ω)) (if any), where 1 ≤ ω ≤ 2ϕ.

6. Recover L from Eq. (3) with respect to M̂ (ω), that is

M̂
(ω)
3 ⊕22 ∗3∗L =

⊕2
l=1 M

(it)
l ⊕2∗32 ∗L, and output

the recovered L.

Step 1 requires a memory of about 5n·2θ bits, which can be

reduced to 3n·2θ bits by storing only (
⊕2

l=1 M
(i)
l , C

(i)
2 , T (i)).

By a mathematical analysis (namely, Eq. 7.5) on the co-
incidence theory from [8], the probability p that given 2θ

randomly chosen messages there is at least one δ-tuple sat-
isfying Eq. (1) is approximately given by the equation

2θ × e
− 2θ

δ·2n × (1− 2θ

(δ + 1) · 2n )
− 1

δ

= [2(δ−1)·n × δ!× log
1

1−p
e ]

1
δ .

Thus, we have p = 1 − e

−2θ·δ×e−2θ−n

(1− 2θ−n
δ+1

)×2(δ−1)·n×δ! , which is ap-

proximately equal to 1 − e−(
2θ

δ )·2
−n(δ−1)

for θ ≪ n and a
small δ. Eq. (1) guarantees that messages M (i1),M (i2), · · · ,
M (iδ) have the same internal state S immediately before the
tag generation phase.
Observe that for the correct value of L, Eq. (4) holds once

Eq. (3) holds, and vice versa. If both Eqs. (3) and (4) hold,
then Eq. (5) always holds, because from Eqs. (3) and (4)
we have

M̂
(j)
3 ⊕

2⊕
l=1

M
(it)
l = 2 ∗ 32 ∗ L⊕ 22 ∗ 3 ∗ L;

Ĉ
(j)
3 ⊕ T (it) = 23 ∗ L⊕ 2 ∗ 7 ∗ L.

Then, we can obtain Eq. (5) after applying α and β to the
above two equations and XORing the resulting two equa-
tions.

Note that once we obtain the ciphertext-tag pair for a
message in Step 4, we can discard it if it does not meet Eq.
(5), and thus we only need to store the qualified message-
ciphertext-tag tuples in Step 4. Particularly, if we choose
α = 1 or β = 1, then Eq. (5) can be checked with one ∗
operation and one ⊕ operation (which is generally negligible
compared with one ∗ operation) for a message-ciphertext
pair, since the right-hand side of Eq. (5) is one-off.

For a random message-ciphertext pair (M̂ (j), Ĉ(j)), it is
expected that Eq. (5) holds for a given it with a probability
of 2−n × 1 + (1 − 2−n) × 2−n ≈ 21−n, assuming that Eq.
(5) holds uniformly at random when at least one of Eqs. (3)
and (4) does not hold. On the other hand, for a given it the
(conditional) probability that both Eqs. (3) and (4) hold
when Eq. (5) holds is

Pr.(Both Eqs. (3) and (4) hold when Eq. (5) holds)

=
Pr.(Eq. (5) holds when Eqs. (3) and (4) hold)

Pr.(Eq. (5) holds)

×Pr.(Eqs. (3) and (4) hold)

=
1

21−n
× 2−n

=
1

2
.

Since there are 2ϕ message-ciphertext pairs (M̂ (j), Ĉ(j)),
the expected number of qualified message-ciphertext pairs
satisfying Eq. (5) for an it is approximately 2ϕ×21−n× δ =
δ·2ϕ−n+1. The probability that there is at least one message-
ciphertext pair satisfying Eq. (5) for an it is approximately

1 − (1 − δ · 21−n)2
ϕ

≈ 1 − e−δ·2ϕ−n+1

, and the probability

that the recovered L is correct is 1
2
· (1− e−δ·2ϕ−n+1

).

Therefore, the state recovery attack requires 2θ + 2ϕ en-
cryption queries (the tags for the 2ϕ chosen messages are
not required) and a memory of approximately 3n · 2θ bits,
and has a computational complexity of about 2ϕ simple
∗ operations, with a success probability of approximately

1
2
· (1 − e−(

2θ

δ )·2
−n(δ−1)

) · (1 − e−δ·2ϕ−n+1

). (If one would
treat the time complexity for encrypting chosen messages as
part of the time complexity of the attack, the resulting time
complexity would be about λ · (2θ +2ϕ)+ 2ϕ+1 block cipher
encryptions, (2ϕ simple ∗ operations are negligible compared
with the block cipher encryptions), where λ is the number
of block cipher encryptions for one of the 2θ messages.)

3.2.3 Making an (Almost) Universal Forgery
Once the correct n-bit secret parameter L is recovered

by the above state recovery attack, we can make a univer-
sal forgery attack on the COPA with a single query at a
100% success probability, by modifying message as in Sec-
tion 3.1.3. Its illustration is similar to Fig. 4.

In summary, the universal forgery attack that includes
the phase of recovering L requires approximately 2θ + 2ϕ

encryption queries (the tags for 2ϕ chosen messages are not
required actually) and a memory of approximately 3n · 2θ
bits, and has a computational complexity of about 2ϕ simple
∗ operations, with a success probability of approximately

1
2
· (1 − e−(

2θ

δ )·2
−n(δ−1)

) · (1 − e−δ·2ϕ−n+1

). (Note that if
one would treat the time complexity for encrypting chosen
messages as part of the time complexity of the attack, the
resulting time complexity would be about λ · (2θ + 2ϕ) +
2ϕ+1 block cipher encryptions, where λ is the number of
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block cipher encryptions for one of the 2θ messages.) The
success probability is a bit complex, anyway, we can make
an attack faster than exhaustive key search if we choose
the parameters θ, δ and ϕ appropriately, as applied to AES-
COPA next, which holds for COPA.

3.2.4 An Application to AES-COPA in the Nonce-
Misuse Scenario

We have n(= k) = 128 for AES-COPA (v1/2). By setting
θ = 115, δ = 8 and ϕ = 124, the above attack requires about
2124 encryption queries in the nonce-misuse scenario and a
memory of about 2120.6 bytes, and has a time complexity of
about 2124 simple ∗ operations, with a success probability
of about 32%. This attack is mainly of academic interest,
since its data complexity is far beyond the birthday bound
constraint.

3.3 More Efficient (Almost) Universal Forgery
Attack on COPA and AES-COPA under
Constant Associated Data

An anonymous reviewer mentioned a more efficient almost
universal forgery attack on COPA and AES-COPA under
constant associated data, which works as follows: (1) Choose

uniformly at random 264 messages M (i) = (M
(i)
1 , M

(i)
2 =

M
(i)
1 ) of two 128-bit blocks long (i = 1, 2, · · · , 264); (2) Filter

out message pairs such that C
(i1)
2 = C

(i2)
2 , where 1 ≤ i1 ̸=

i2 ≤ 264; and (3) For a qualified message pair, M
(i1)
1 ⊕3∗L =

M
(i2)
2 ⊕ 2 ∗ 3 ∗L holds with probability 50% similarly. Next,

L can be recovered, and a forgery can be made.

3.4 Notes
The attack of Section 3.2 aims for the basic case of COPA

that processes messages of a multiple of the block size long
under constant associated data. If the case of COPA that
processes messages with the last block being not full is con-
sidered, or if associated data is not constant, there is a more
efficient attack with an idea similar to that described in Sec-
tion 3.1.
The attacks of Section 3.1.3 does not work for an associ-

ated data with the number of blocks being equal to or one
smaller than the preset maximum number, or for a message
with the preset maximum number of blocks; and the attack
of Section 3.2.3 does not work for a message with the preset
maximum number of blocks. Thus, the attacks are almost
universal forgery attacks [9].

4. (ALMOST) UNIVERSAL FORGERY AT-
TACKS ON THE BASIC CASE OF MAR-
BLE UNDER VARIABLE ASSOCIATED
DATA

In January 2015, Fuhr et al. [10] released an (almost)
universal forgery attack on Marble v1.1, then the Marble
designer made another revision, namely Marble v1.2, and
shortly later we showed that Marble v1.2 still suffered from
(almost) universal forgery attacks based on Fuhr et al.’s (al-
most) universal forgery attack on Marble v1.1. Finally, the
Marble designer withdrew Marble from the CAESAR com-
petition in January 2015, due to Fuhr et al.’s and our at-
tacks.
Fuhr et al. extended their attack on Marble v1.1 described

in [10] to Marble v1.2 in the final publication version [11] of

their work, and they acknowledged our attacks by writing
‘as shown independently by ourselves and Lu’. Our attack
and Fuhr et al.’s attack on Marble v1.2 consist of two phases:
recovering the secret parameter L, followed by a forgery if
L is recovered. Since our attack and Fuhr et al.’s attack on
Marble v1.2 are similar and Fuhr et al.’s attack has been
published, here we do not focus on our attack on Marble
v1.2, but nevertheless we give how to recover L of Marble
v1.2, for the reader to have an understanding on it, and then
focus on a different forgery way on Marble v1.0/1.1.

4.1 A State Recovery Attack for the Secret Pa-
rameter L in Marble v1.2

The idea of the attack is as follows, which is illustrated in
Fig. 5.

1. Choose (264 − 1) ((padded) associated data of two

blocks long, message of one block long) pairs (AD
(i)
1 ,

AD
(i)
2 ,M

(i)
1 ) = ((32 ⊕ 33) ∗ i, (2 ∗ 33 ⊕ 2) ∗ i, (2 ⊕

22) ∗ i), and obtain their ciphertexts (and tags), where

i = 1, 2, · · · , 264 − 1; we denote by C
(i)
1 the ciphertext

for message M
(i)
1 . Store C

(i)
1 into a table indexed by

C
(i)
1 ⊕ (3⊕ 2 ∗ 3) ∗ i (i.e. C(i)

1 ⊕ 5 ∗ i).

2. Choose (264−1) ((padded) associated data of one block

long, message of two blocks long) pairs (ÂD
(j)

1 , M̂
(j)
1 ,

M̂
(j)
2 ) = ((32⊕33)∗(j×264), (2∗33⊕2)∗(j×264), (2⊕

22)∗(j×264)), and obtain their ciphertexts (and tags),

where j = 1, 2, · · · , 264 − 1; we denote by (Ĉ
(j)
1 , Ĉ

(j)
2 )

the ciphertext for message (M̂
(j)
1 , M̂

(j)
2 ).

3. Check whether Ĉ
(j)
2 ⊕ (3⊕ 2 ∗ 3) ∗ (j× 264) (i.e. Ĉ

(j)
2 ⊕

5 ∗ (j × 264)) matches one of the set {C(i)
1 ⊕ 5 ∗ i|i =

1, 2, · · · , 264 − 1} for j = 1, 2, · · · , 264 − 1. We denote

the match(es) by (Ĉ
(ω)
2 ⊕ 5 ∗ (ω × 264), C

(µ)
1 ⊕ 5 ∗ µ) if

any, that is, Ĉ
(ω)
2 ⊕ 5 ∗ (ω × 264) = C

(µ)
1 ⊕ 5 ∗ µ.

4. Recover L from Ĉ
(ω)
2 ⊕C

(µ)
1 = 5∗(ω×264)⊕5∗µ = 5∗L.

For (AD
(i)
1 , AD

(i)
2 ,M

(i)
1 ), the immediate inputs to the three

E1 operations are (32⊕33)∗ i⊕32 ∗L, (2∗33⊕2)∗ i⊕2∗33 ∗
L, (2⊕ 22) ∗ i⊕ 2 ∗ L, respectively; for (ÂD

(j)

1 , M̂
(j)
1 , M̂

(j)
2 ),

the immediate inputs to the three E1 operations are (32 ⊕
33)∗ (j×264)⊕33 ∗L, (2∗33⊕2)∗ (j×264)⊕2∗L, (2⊕22)∗
(j × 264) ⊕ 22 ∗ L, respectively. Thus, the input difference

to the three E1 operations under (AD
(i)
1 , AD

(i)
2 ,M

(i)
1 ) and

(ÂD
(j)

1 , M̂
(j)
1 , M̂

(j)
2 ) are (32 ⊕ 33) ∗ [i ⊕ (j × 264) ⊕ L], (2 ∗

33 ⊕ 2) ∗ [i ⊕ (j × 264) ⊕ L], (2 ⊕ 22) ∗ [i ⊕ (j × 264) ⊕ L],
respectively. Now, if i⊕ (j×264) = L, then the input differ-
ence to the corresponding three E1 operations will be zero,

and Ĉ
(j)
2 ⊕ 2 ∗ 3 ∗ L = C

(i)
1 ⊕ 3 ∗ L, which is equivalent to

Ĉ
(j)
2 ⊕ (3⊕ 2 ∗ 3) ∗ (j × 264) = C

(i)
1 ⊕ (3⊕ 2 ∗ 3) ∗ i.

The state recovery attack requires about 265 encryption
queries and a memory of about 264 × 16 = 268 bytes, and
has a time complexity of about 265 memory accesses and a

success probability of about 1
2
× [1 −

(
2128

0

)
· (2−128)0 · (1−

2−128)2
128

] ≈ 32%, where 1
2
has a similar meaning to that

explained in Section 3.2.2.
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Figure 5: State recovery attack on Marble v1.2 un-
der variable associated data

4.2 Another (Almost) Universal Forgery At-
tack on Marble

Below we only focus on a different way to make an (al-
most) universal forgery on Marble v1.0/1.1 after L is re-
covered by a state recovery attack similar to that described
above or in [10,11]. Fuhr et al. made an (almost) universal
forgery by modifying associated data [10, 11], however, we
find that there is another way to make an (almost) univer-
sal forgery on Marble v1.0/1.1, which is based on modify-
ing message. Different from COPA, Marble uses the ad-
ditional secret parameter τ in the tag generation phase.
As a consequence, this different forgery way targets Marble
v1.0/1.1 without associated data, because τ = 0 when there
is no associated data in Marble v1.0/1.1. For a message
M = (M1,M2, · · · ,Mmbn) of mbn 128-bit message blocks
long (mbn ≥ 1), below is the different forgery way on Mar-
ble v1.0/1.1 without associated data.

1. Query the Marble encryption and tag generation oracle

with the (mbn+ 1)-block message M̂ = (M1,M2, · · · ,
Mmbn, 2

mbn+1∗L⊕2mbn∗7∗L⊕
⊕mbn

i=1 Mi), and obtain

its ciphertext Ĉ = (Ĉ1, Ĉ2, · · · , Ĉmbn, Ĉmbn+1).

2. The ciphertext for M is C = (Ĉ1, Ĉ2, · · · , Ĉmbn), and

the tag for M is Ĉmbn+1⊕2mbn∗3∗L⊕2mbn−1∗3∗7∗L.

This universal forgery attack including the phase of recov-
ering L requires about 265 encryption queries and a memory
of about 268 bytes, and has a time complexity of about 265

memory accesses and a success probability of about 32%.
(Note that if one would treat the time complexity of en-
crypting chosen messages as part of the time complexity of
the attack, the resulting time complexity would be about
265 × 5 ≈ 267.4 AES encryptions.)
Note that the attack does not work for a message with the

preset maximum number of blocks, and is an almost univer-

sal attack. This forgery way does not apply to Marble v1.2,
since Marble v1.2 will process a padded block of associated
data even there is no associated data, which produces an
unknown τ . Anyway, the forgery way based on modifying
associated data works for Marble v1.2.

5. CONCLUSIONS
In this paper, we have presented almost universal forgery

attacks on the basic cases of COPA, AES-COPA and Marble
that process messages of a multiple of the block size long,
and have shown that the basic cases of COPA, AES-COPA
and Marble only have roughly at most a birthday-bound se-
curity against universal forgery, particularly for AES-COPA
in the nonce-respecting scenario, which may be an unde-
sirable property for AES-COPA, considering that it is pro-
posed for GPGPU-like parallel architectures. Therefore, the
full security claim and conjecture on tag guessing of AES-
COPA and the full security claim on authenticity of Marble
are incorrectly far overestimated in the sense of a general
understanding of full security of these security notions.
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