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ABSTRACT
SICE is a novel framework to provide hardware-level isola-
tion and protection for sensitive workloads running on x86
platforms in compute clouds. Unlike existing isolation tech-
niques, SICE does not rely on any software component in
the host environment (i.e., an OS or a hypervisor). Instead,
the security of the isolated environments is guaranteed by
a trusted computing base that only includes the hardware,
the BIOS, and the System Management Mode (SMM). SICE
provides fast context switching to and from an isolated envi-
ronment, allowing isolated workloads to time-share the phys-
ical platform with untrusted workloads. Moreover, SICE
supports a large range (up to 4GB) of isolated memory. Fi-
nally, the most unique feature of SICE is the use of multi-
core processors to allow the isolated environments to run
concurrently and yet securely beside the untrusted host.

We have implemented a SICE prototype using an AMD
x86 hardware platform. Our experiments show that SICE
performs fast context switching (67 µs) to and from the iso-
lated environment and that it imposes a reasonable overhead
(3% on all but one benchmark) on the operation of an iso-
lated Linux virtual machine. Our prototype demonstrates
that, subject to a careful security review of the BIOS soft-
ware and the SMM hardware implementation, current hard-
ware architecture already provides abstractions that can sup-
port building strong isolation mechanisms using a very small
SMM software foundation of about 300 lines of code.
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1. INTRODUCTION
In the last few years, a significant portion of the IT in-

dustry has moved toward cloud computing. However, cloud
computing services, particularly those relying on hardware
sharing, have been the source of major security concerns.

Firstly, the owner of a workload that runs inside the cloud
needs to trust the cloud service provider. This trust is im-
posed by the commodity x86 hardware architecture that
gives full memory access to the highest privileged software,
which is typically an OS or a hypervisor. Secondly, recent
attacks [16, 32] and vulnerability reports [23, 24] show that
hypervisors are subject to security exploits and can be com-
promised. These attacks form a major threat to users who
intend to run their workloads beside other potentially mali-
cious ones inside the cloud.

Thus, a need emerges for a solution that provides strong
isolation to workloads running in the cloud, yet still allowing
hardware sharing to reduce the operating costs. To provide
strong isolation, we need to minimize the code base that
is granted full access to the memory of running workloads.
Thus, we can minimize the exposure to security vulnerabili-
ties that can evade the isolation provided to these workloads.
Moreover, this code base should be provided with enhanced
security protection and the ability to attest to its integrity.

To achieve this objective, we introduce a prototype sys-
tem that provides a strongly isolated execution environment,
which relies on a trusted computing base (TCB) composed
of the hardware, the BIOS, and the System Management
Mode (SMM).

Our prototype represents a test system that aims to ex-
plore the capability of current hardware platforms in pro-
viding more secure isolated environments. We demonstrate
that current hardware architecture already provides abstrac-
tions that can support strong isolation. Moreover, we show
that building strong isolation mechanisms on top of those
abstractions requires a very small software foundation of
about 300 lines of code (LOC), which tremendously reduces
the TCB size compared with previous techniques.

Since the SMM was neither designed nor implemented
with high-assurance security mechanisms in mind, detailed
security reviews by both CPU and platform vendors would
be necessary to verify that current SMM implementations
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are properly done to support such strong isolation guaran-
tees provided by our prototype in practice.

1.1 Previous Attempts
There have been a few recent attempts to tackle the prob-

lem of isolating sensitive workloads while eliminating the
host OS or hypervisor from the TCB of these workloads.
These attempts can be divided into two main categories:
(1) microhypervisor-based approaches, and (2) hardware-
based approaches.
Microhypervisor-based Approaches: These approaches
rely on a thin, privileged software layer (i.e., a thin hyper-
visor) to provide the required isolation for sensitive work-
loads. Among the notable research efforts in this direction
are NOVA [27] and Trustvisor [19].

NOVA proposes to replace current hypervisors with a mi-
crohypervisor that is around 9 KLOC in size. Despite having
a small TCB compared to commodity hypervisors, NOVA is
still responsible for several management tasks (e.g., address
space management, interrupt and exception handling, and
communication between the running workloads). Thus, its
TCB is still relatively complicated.

Trustvisor minimizes the code base of the microhypervisor
even further (about 2 KLOC for its core functions), so that it
can be used for isolation purposes only. However, Trustvisor
is only designed to handle workloads with a small code base
and only supports systems with a single processor core. This
makes it unsuitable for typical compute clouds.

An effort closely related to these microhypervisor-based
approaches is seL4 [15]. seL4 proposes a technique to for-
mally verify a microkernel, which is around 8.7 KLOC, to
avoid security vulnerabilities. Although this microkernel can
be used for isolation purposes, the formal verification process
imposes several restrictions on the microkernel functionality.
Thus, it cannot be extended to fully support all the func-
tionalities required from micorhypervisors yet.
Hardware-based Approaches: These approaches rely on
hardware security extensions to provide isolation for sensi-
tive workloads. The main advantage of these approaches
is the enhanced protection for the isolated workloads (com-
pared with software based techniques).

One notable research effort in this direction is Flicker [20],
which is a system that uses the late launch capability to run
a secure verifiable workload. However, the late launch ca-
pability, provided by both Intel [11] and AMD [1], incurs
significant overhead (in the magnitude of hundreds of mil-
liseconds) on every context switch to the isolated environ-
ment. Hence, it cannot provide a practical solution for cloud
computing environments.

Another effort, NoHype [14], also relies on hardware iso-
lation through assigning dedicated processor cores to each
running workload. However, NoHype still relies on a thin
software layer to achieve the required protection and man-
age the hardware resources (e.g., page tables). Moreover,
it requires architectural changes to processors and hardware
peripherals, which are slow to realize.

It should be noted that all of the above techniques are re-
search prototypes that make several simplifying assumptions
about their target platforms. These assumptions may hin-
der the applicability or even weaken the security guarantees
provided by these techniques. For instance, the formal ver-
ification introduced by seL4 does not include the firmware
or the SMM code, which could negate all seL4 guarantees.

Thus, a practical deployment of any of these research proto-
types, including the prototype we present in this paper, re-
quires a comprehensive consideration of the target platform
that includes the full hardware and firmware specifications.

1.2 Introducing SICE
In this paper, we present SICE, which stands for Strongly

Isolated Computing Environment, a framework that pro-
vides a hardware-level isolated execution environment for
x86 hardware platforms. SICE’s main objective is to mini-
mize the TCB required to create an isolated execution en-
vironment on commodity x86 platforms. This isolated envi-
ronment can be used to host a security sensitive workload.

SICE achieves this objective by relying on a TCB that is
only composed of the hardware, the BIOS, and the SMM.
The TCB, which is fundamentally different from previous
research, gives SICE principal advantages over both micro-
hypervisors and hardware-based isolation techniques. We
summarize these advantages below.
Smaller Attack Surface: SICE utilizes the hardware pro-
tection provided by commodity x86 processors for the SMM
and the memory that hosts its code, which is called System
Management RAM (SMRAM). There are two fundamental
differences between the SMM and microhypervisors.

First, the SMM can only be triggered by a single interface,
which is to invoke a System Management Interrupt (SMI).
In SICE, the SMI handler is required to execute one of only
four functions upon receiving an SMI, which are to create,
enter, exit and terminate an isolated environment. Imple-
menting these functions requires the system to run briefly in
the SMM. Moreover, the SMI handler is not required to han-
dle any other interrupts because all interrupts are disabled
upon entering the SMM mode. The SMI handler is also not
responsible for managing the communication between run-
ning workloads. On the other hand, microhypervisors reside
at the system’s highest privileged level. Thus, they have
to handle all system events (e.g., hypercalls, interrupts and
exceptions). They are also required to manage the com-
munication channels (e.g, shared memory pages) between
different workloads.

Second, SICE uses the SMRAM to provide the needed
memory isolation. After the SMRAM is initialized by the
BIOS, it can be locked so that no software can access its
contents except for the SMM code. The SMM code can
manage the SMRAM through modifying only two registers,
which has a huge impact on decreasing the size of the TCB.
In contrast, microhypervisors that rely on hardware virtu-
alization have to manage a different set of page tables for
every isolated environment to provide memory protection.

To sum up, SICE’s SMM code base is better protected
and less complicated than any microhypervisor. Moreover,
this code does not provide any functionality other than the
required isolation, which results in a very small code base.
For instance, our prototype SMI handler consists of around
300 LOC (excluding cryptographic libraries). This is around
an order of magnitude less than current microhypervisors
(e.g., Trustvisor and NOVA). As discussed in [15], this is
a significant difference when it comes to verification cost.
For instance, using the industry rules-of-thumb of $10K per
LOC for common criteria certification as a guideline for the
cost of code verification, the cost for verifying 500LOC is
$5M versus $100M for 10 KLOC.
Compatibility with Existing Software Systems: Un-
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like isolation techniques that monopolize the highest privi-
leged execution level of the target platform (e.g., Trustvisor),
SICE does not exclude running legacy workloads (e.g., a hy-
pervisor with multiple VMs) on the same physical platform.
In other words, a platform using SICE can offer isolated
environments, and at the same time accommodate legacy
virtualization software.
Feasible Hardware-based Isolation: SICE uses existing
hardware features to provide the required isolation. We have
successfully implemented a SICE prototype using a com-
modity AMD processor. Thus, it does not require funda-
mental changes to current hardware architecture.

Moreover, our performance evaluation shows that SICE
performs a secure context switching with an isolated envi-
ronment that is four orders of magnitude faster than systems
that rely on the late launch capability (e.g., Flicker [20]). It
also uses multi-core processors to allow isolated workloads
to run in parallel to a legacy hypervisor or OS. Thus, SICE
avoids the two main drawbacks of using late launch, which
are the high performance overhead, and the dedication of all
system resources to only one isolated workload.

1.3 SICE Overview
SICE introduces novel techniques that allow the isolated

workloads to run in parallel with a host OS or hypervisor.
For convenience, we refer to the OS or hypervisor along with
all the software running on it as the legacy host, a strongly
isolated computing environment, which supports an isolated
workload, as an isolated environment, and the code that
manages the isolation between these environments as the
SMI handler, or simply SICE.

The SMI handler, which represents the TCB of the iso-
lated environments, resides inside the SMRAM. It is the only
part of our framework that executes in the SMM. The SMI
handler is responsible for two main tasks: 1) maintaining the
memory isolation of the isolated environments, 2) securely
initializing the isolated environments and attesting to their
integrity. In SICE, these tasks require the SMI handler to
run for a very short time.

An isolated environment is composed of two components:
an isolated workload and a security manager. The isolated
workload is a user-provided system that runs in the isolated
environment. It can be any software, ranging from a single
program (e.g., a program that manages secret keys) to a
complete VM (e.g., a VM that runs a web server).

The security manager is a thin software layer that has lim-
ited functionalities such as handling exceptions and manag-
ing page tables. It is mainly responsible for confining the
isolated workload. Due to the commodity hardware limita-
tion on SMRAM size, SICE’s unique hardware-level isola-
tion is not used to protect the legacy host from the isolated
environments. Thus, SICE uses the security manager to
prevent the isolated workload from accessing the memory of
the legacy host. A separate copy of the security manager
is generated by SICE for every isolated workload running
on the system. Both the security manager and the isolated
workload run after the system returns from the SMM.

Though SICE requires the legacy host to trust the secu-
rity managers, it does not weaken the hardware-level isola-
tion provided to the isolated workloads. SICE uses SMM to
protect isolated environments from the legacy host. Even if
a malicious workload (in one isolated environment) compro-
mises its own security manager and consequently the legacy

host, it will not be able to compromise any other isolated
environment running on the same platform.

SICE’s protection of the legacy host may appear to be
equivalent to those provided by microhypervisor-based ap-
proaches such as NOVA. Indeed, the security manager, which
is a thin privileged software layer, is similar to a microhy-
pervisor in terms of its required tasks and code size. How-
ever, SICE also provides hardware-level, stronger protection
for the isolated environments, which are not available in
microhypervisor-based approaches.

SICE provides two operating modes: time-sharing mode
and multi-core mode. In both modes, the SICE philosophy
is based on using the isolated environments to run security
sensitive workloads, while the legacy host is used for running
less sensitive workloads and managing hardware peripherals.
In a typical execution scenario, a communication channel is
used so that the legacy host provides hardware services (e.g.,
networking) to the isolated environments. The communi-
cation channel can be established using a shared memory
outside of the memory range protected by SICE. Communi-
cation channels are not controlled or managed by the SMI
handler. Thus, the code responsible for managing the com-
munication is not a part of the TCB.

In the time-sharing mode, time multiplexing is used to
share the hardware platform between the isolated environ-
ments and the legacy host. During the environment switch-
ing, SICE guarantees a fresh start of the processor, complete
memory isolation between these environments, and a timely
switching that does not largely impact the performance.

In the multi-core mode, SICE assigns one or more proces-
sor cores to each isolated environment, while the other cores
are used to run the legacy host. SICE guarantees isolation
of both the processor cores and the memory dedicated to
each of the concurrently running environments.

In both modes, SICE attests to the integrity of each iso-
lated environment to remote users, while avoids revealing
sensitive information about the workload to the legacy host.

The current SICE design relies on hardware features pro-
vided by AMD processors. Some of these features are not
currently supported by Intel processors, particularly the abil-
ity to resize the SMRAM at runtime and defining a sepa-
rate SMRAM for each processor core. Proposing alternative
techniques to implement SICE on Intel platforms will require
further research. We discuss these issues in Appendix A.

We implement a prototype of SICE on an IBM LS22 blade
server that uses AMD processors. We use our SICE pro-
totype to run a complete Linux VM in the isolated envi-
ronment. Our experimental evaluation shows that the time
required to enter and exit an isolated environment using
SICE is around 67 µs. We conduct experiments to evalu-
ate the performance of the isolated VM. In the multi-core
mode, SICE incurs a low (under 3%) overhead on VM oper-
ations that do not require frequent communication with the
legacy host. The time-sharing mode shows a higher overhead
(around 10%) due to the time for the context switching. A
test dedicated to measure the performance of network em-
ulation shows a higher overhead. However, this overhead is
expected to decrease using an optimized implementation of
network emulation for isolated VMs.

1.4 Summary of Contributions
We make several technical contributions in this paper:

• We provide a complete and feasible solution to share
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hardware resources with an isolated execution environ-
ment that does not rely on any host software. Instead,
it relies on a TCB that is around an order of magnitude
smaller than the state-of-the-art systems.

• We provide a novel technique that allows concurrent
execution of the isolated environments with the un-
trusted host environment.

• We provide attestation to the integrity of the isolated
workloads without revealing sensitive information about
the workloads to untrusted host software.

• We implement a prototype of SICE on an AMD plat-
form. We use this prototype to evaluate the perfor-
mance overhead introduced by SICE.

The rest of this paper is organized as follows. Section 2
provides background information on SMM. Section 3 dis-
cusses our assumptions and threat model. Section 4 presents
SICE in detail. Section 5 presents our prototype implemen-
tation. Section 6 presents our experimental evaluation. Sec-
tion 7 presents related work, and Section 8 concludes this
paper with some future research directions. Finally, The
Appendix discusses SICE’s portability to Intel platforms.

2. BACKGROUND
In this section, we briefly give some background informa-

tion on the System Management Mode (SMM).
Commodity x86 architecture supports the SMM as one of

its operating modes. The processor enters the SMM when
receiving an SMI. Upon an SMI, the processor saves its state
to a dedicated state save map and switches to the SMM. To
return from the SMM, the special instruction RSM restores
the saved processor state and resumes normal execution.

SMM code is stored in a designated memory called SM-
RAM. To provide protection of the SMM code and data,
both AMD and Intel provide the capability of locking the
SMRAM. When the SMRAM is locked, all accesses to it,
except from within the SMM, are prevented. All interrupts,
including non-maskable ones, are disabled upon entering the
SMM. Thus, no other code running on the system can in-
terfere with the SMI handler.

Current hardware can support up to 4 GB of SMRAM.
There are two types of SMRAM: the ASeg, which is located
at a fixed low address, and the TSeg which is located at a
variable base and has a variable size. SICE uses TSeg due to
the flexibility it offers. Defining the SMRAM location and
range differs slightly between AMD and Intel architectures.
In the following, we take a closer look at AMD architecture,
on which this paper focuses.

The AMD architecture defines the TSeg memory range us-
ing two Model Specific Registers (MSRs) that are local to
each processor core. The first is SMM_Addr, which specifies
the SMRAM base address, while the second is SMM_Mask,
which specifies its range. Since MSRs are local to each pro-
cessor core, all cores have to set their MSRs to provide com-
plete protection of the SMRAM.

The SMMLOCK bit in the HWCR MSR can be set to prevent
changing the TSeg range. Moreover, the AMD architecture
uses a password mechanism to protect the modification of
the SMMLOCK bit. When the SMRAM is unlocked, writes
to the SMM_KEY MSR set the 64-bit password. When the
SMRAM is locked, writing the correct password to the same
MSR clears the SMMLOCK bit.

3. THREAT MODEL AND ASSUMPTIONS
Threat Model: SICE aims at defending against all mali-
cious activities by software running in the legacy host that
are targeted at compromising the isolation offered to the iso-
lated environment (e.g., malicious activity that result from
exploiting a vulnerability in the hypervisor). Specifically,
SICE protects the isolated environment from all types of
unauthorized memory accesses or any modification to its
execution environment. The protection starts from the mo-
ment the isolated environment is initialized by SICE. Upon
initialization, the initial image of the isolated workload, which
is loaded by the legacy host, is measured so that SICE can
further attest to its integrity.

We consider the following attacks out of the scope of this
paper: Attacks aimed at the availability of SICE (e.g., deny-
ing its network access), and those that directly exploit vul-
nerabilities of the isolated environment through legitimate
communication channels. Such attacks are not specific to
the isolation mechanism, and should be addressed by other
techniques such as keep-alive messages and patching the vul-
nerabilities. Moreover, SICE is not responsible for securing
the hardware services provided by the host. Thus, the iso-
lated workload should use other techniques to achieve this
objective (e.g., encrypting its network traffic).

Side-channel attacks are also out of the scope of this pa-
per. Adopting SICE prevents cache side-channels because
the hardware automatically clears the cache upon entering
and exiting from the SMM. However, these attacks in general
are not unique to our approach and require further research.
Assumptions: We assume that our platform is physically
secure (e.g., locked in a server room) so that an adversary
cannot launch any hardware attack. Moreover, we assume
that the target platform is equipped with trusted comput-
ing hardware, including the Core Root of Trust Measure-
ment (CRTM) and Trusted Platform Module (TPM) [29].
This allows the attestation to the integrity of key software
components (e.g., the SMI handler).

We assume that the SMM is properly isolated from other
software running on the system and the hardware provides
the SMRAM with proper isolation from all unauthorized
memory accesses (e.g., cache poisoning, Direct Memory Ac-
cess (DMA)). Recent incidents showed that attackers were
able to subvert the SMRAM using cache poisoning [6, 33].
Fortunately, such attacks cannot be mounted on AMD plat-
forms due to its SMRAM cache protection and can be easily
defeated on Intel platforms using proper setting of the Sys-
tem Management Range Register (SMRR) [13].

4. SICE DESIGN
In this section, we present the design of SICE. The objec-

tive is to enable hardware-level strongly isolated computing
environments that run in parallel with the legacy host on
the same hardware platform.
Implementation requirements: To implement SICE, the
SMI handler needs to be modified to include SICE’s code.
Recently, most hardware vendors use the BIOS to lock the
SMRAM to prevent potential SMM misuse. Thus, SICE
requires hardware vendors to allow adding its code to the
SMI handler before locking the SMRAM.

The legacy host (e.g., the hypervisor) is required to add
an interface that invokes an SMI to trigger SICE. Hardware
management functions provided by the legacy host (e.g.,
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hardware device drivers) should be modified to use this in-
terface to provide its services to the isolated environment.
Note that the legacy host may refuse to invoke an isolated
environment or deny it some services, thus threatening its
availability. However, these attacks are easily detectable by
SICE and its remote users (e.g., from the lack of response
of the isolated workload), and can then be thwarted by re-
placing the faulty legacy host.
SICE Architecture: Figure 1 shows the architecture of
SICE. It consists of three components: The SMI handler, the
security manager, and the isolated workload. The security
manager and the isolated workload constitute the isolated
environment. SICE enables the isolated environment and
the legacy host to share the physical platform’s resources.

The security manager is a thin software layer that con-
fines the isolated workload. It has limited functionalities
such as handling exceptions and managing page tables. The
initial image of the security manager should be loaded to
the SMRAM, along with the SMI handler, upon the system
initialization. Thus, we assume trust in both the SMI han-
dler and the security manager based on the system’s trusted
boot, which can be attested to later using the TPM.

The isolated workload is a user-provided system that runs
in the isolated environment. It can be any software, ranging
from a single program to a complete VM. The only restric-
tions on this software are that it does not use more than
4GB of memory (due to SMRAM constraints) and that it
does not manipulate hardware peripherals directly.

When the isolated environment is not actively running,
its code and data are securely stored in the SMRAM (as
shown in Figure 1). However, the SMM is a limited ex-
ecution mode that is not suitable for running the isolated
environment. For instance, code execution inside the SMM
is slower than the protected mode [2]. Moreover, some hard-
ware functionalities (e.g., starting a hardware assisted VM)
are not supported in the SMM. Thus, SICE only uses the
SMM to prepare and enter the isolated environment. SICE
uses novel techniques to move the security manager and the
isolated workload out of the SMRAM after the isolated en-
vironment is initialized.

In the following, we discuss SICE in a time-sharing mode,
where the legacy host and the isolated environment time
share the physical platform. We then present the multi-core
mode, where the legacy host and the isolated environment
run in parallel using multi-core processors.

4.1 Time-sharing Mode
In the time-sharing mode, SICE provides two important

features: (1) fast context switch between the legacy host
and the isolated environment (in the magnitude of few tens

of microseconds), and (2) large protected memory range for
the isolated workload (up to 4GB). The fast context switch
allows the isolated workload to receive its input data and
send its output to and from the legacy host without posing
significant overhead on the system performance. The large
protected memory range enables the isolated environment
to securely keep its state across the context switches.

4.1.1 Initializing the Isolated Environment
Both the security manager and the SMI handler are ini-

tialized when the physical platform is booted. When an iso-
lated workload is ready to be started, the legacy host first
loads the initial image of this workload to a specific memory
range. Then, it triggers SICE using an SMI. The SMI han-
dler then measures the initial image of the isolated workload
and copies it to the protected SMRAM. Details on measur-
ing and attesting to the isolated environment are discussed
in Section 4.3.

4.1.2 Entering the Isolated Environment
Figure 2 shows the process of entering the isolated envi-

ronment. Whenever the legacy host requires the isolated
workload to run, it triggers another SMI. The SMI then
switches the processor’s execution environment to the SMM
and the execution jumps to the SMI handler. The SMI han-
dler then prepares the isolated environment by changing the
saved processor state so that the security manager, instead
of the legacy host, runs after the processor returns from the
SMM. The SMI handler also stores the processor state of
the legacy host so that it can resume execution after the
isolated environment finishes its execution.

In the time-sharing mode, SICE gives the isolated envi-
ronment full control of the physical platform as soon as it
runs. Thus, it changes the processor state (e.g., interrupt
descriptors, system call handlers) so that only the security
manager will have control after the SMI handler returns.

Unfortunately, the SMM cannot change most of the criti-
cal processor states (e.g., the interrupt descriptor table (IDT)
register and the CR3 register). To overcome this challenge,
the SMI handler relocates the code pointed to by the current
processor state through modifying the page tables. Since the
CR3 register is not writable, the SMI handler modifies the
first level page table pointed to by the CR3 so that it di-
rectly points to the security manager. It also flushes the
Translation Lookaside Buffer (TLB) to avoid potential race
conditions with the cached page tables.

Before the SMI handler returns, we need to ensure that
both the security manager and the isolated workload are
accessible to the processor after it returns from the SMM.
As shown in Figure 1, both the security manager and and
the isolated workload are stored in the SMRAM before the
isolated environment is entered. These two components need
to be moved out of the SMRAM so that they can run after
the processor returns from the SMM.

A straightforward solution is to copy the security man-
ager and the isolated workload out of the SMRAM to an
unprotected memory. However, this will introduce an unac-
ceptable performance overhead.

To address this problem, we use the ability of AMD pro-
cessors to resize the SMRAM during the system runtime.
This feature, discussed in Section 2, relies on a password-
protected mechanism to clear the SMM lock so that the
SMM_Addr and the SMM_Mask registers can be updated.
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Upon the initialization of the system, SICE generates a
64-bit random number, sets it as the password for lock-
ing/unlocking the SMRAM, and stores it inside the SM-
RAM. Before entering the isolated environment, the SMI
handler uses this password to unlock the SMRAM and mod-
ify its protection range (by modifying the SMM_Addr and the
SMM_Mask registers) to exclude both the security manager
and the isolated workload. Thus, they can be accessed by
the processor after the SMI handler returns.

As shown in Figure 2, the SMRAM protection remains
for the SMI handler while the isolated workload runs. This
guarantees that the SMI handler (including the SMRAM
password) can never be accessed by any other software run-
ning on the system, including the isolated workload.

A subtle issue needs to be clarified. To guarantee full
control over the system, the isolated environment should
run in the highest privileged level after the SMI returns.
However, this requires the legacy host to trigger the SMI
from within the highest privileged level. In other words,
the SMI cannot be triggered by a guest VM. Otherwise, the
isolated environment will return to the context of a guest
VM controlled by the legacy host.

To verify that the SMI is triggered by the highest privi-
leged level, SICE requires the legacy host to disable virtual-
ization by clearing the SVME bit in the EFER register before
triggering the SMI. The SMI handler verifies that this bit is
clear. Otherwise, it will not enter the isolated environment
and keep the SMRAM protection for its memory.

4.1.3 Managing the Isolated Workload
Since the isolated workload is provided by the user, it is

not trusted by SICE. Hence, it should not be allowed to
tamper with the hardware configuration or access memory
regions that belong to the security manager or legacy host.

Unfortunately, commodity hardware architecture cannot
assign more than 4GB of memory to the SMRAM. Thus,
using the SMRAM to protect the legacy host memory from
the isolated workload will not be a feasible solution due to
its restriction on the memory capacity of the legacy host.

To address this challenge, the security manager plays the
role of a hypervisor and runs the isolated workload in the
context of a guest VM. Therefore, the isolated workload’s
execution environment is restricted so that it cannot exe-

cute privileged instructions. Moreover, the security manager
crafts the page tables of the isolated workload so that it can
access a limited specific range of physical memory. Thus,
the isolated workload cannot access any memory range that
belongs to either the security manager or the legacy host.

4.1.4 Exiting the Isolated Environment
To allow the legacy host and the isolated environment to

efficiently share the hardware resources, SICE provides a
technique to securely and properly exit the isolated environ-
ment and return the execution back to the legacy host.

To return back to the legacy host, the isolated environ-
ment triggers an SMI. The SMI handler then: (1) Clears all
general purpose registers, (2) flushes all cache levels, (3) uses
the SMM password to change the SMRAM range so that it
covers both the security manager and the isolated workload,
and (4) restores all changes done to the legacy host page
tables before the isolated environment was initialized.

The first two steps ensures that no sensitive data is leaked
to the legacy host. The third step ensures the protection
of the isolated environment’s memory. Finally, the last step
ensures that the legacy host resumes its operations correctly.

4.1.5 Terminating the Isolated Workload
When the isolated workload finishes execution, it needs to

be securely terminated so that no confidential information
are leaked to the legacy host. Thus, isolated workload ter-
mination requests must be forwarded to the SMI handler,
which securely erases the memory belonging to the isolated
workload and then removes it from the protected SMRAM.

4.2 Multi-core Mode
The SICE multi-core mode enables the legacy host and

the isolated environments to run in parallel on different pro-
cessor cores to better utilize the hardware resources.

Before presenting our solution, we first give some back-
ground information on multi-core processors. As shown in
Figure 3, multi-core processors are equipped with one or
more processing nodes. Each node has its own memory con-
trol hub (north bridge) and one or more processor cores.
North bridge configuration registers can be accessed by any
core on any node. On the other hand, each processor core
has its own general-purpose registers, MSRs, APIC, and two

380



Core n

-Regis

-MSRs

-APIC

-L1 and 

Memory Control Hub 

(North Bridge) 0

----------------------

-Configuration 

registers

-I/O space register

-L3 cache

Core 1

-Regis

-MSRs

-APIC

-L1 and

Core 0:

-Registers

-MSRs

-APIC

-L1 and L2 Caches

Memory Control Hub 

(North Bridge) 1

----------------------

-Configuration 

registers

-I/O space register

-L3 cache

Core n

-Regis

-MSRs

-APIC

-L1 and 

Core 1

-Regis

-MSRs

-APIC

-L1 and

Core 0:

-Registers

-MSRs

-APIC

-L1 and L2 Caches

Figure 3: General multi-core processors architecture

levels of cache. These components can only be accessed by
their designated core. Among these core-dependent com-
ponents are the SMM_Addr and SMM_Mask MSRs that define
the SMRAM memory range. Thus, each processor core can
have its own protected SMRAM memory range that is inde-
pendent from the SMRAM memory range defined on other
processor cores that share the same node. SICE utilizes this
architecture to provide the necessary protection for the iso-
lated environment in the multi-core mode.

For simplicity, we assume a platform with two cores in our
discussion: the host core that runs the legacy host, and the
isolated core that runs the isolated environment. However,
the same techniques can be used to assign more than one
core to either the legacy host or the isolated environment.
In general, two processor cores that belong to different ex-
ecution environments can be either co-located on the same
processing node or located among different nodes.

In the multi-core mode, SICE initializes the isolated envi-
ronment in the same way as the time-sharing mode (i.e., by
triggering an SMI in the legacy host). The SMI switches the
execution environment of all processor cores that exist on the
target platform to the SMM. The SMI handler performs a
different task on each processor core. On the isolated core,
the SMI handler prepares the isolated environment and re-
turns to the security manager using the techniques described
in Section 4.1.2. Meanwhile, on the host core, the SMI han-
dler returns directly to the legacy host so that it can resume
its operations at the same time.

Since both the legacy host and the isolated environment
run in parallel on different processor cores, no context switch-
ing between these environments is needed.

To ensure the isolation between the legacy host and the
isolated environments, SICE prevents the legacy host from
affecting the execution of the isolated environment, and the
isolated workload (excluding the security manager, which
needs to be trusted by the legacy host) from affecting the ex-
ecution of the legacy host. In particular, we need to prevent
the interference through explicit inter-core communication
as well as those through modifying each other’s memory.

4.2.1 Handling Inter-core Communication
Communication between processor cores, which is done

through Inter-Processor Interrupts (IPIs), can modify the
execution environment on the recipient code by changing
the execution path. This can pose a risk on the integrity of

the isolated environment. Therefore, all IPIs should either
be blocked or securely handled by the recipient core.

There are two types of IPIs: (1) Maskable IPIs that can be
blocked by the recipient core’s Advanced Programmable In-
terrupt Controller (APIC), and (2) non-maskable IPIs (e.g.,
NMI, SMI, startup, and INIT) that cannot be blocked.

Upon initializing the isolated environment, the SMI han-
dler disables all maskable interrupts on the isolated core so
that the host core cannot interfere with the isolated core.
The security manager, which runs as a thin hypervisor on
the isolated core, keeps these interrupts disabled.

On the other hand, non-maskable interrupts cannot be
blocked. Moreover, a specific non-maskable interrupt, the
startup interrupt, resets the processor core to start execu-
tion at a low physical memory address. Intuitively, this ad-
dress can be modified by the host core to alter the course of
execution on the isolated core.

To overcome this problem, SICE relies on the Global Inter-
rupt Flag (GIF) introduced by AMD.When the GIF is clear,
all interrupts, including non-maskable ones, are ignored or
held pending. The security manager thus clears the GIF of
the isolated core when the isolated environment is entered,
and sets it only after the isolated environment completes its
execution and all memory protection measures are taken.

The security manager then runs the isolated workload in
the guest VM mode. Upon entering the VM mode, both
global interrupts and maskable interrupts are re-enabled.
Hence, the isolated workload can receive all interrupts in-
cluding both IPIs and local processor interrupts. However,
the received interrupts will cause a VM exit and jump to
the security manager rather than modifying the execution
environment.

Global interrupts are automatically disabled again before
exiting the VM mode and jumping to the security manager.
The security manager identifies the reason that causes the
VM exit. If it is an interrupt that aims to modify the execu-
tion environment (e.g., INIT interrupt), then it indicates a
malicious activity from the host core and all memory protec-
tion measures are taken. However, if the VM exit is caused
by a local interrupt or an IPI, the interrupt is forwarded
back to the isolated workload. This architecture allows the
isolated workload to use IPIs as method of signaling, which
is required to build a communication channel with the legacy
host. This channel can be used to provide hardware services
offered by the legacy host to the isolated workload.

On the other hand, SICE relies on hardware virtualiza-
tion to prevent the isolated workload from perturbing the
legacy host. The isolated workload, which runs in a guest
VM, is not allowed to directly access the APIC to send any
interrupts that can perturb the execution of the host core.

4.2.2 Memory Isolation
To prevent the legacy host from accessing the isolated en-

vironment’s memory, SICE relies on a novel protection called
the memory double-view technique, shown in Figure 4. This
technique relies on the fact that AMD processor’s SMRAM
is defined based on the core-dependent MSRs. Thus, differ-
ent cores can view the SMRAM differently depending on the
values of their own SMM_Addr and SMM_Mask registers.

As shown in Figure 4, each processor core has its own view
of the physical memory. From the host core’s perspective,
the isolated environment uses a physical memory that lies in
the SMRAM memory range. Hence, the legacy host cannot
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access such memory due to the SMRAM protection. From
the isolated core’s perspective, the isolated environment lies
within a normal memory region that is not part of the SM-
RAM. Hence, the isolated environment can run normally on
the isolated core.

SICE also prevents the isolated workload from accessing
the legacy host memory. The security manager, which plays
the role of a hypervisor, restricts the isolated workload to its
assigned physical memory. Nevertheless, a shared memory,
which does not fall in the host core’s SMRAM, is mapped
to allow communication between the two environments.

4.3 Attestation and Secure Communication
Cloud computing users are required to trust the environ-

ment that runs their workloads. In SICE, attesting the in-
tegrity of the isolated environment is complicated by the fact
that the legacy host has full access to all hardware peripher-
als and communication channels. In this section we provide
a three-step solution to address this challenge.
Attesting to Integrity of SICE: SICE requires the plat-
form to use standard trusted boot [28]. After a typical
trusted boot, the TPM securely stores the measurement of
the boot process, which includes the SMI handler, the code
image of the security manager and the code that loads them
and locks the SMRAM. The measurement is stored in TPM
special registers that cannot be erased by malicious software.

The TPM can further use its private Attestation Identity
Key (AIK) to attest to the integrity of this measurement to
remote users. Unlike other system software that is continu-
ously interacting with potential attackers, the SMI handler
cannot be modified by any code running on the system and
the trust in it can be maintained.
Attesting to Integrity of Isolated Workload: In turn,
the SMI handler attests to the integrity of the isolated work-
load. It measures the isolated workload before it is first
invoked and stores the measurement in the secure SMRAM.

To enable the attestation, we adopt an approach we previ-
ously used is HyperSentry [2]. Specifically, SICE generates
a public/private key pair during system boot. The private
key is securely stored in the SMRAM, and the public key is
securely stored inside the TPM.

To attest to the integrity of the isolated workload, the SMI
handler signs the measurement of the initial workload image
using its private key. The remote user accepts the measure-

ment output only if the private key matches the public key
stored in, and attested to by, the TPM.
Secure Communication with the Isolated Environ-
ment: SICE allows the establishment of a secure commu-
nication channel between the isolated workload and its re-
mote owner using standard cryptographic techniques. To
enable the remote owner to authenticate the isolated work-
load, SICE provides a public/private key pair for the isolated
workload. The public key is sent to the user as a part of
the workload attestation evidence signed by the SMI han-
dler. The private key is directly provided to the isolated
workload. Thus, it is never exposed to potentially malicious
code running inside the legacy host. On the other hand, the
isolated workload should include the public key of its remote
owner as a part of its initial image.

With both the security manager and the remote owner
being able to validate each other’s public keys, we can easily
modify, for example, SSL for secure communication without
leaking information to the (untrusted) legacy host.

4.4 Security Analysis
Now we discuss the security of the isolated environment,

including its confidentiality, integrity, availability, and TCB.
We also discuss the security implication of using the SMM.

4.4.1 The Security of the Isolated Environment
Confidentiality: To protect the confidentiality of the iso-
lated environment, SICE prevents potential attackers from
accessing its memory. SICE uses the SMRAM to achieve
this objective. The hardware protects the SMRAM from
access requests made by both the CPU and direct memory
access (DMA) capable devices.

In the time-sharing mode, SICE modifies the SMRAM
memory range according to the running environment. When-
ever the legacy host is running, SICE extends the SMRAM
to include the memory of the isolated environment. Thus,
this memory is protected from all memory requests.

When the isolated environment is triggered, SICE takes
two security measures to guarantee its confidentiality. First,
SICE assures that the isolated environment fully controls
physical platform. Hence, the legacy host is not active to
threaten the isolated environment, given that modern pro-
cessors do not use cached memory upon entering the SMM
to avoid cache poisoning attacks [1, 13]. Second, SICE uses
hardware DMA exclusion (e.g., AMD’s DMA exclusion vec-
tor (DEV) [1] and Intel’s VT-d [12]) to prevent DMA capa-
ble devices, which could be maliciously programmed, from
accessing the protected memory.

In the multi-core mode, SICE’s memory double-view tech-
nique provides the needed protection. According to architec-
ture manuals, memory access requests made from a proces-
sor core are checked against its own SMRAM before being
routed. Hence, the host core will not be able to access the
protected memory that falls within its own SMRAM range.
The same is true for requests to update or retrieve cache
entries. Hence, cache poisoning is not possible.

In the multi-core mode, SICE cannot rely on hardware
DMA exclusion because its control registers exist in the
memory control hub, which is accessible by all processor
cores. Thus, SICE relies on the SMRAM protection to pre-
vent DMA access to the isolated environment’s memory.
Typically, the memory control hub does not allow DMA
access to the SMRAM. However, the AMD hardware ar-
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chitecture manual does not precisely define which processor
core’s SMRAM range is used to prevent DMA access, partic-
ularly when different SMRAM ranges are defined on differ-
ent cores. Thus, implementing SICE on a specific platform
requires verifying which SMRAM range is protected from
DMA. The specific processor core(s) that defines this range
is the same one that should be used as the untrusted host
core. As shown in figure 4, the host core’s SMRAM memory
range includes the whole memory range used by the running,
one or more, isolated environments.

A final threat to the confidentiality of the isolated envi-
ronment is brute force attacks against the SMM password.
For each processor core, SICE generates a 64-bit random
value to be used as the SMM password. Thus, it is com-
putationally infeasible to break this password. The random
password generation can be done using the TPM.
Integrity: In the time-sharing mode, the legacy host can-
not threaten the integrity of the isolated environment be-
cause they do not run concurrently. In the multi-core mode,
the host core cannot access the registers, MSRs and APIC
of the isolated core. However, the host core can still mod-
ify system-wide configurations that rely on shared resources
(e.g., the memory control hub and the IO control hub).
Next, we prove that such configurations can only perturb the
isolated environment, for example, by rebooting the system,
without threatening its confidentiality or integrity.

According to the Advanced Configuration and Power In-
terface (ACPI) specification [10], processor cores keep their
state as long as the processor runs in the S0 or S1 power
modes. Thus, the isolated core will keep running the iso-
lated environment as long as either S0 or S1 state is main-
tained. On the other hand, all other ACPI states will cause
the processor core to lose its state and resume execution
from the non-volatile memory (i.e., the BIOS). Since the
BIOS belongs to the trusted computing base, changing the
ACPI state will be detected by SICE. In all cases, the ACPI
implementation of the target platform needs to be carefully
reviewed to securely implement SICE.

As presented in Section 4.2, attacks that use IPI between
processor cores are thwarted using APIC setting and the
GIF of the processor core that runs the isolated environment.
Availability: SICE does not provide protection against at-
tacks that target the availability of the isolated environment.
Example attacks include perturbing the isolated environ-
ment through system reboots or denying it network access.
However, this type of attacks is easily detectable by SICE
and its remote users (e.g., from the lack of response of the
isolated environment), and can be easily thwarted by remov-
ing the malicious code from the legacy host.
The TCB of SICE: SICE aims to minimize and enhance
the protection of the TCB of the isolated environment so as
to maximize its security.

The TCB of the isolated environment consists of the hard-
ware, the BIOS, and the SMM. Using the SMM gives SICE
two main advantages over microhypervisor-based isolation.
First, SICE TCB enjoys the hardware protection provided
for the SMRAM. Second, the SMM’s attack surface is much
smaller than that of microhypervisors. Thus, The TCB of
the isolated environment is better protected and less compli-
cated than that of microhypervisors. Section 1.2 compares
the TCB of SICE with that of microhypervisors in detail.

Trusting the BIOS is required to start the trust chain
based on the static root of trust management (SRTM) tech-

nique. However, recent incidents [17] show that the SRTM
can be compromised. Nevertheless, SICE can adopt the
Dynamic root of trust management (DRTM) to start the
trust chain, which consequently eliminates the BIOS from
the TCB. SICE can use the DRTM to invoke a trusted code
that securely initializes the SMRAM, given that it will not
be locked by the BIOS. A similar technique was used by
Trustvisor [19] to initialize its TCB.

SICE requires the legacy host to trust the security man-
ager(s). However, this does not make the security guarantee
provided to the legacy host weaker than microhypervisor-
based approaches such as NOVA, which assume trust in a
thin hypervisor with typical duties. Indeed, SICE and the
microhypervisor-based approaches provide similar security
guarantees for the legacy host, while SICE additionally also
provides a stronger protection for the isolated environments,
as discussed in Section 1.3.

4.4.2 SMM Security
Despite being an integral part of the TCB of SICE, the

SMM was not designed to provide security services. It was
originally designed to create a shadow environment to run
hardware management tasks. In the following, we discuss
some of the important issues that need to be considered
before deploying SICE, or any other system that relies on
the SMM, in a production environment.
Legacy SMM Tasks: Intuitively, the TCB of SICE in-
cludes any code that exists in the SMRAM. To keep the
TCB minimal, legacy system management tasks need to be
eliminated from the SMM. This does not mean that SICE
needs to completely eliminate them from the system. In-
stead, SICE can simply forward specific SMIs to (possibly
relocated) legacy SMM code after taking the required mem-
ory protection measures.
Previous SMM Attacks: As mentioned in Section 3,
there have been attempts to subvert the SMRAM using
cache poisoning [6,33]. Although these attacks can be easily
prevented by using proper hardware configuration, it shows
that hardware vendors should undergo a rigorous review of
the SMM security to avoid any further security problems.

It is worth mentioning that the implication of SMM at-
tacks is beyond the systems that rely on the SMM for secu-
rity. It is shown in [7] that a subverted SMM can be used
to host a stealthy rootkit that undermines the security of
any system. In general, trusting the underlying hardware,
including the SMM, is imposed on all software systems.
Hardware Vendors Cooperation: As mentioned in Sec-
tion 4, implementing SICE requires hardware vendors to al-
low adding its code to the SMI handler before locking the
SMRAM. In fact, we advocate that SICE should be entirely
implemented by hardware vendors. In this case, the system
BIOS will be responsible for initializing SICE upon booting
the system. This guarantees that SICE will always be com-
patible with the specification of the underlying hardware.

5. SICE PROTOTYPE: AN ISOLATED VM
In this section, we present a SICE prototype implemented

on an IBM LS22 blade server, which is equipped with two
2.7GHz AMD Opteron 10h family quad-core processors. We
use an Ubuntu 9.10 Linux as the OS. In our prototype, we
replace the original SMI handler with SICE’s SMI handler.
Implementing the core functions of SICE’s SMI handler,
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which are to prepare and enter the isolated environment, re-
quires around 300 LOC (excluding cryptographic libraries)

As mentioned in Section 1.3, the isolated environment can
support running any software, ranging from a single program
to a complete VM. To run a single program inside SICE, it
needs to be instrumented so that it directly runs on top of
the security manager. The required instrumentation is simi-
lar to that required by previous research on running isolated
security sensitive code (e.g., Flicker [20], Trustvisor [19]).

In our prototype, we use SICE to run a Linux VM, rather
than running an instrumented single program. This is to
demonstrate the flexibility provided to the isolated environ-
ment. Running a whole VM requires the ability to support
a diverse set of applications, frequent context switching, and
a large range of protected memory.

Figure 5 shows our SICE prototype. The security manager
plays the role of the hypervisor in the isolated environment.
It uses hardware assisted virtualization to manage and run
the VM as the isolated workload. All hardware manage-
ment functions are delegated to the legacy host, specifically,
a modified version of Qemu/KVM [18] running in the legacy
host. Qemu is a program that emulates hardware periph-
erals. KVM is a kernel module that manages other VM
operations like scheduling and memory management.

We modified KVM so that it uses a shared memory to
send the required VM configurations to the security man-
ager. The same shared memory is used by the security man-
ager to pass the information required to request hardware
services from the legacy host. This architecture is mainly
chosen to simplify the implementation efforts. In our proto-
type, the security manager is composed of around 2.1 KLOC,
which is comparable to the size of current microhypervisors.

Our implementation provides both network interface and
serial port emulation using Qemu. Networking is necessary
to allow the VM to communicate with remote users, while
the serial port is used as a console for debugging.

Our prototype does not support graphic display emula-
tion, which is not necessary for cloud computing applica-
tions. Moreover, we do not support disk drive emulation
because our experiments do not need a permanent storage.

Supporting a disk drive emulation is straightforward based
on the technique used to implement the network interface
emulation. However, the main question is how to secure the
disk access from a compromised legacy host. The answer
is dependent on the isolated workload rather than the isola-
tion mechanism. For instance, security sensitive applications
can either use full disk encryption (similar to Bitlocker [8]),
or selectively encrypt secret files only (e.g., a file that con-

tains user passwords). Other applications only need to keep
secret data in memory without a permanent storage (e.g.,
web servers that process online purchases without storing
customer credit card numbers).

In the following, we present more details about our pro-
totype implementation.

5.1 Preparing and Initializing the VM
As discussed in Section 4.1.1, the legacy host provides

SICE with the initial VM image, composed of the VM kernel
and the initial ram disk. The SMI handler copies this image
to the SMRAM. KVM also places the required VM config-
uration parameters (e.g., RAM size) in the shared memory
then triggers an SMI to initialize the isolated workload. As
mentioned in Section 4.3, the SMI handler measures the ini-
tial VM image to attest to its integrity to the remote owner
of this VM. The integrity evidence should be extended to
include the VM configuration parameters passed by KVM.
Some of these parameters (e.g., the VM execution entry
point, initial register values) are critical to its integrity.

The security manager prepares the VM page tables and
its virtual machine control block (VMCB), based on the pro-
vided configuration parameters. The page tables are crafted
using AMD’s nested page tables (NPT) [1], which adds an-
other layer to the virtual-to-physical memory translation.

5.2 Handling VM Exits
Certain events force the VM to exit its operations (e.g.,

external interrupts, page faults). These events need to be
handled by the hypervisor.

We forward most of the VM exit events to KVM in the
legacy host. Nevertheless, the security manager handles
some specific VM exits that do not require much computa-
tion to avoid unnecessary context switching. Among these
VM exit events are control register accesses and requests to
execute privileged instructions like CPUID or INVD.

Other VM exists (e.g., writing to an IO port, accessing
an IO memory) are directly forwarded to the legacy host.
To preserve the VM confidentiality, the security manager
should only send information that is necessary for handling
the VM exits (e.g., VM exit reason and error code). This
information is sent to the KVM in the legacy host through
an established communication channel between the isolated
environment and the legacy host.

5.3 Communication with the Legacy Host
Establishing a communication channel with the legacy

host is not managed by the SMI handler. Instead, it is di-
rectly managed by the security manager and the legacy host.
As discussed in Section 4, a shared memory that is outside
the SMRAM protection is used to establish the communica-
tion between the legacy host and the isolated workload.

Signaling is required between the two environments to
send notifications that data is placed into the shared mem-
ory. In the time-sharing mode, we use the context switching
as the method of signaling. In the multi-core mode, IPIs be-
tween the host and the isolated cores are used for signaling,
as discussed in Section 4.2.1.

5.4 Using Hardware Peripherals
In our prototype, hardware peripherals in the isolated

workload are emulated using Qemu in the legacy host. There
are three main methods to control a hardware peripheral:
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IO ports, IO memory, and Direct Memory Access (DMA).
When the VM accesses an IO port or an IO memory, a VM
exit occurs and the control is transferred to the host to em-
ulate the hardware access.

DMA requests work differently because DMA is supposed
to directly read or write physical memory. In legacy VMs,
Qemu is granted full access to the VM physical memory to
emulate DMA accesses. However, since Qemu is located in
the legacy host, SICE prevents it from directly accessing
the memory of the isolated environment. Thus, our proto-
type modifies Qemu to send a request to the security man-
ager with the address, size, and type (read or write) of the
emulated DMA. The security manager in turn copies the
required memory between the VM memory and the shared
memory. To preserve the confidentiality of the isolated work-
load, the security manager only allows Qemu to retrieve or
modify VM memory areas assigned to DMA operations.

In our prototype, the security manager handles DMA ac-
cess to simplify our implementation. Nevertheless, this op-
erations should be directly handled by the isolated VM by
allowing it to directly access a part of the shared memory,
which will reduce the tasks required from the security man-
ager, and consequently reduce its code size.

5.5 Attestation
As mentioned in Section 4.3, the SMI handler should be a

part of a trusted boot process. However, the LS22 servers,
used for our implementation prototype, are not equipped
with a TPM. Due to the lack of a TPM, the attestation
process is not included in our prototype. Nevertheless, it is
worth mentioning that static attestation using the TPM, sig-
nature key generation and signing are all known techniques
that have been implemented previously.

It is worth mentioning here that implementing these cryp-
tographic operations may increase the size of the code base
of SICE. For instance, a typical SHA1 library is around
120 LOC. Other cryptographic functions (e.g., generating
an RSA signature) can be done using the TPM.

6. EXPERIMENTAL EVALUATION
We perform a set of experiments to evaluate the perfor-

mance of SICE. There are two anticipated sources of per-
formance overhead associated with SICE. The first is the
direct overhead resulting from entering/exiting the isolated
environment. The second is the indirect overhead that re-
sults from the cache and TLB flushing required for SICE
operations. On the other hand, running the isolated envi-
ronment outside the SMM avoids any execution slow-down
and is not anticipated to cause any performance overhead,
compared to running the same workload without SICE.

In the rest of this section, we present a measurement of
the anticipated overhead. First, we measure the execution
time needed for a full context switching to and from the iso-
lated environment. Second, we use the SICE prototype (See
Section 5) to compare the performance of the isolated guest
VM with the same VM running without SICE isolation.

6.1 SICE Execution Time
We measure the execution time needed to perform each

of the four major steps of entering and exiting the isolated
environment. The measured steps include: (1) triggering
the SMI, (2) preparing the isolated environment by the SMI
handler, (3) entering the isolated environment, and (4) re-

turning to the legacy host. These measures are obtained
from the average of 100 runs.

To precisely measure the end-to-end execution time of
each step, we use the RDTSC instruction to read the proces-
sor’s Time Stamp Counter (TSC). We then convert cycles
to microseconds based on the TSC speed (2.7GHz in our
experimental platform).

Table 1: SICE execution time
Operation Time (in µs) Std. Dev.

Triggering an SMI 6.8 0.074
Preparing the isolated env. 20.7 0.155
Entering the isolated env. 9.3 0.233
Exiting the isolated env. 30.1 0.644
Total (≈) 67

Table 1 shows the experimental results for the time-sharing
mode. Triggering an SMI and switching the processor con-
text from the legacy host to the SMI handler needs an aver-
age of 6.8 µs. The SMI is invoked by the local APIC of the
processor core by sending an IPI to all cores on the system.

The next step, which is to prepare the isolated environ-
ment, needs an average of 20.7 µs. The latency of this step
is relatively high given that this step only requires chang-
ing a few entries in the page tables, modifying the interrupt
vector table descriptor, and verifying the values of several
registers and MSRs. We anticipate that this relatively high
latency is caused by a slower processing speed in the SMM.
A similar observation was made in [2].

The next step is entering the isolated environment. In this
step, we execute the“return from SMM”instruction (RSM) to
jump to the security manager. The time needed for this step
is 9.3 µs, which is relatively high. We anticipate this latency
is due to the change of the processor execution environment,
particularly the page tables, which leads to invalidating all
cache and TLB entries.

Finally, the time needed to return from the isolated en-
vironment to the legacy host is 30.1 µs, which is similar to
executing all the previous steps in the reverse order (i.e.,
from the isolated environment to the legacy host). In total,
the end-to-end time required to enter and exit the isolated
environment is 67 µs.

In the time-sharing mode, the end-to-end execution time
overhead obtained in this experiment occurs on every con-
text switch between the isolated environment and the legacy
host. A context switch is required every time the isolated
environment needs a service from the legacy host. In con-
trast, it is a one-time overhead in the multi-core mode.

6.2 Isolated Environment Performance
Our next experiment is to evaluate the overall perfor-

mance overhead on the isolated workload. We run this ex-
periment using the same system configuration of our pro-
totype system, discussed in Section 5. In our experiments,
we assign a 256 MB to the VM. Our VM runs Linux ker-
nel v2.6.28. and a ram disk that is equipped with BusyBox
v1.10.2 [4]. (BusyBox is a program that combines common
utilities into a single executable.)

To evaluate the performance of the guest VM, we assemble
a set of tests and run each test on the same guest VM in three
different environments: (1) unmodified Qemu/KVM using
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one processor core, (2) SICE time-sharing environment using
a single processor core, and (3) SICEmulti-core environment
using two processor cores, used as the host core and the
isolated core. In the multi-core test, we do not run any
program other than Qemu/KVM on the host core, so that we
can get a precise measurement of the performance overhead.

To measure the performance overhead, we use Qemu to
emulate a serial port for the guest VM. We then configure
the guest VM to use this serial console to accept shell com-
mand. Our performance measurement is the execution time
needed for the guest VM to complete each of these tests.
The execution time is calculated by using the RDTSC instruc-
tion in the legacy host. The time measurement is taken just
before sending the last letter of the shell command (the car-
riage return) and right after the first response is received
(echoing the carriage return).

To calculate the performance overhead of each test, we
first measure TK , the time needed to run the test using
unmodified Qemu/KVM. Afterward, we measure TS , the
time needed to run the same experiment using SICE. The
performance overhead is then calculated using the equation
(TS − TK)/TK × 100%.

We selected our test cases in three categories: The first is
user level programs to test the user level operations of guest
VMs running with SICE. The second is a group of tests that
test the throughput of the guest VM kernel. The third tests
the performance of the emulated network interface.

In the first category, we run three tests. The first mea-
sures the latency of copying a 2.1 MB file. Our prototype
system does not support hard drive emulation. Thus the
file is copied inside the virtual file system that represents
the initial ram disk. Our main objective of this test is to
estimate the impact of SICE on the guest VM memory op-
erations, because it is basically a copy between two locations
in memory rather than an actual disk access. The next two
tests in the same category use the programs gzip and gun-

zip to compress and decompress the same file. These tests
aim to test the impact of SICE on the guest VM’s user level
computations. The final results of these tests are obtained
as an average of 100 runs.

In the second category, we measure the guest VM kernel
responses to three main operations: fork, getpid and in-

smod. fork and getpid are tested using a custom program
that directly calls these system calls 10,000 times and mea-
sures the average response time. For the insmod test case,
we use the insmod program to insert a 16.4 KB loadable
kernel module in the guest kernel. This test is repeated 10
times, and all test runs show very little variance.

In the last category, we run a single test that uses wget

to retrieve a 156.6 KB file from an Apache server running
in the legacy host. The test is repeated 10 times.

Figure 6 shows the results of our experiments. In the
multi-core mode, all tests, except for wget, showed a slight
performance overhead under 3%. We expect that the slight
performance overhead is due to the time required to copy
information to and from the shared memory between the
legacy host and the security manager.

The wget test shows a 17% performance overhead. How-
ever, a significant portion of this overhead is due to the non-
optimized implementation of the Qemu network emulator for
SICE. When a packet is ready to be sent through the net-
work, the VM sends an IO command to the network adapter
to inform it that a packet is ready. In normal operations,
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Figure 6: Performance overhead of an isolated VM
compared with original Qemu/KVM

Qemu first receives this IO command, and then directly ac-
cesses the VM physical memory to emulate the DMA read
of the packet. In our prototype, Qemu does not have direct
access to the physical memory of the guest VM. Thus, we
modified Qemu to send DMA requests to the security man-
ager, which copies the packet from the protected guest VM
memory to the shared memory so that Qemu can process it
correctly. Similarly, an extra step is necessary when the VM
receives a packet.

Hence, our prototype requires an extra communication
step between Qemu in the legacy host and the security man-
ager for every network packet. Intuitively, this extra com-
munication step requires an extra context switch from the
legacy host to the isolated environment in the time-sharing
mode or an extra inter-process communication between the
host core and the isolated core in the multi-core mode.

This extra communication step is the cause of the high
overhead in the wget test. To support this claim, we mea-
sured the number of exits to and from the isolated envi-
ronment during this test. In normal operations, there was
an average of 1,249 guest VM exits that required hardware
emulation by KVM and/or Qemu. In SICE’s time-sharing
mode, there was an average of 1,877 context switches be-
tween the isolated environment and the legacy host. There
was a similar number of messages passed between the host
core and the isolated core in the multi-core mode. This 50%
increase in the communication time between the two envi-
ronments explains the high overhead in this test.

To avoid this overhead, the VM device driver can be mod-
ified so that it uses the shared memory for the network
adapter’s DMA operations. Thus, the Qemu emulated driver
would be able to directly read the passed packets without
sending an extra request to the security manager.

The time-sharing mode showed a higher performance over-
head, which is expectable due to the 67 µs needed to switch
between the host and the isolated guest VM. The tests that
show higher overhead, such as gzip and wget, are those that
require a higher number of switching between the host and
the isolated environment.

It is also noticeable that the time-sharing mode showed a
higher overhead (around 40%) in the wget test. Receiving
the target file in the normal VM operations needs 0.532 sec-
onds compared to 0.739 seconds in the time-sharing mode.
As mentioned above, this test requires 1,877 context switches
from the isolated environment to the legacy host. Given that
each context switch requires an average of 67 µs, the con-
text switch overhead in this test was 0.126 seconds. This
test clearly shows that the time-sharing mode is not suit-
able for operations that are IO intensive. It will be rather
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useful to run programs that require an enhanced isolation
and a smaller IO footprint (e.g., a program that processes
secret key operations).

7. RELATED WORK
Several researchers (e.g, [3, 5, 9, 22, 34]) attempted to use

hypervisors to enable strong isolation between workloads
running in a cloud computing environment. Nevertheless,
recent attacks [16,32] and vulnerability reports [23,24] show
that hypervisors are subject to security exploitation.

There have been several attempts (e.g., [2,30,31]) to verify
the runtime integrity of hypervisors. These techniques still
require cloud computing users to trust the host environment,
which has a relatively large TCB and continuously interacts
with mutually distrusted workloads.

As discussed in Section 1, the recent attempts that aim
at eliminating the hypervisor from the TCB can be divided
into microhypervisor-based and hardware-based approaches.
Hardware-based approaches: The introduction discussed
how systems that rely on the late launch capability (e.g.,
Flicker [20], BIND [25]) fall short from our objectives. More-
over, Intel proposed a hardware service called Processor
Measured Application Protection Service (P-MAPS) [21] to
offer runtime memory isolation. However, there is insuf-
ficient detail about its ability to provide multi-core isola-
tion. IBM also introduced interesting security features in its
Cell Broadband Engine (Cell BE) architecture [26], which
provides multi-core isolation. However, these features are
unique to this specific architecture. SICE achieves the same
level of isolation on the x86 architecture, which is used in
the vast majority of general purpose computing platforms.
Microhypervisor-based approaches: We discussed two
notable microhypervisors, NOVA [27] and Trustvisor [19],
as well as seL4 [15] in the introduction. In particular, seL4
is a promising approach that uses formal verification to in-
troduce a vulnerability-free microkernel, though it cannot
be extended to commodity hypervisors due to its restric-
tions (e.g., it should run with interrupts mostly disabled). It
would be interesting to study how we can apply formal verifi-
cation to guarantee the integrity of SICE’s security manager.

8. CONCLUSION
In this paper, we presented SICE, a research prototype

that aims to explore the capability of current hardware plat-
forms in providing more secure isolated environments. We
demonstrated that current hardware architecture already
provides abstractions such as SMM that can support strong
isolation. We showed that building strong isolation mecha-
nisms on top of the SMM abstraction requires a very small
TCB of about 300 LOC, which tremendously reduces the
TCB size compared with previous techniques. Nevertheless,
practical deployment of SICE would require CPU and hard-
ware platform vendors to undergo detailed security reviews
of the BIOS software and the SMM implementation.

SICE provides a set of unique capabilities to the isolated
environment, including (1) fast context switch to and from
the legacy host, (2) protected concurrent execution with the
legacy host, and (3) attestation to its integrity. Moreover, its
ability to run isolated workloads concurrently with a legacy
host provides a cost-effective solution to security sensitive
workloads without using dedicated hardware platforms.

Our future research will focus on extending SICE to work

on Intel platforms. In addition, we will explore how to apply
formal verification methods on SICE’s security manager.
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APPENDIX

A. PORTABILITY TO INTEL PLATFORMS
In this section, we discuss the portability of SICE to Intel

platforms. Although SMM is supported by both AMD and
Intel, SICE uses some hardware features that are only pro-
vided by AMD. In the following, we discuss these features
and propose alternative techniques for Intel platforms. Im-
plementing SICE on Intel platforms using these techniques
needs further research, particularly to achieve both the se-
curity and performance required from this system.
SMRAM Size and Location Modification: After the
SMRAM is locked, Intel platforms do not allow runtime
change of its size and location. This restriction has a di-
rect impact on our techniques, which rely on changing the
SMRAM size at run time to enable fast context switching
to the isolated environment. However, some other Intel fea-
tures can be used for SICE. For instance, new Intel hardware
is equipped with special instructions to do a high through-
put cryptographic operations using the Advanced Encryp-
tion Standard (AES). In the time-sharing mode, this feature
can be used to encrypt and authenticate the memory of the
isolated workload while the legacy host is running, and de-
crypt and verify the same memory in the isolated environ-
ment. Thus, the SMRAM can only be used as a permanent
storage of encryption keys. Further research is needed to
evaluate the feasibility and performance of this approach.
Memory Double-view: Intel platforms define the TSeg

SMRAM in its memory controller hub, which is shared among
multiple cores. Unless the implementation is modified to
move the SMRAM definition to a core specific location, our
memory double-view technique will not be able to isolate
individual Intel processor cores.

Nevertheless, current Intel implementation can apply this
technique on processor nodes as they do not share the same
memory control hub, allowing a more coarse grained isola-
tion of the resources on physical platforms.
Multi-core Protection: Intel does not provide a capabil-
ity that can disable all system interrupts. As mentioned in
Section 4.2, we rely on this capability to prevent the host
core from using the startup IPI to modify the execution en-
vironment of the isolated core. However, the startup IPI can
only set the instruction pointer to an address in the lowest
1MB of the physical memory. This address range can be
easily modified to point to a non-writable memory chip.
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