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ABSTRACT 

In this paper we show that any user of a VoIP service over a 

private network, even one without a special attack capability (e.g., 

wiretapping), can discover calls between two targeted individuals, 

with high probability. We conducted this privacy attack in an 

experimental setting using three types of commercially available 

closed-source phones that implement the standard IETF Session 

Initiation Protocol (SIP) in hardware. We show that private call 

records can be probabilistically derived by using a new class of 

side-channels caused by resource contention. By sending care-

fully designed VoIP packets and analyzing the responses, an 

ordinary user can detect the busy status of SIP phones without 

alerting either the caller or the callee. Hence an ordinary user can 

correlate the busy status of two given phones, or more, can detect 

calls between them. We demonstrate the effectiveness of our 

remote attack on three commercial closed-source phones, and 

discuss countermeasures. 

Categories and Subject Descriptors 

C.2.0 [Computer-Communication Networks]: General – 

security and protections.  

General Terms 

Experimentation, Security  

Keywords 

Privacy; Anonymity; Side-Channel Attacks; Protocol 

1. INTRODUCTION 
On January 10, 2010, the Washington Post reported that the 

FBI broke US law by illegally obtaining over 2,000 records for 

phone calls made by US citizens (call logs, but not call content) 

without obtaining a “national security letter,” as required by the 

Patriot Act of 2001 [28]. Since a call record does not contain 

information about the call (e.g., voice patterns, data, content), one 

cannot help but wonder: What makes the collection of call records 

such an attractive data source as to  cause the FBI to break US 

law? Furthermore, why would the FBI break the law for so few 

records, as compared to similar actions by the NSA, which 

collected over 1.9 trillion call records between 2001 and 2004 [1, 

19] ? These few records must provide important information. 

 

Call-record analysis is one of the oldest tools used in defense, 

law-enforcement, and business intelligence. Call records enable 

an analyst to discover the social milieu of targeted individuals, or 

groups. For example, a call-record database allows both single 

link (e.g., time, initiation, duration, frequency of a call) and 

cluster analysis of calls in the temporal, spatial, and frequency 

domains. It can also indicate overlaps among different clusters, 

such as those obtained from different investigations, and 

similarity of clusters, such as those obtained when a group of 

targets changes their phone numbers (to avoid tracking) but not 

their communication habits.  Relatively small call-record sets, 

well under 10,000 records, have been sufficient to discover a 

variety of law-breaking operations worldwide, ranging from drug 

trafficking in New Zealand [29], to drug smuggling in a 

Minnesota prison, to surreptitiously charging unsuspecting 

pornography clients with expensive and unwanted 900-number 

phone calls in Moldova [19]. Even smaller sets of call records 

have been used to (illegally) detect boardroom leaks in a major 

US corporation [20].  

The question that motivates the privacy attack reported in this 

paper is the following: would call-record analysis be possible in a 

private VoIP network? Specifically, a private VoIP provides 

anonymity for callers and callees, and for their relationship [24]. 

Informally, this means that the caller and callee’s phones are 

indistinguishable from other phones in the VoIP network, and 

neither the caller nor the callee can be linked to each other. In 

such a setting, end-to-end encryption would force end-point 

invasive wiretapping, or even end-host malware/Trojan insertion, 

for call-record collection. This would be an expensive proposition, 

which would undoubtedly require additional legal work, such as 

court orders, and would face increased odds of detection by the 

owners of the targeted phones. While a private VoIP network is 

yet to be fully achieved in practice, a low-latency encrypted 

channel using with one or more (trusted) forwarding proxies is a 

reasonable approximation1 of such a network and could become 

the medium of choice for the private calls in the rapidly growing 

VoIP communications [3, 17]. In this paper, we answer our 

motivating question affirmatively, by showing that any user of a 

private VoIP network without any special attack capability – not 

just a powerful government agency equipped with a national 

security letter – can discover private calls between two or more 

                                                                 

 
1 Low-latency anonymous networks provide anonymity through 

multiple forwarding proxies where anonymity is still maintained 
even if some of the proxies are compromised. Current deployed 
systems such as Tor and I2P cannot provide low enough latency 
for VoIP to become practical (<400ms delay). However, 
commercial services such as anonymous.com provide 
anonymity through a trusted proxy (VPN) where latency is low 
enough. 
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specified targeted phones.  Discovery of private calls can breach 

the relationship privacy of two or more phone users and can have 

unpredictable effects, as we argue below.  

Adversary Definition. In Figure 1, attack targets Alice and 

Bob establish a VoIP session. The session can be delivered over 

one or more forwarding proxies to provide anonymity, if its 

latency satisfies the needs of VoIP (i.e., <400ms latency 

recommended by ITU-T G.114; longer latency tolerance for 

tactical environments) [3, 4, 13, 17]. The forwarding proxies can 

be implemented in the network layer, transport layer, or 

application layer.  Adversary Eve’s goals are to discover whether 

Alice and Bob communicate with each other using the private 

VoIP network, the duration of the conversation, and if possible, 

the call initiator. 2   Eve can also perform link analysis and 

determine the strength of ties between Bob and Alice.  The tie 

strength can be accurately measured by interaction frequency, 

evidence of recent communication, communication reciprocity, 

and the existence of at least one mutual friend in linking the two 

targeted parties [7].  

Our adversary Eve does not need any added capabilities 

beyond those of an ordinary user. As shown in Figure 2, she can 

send probe VoIP packets to the targeted phones and receive 

response VoIP packets in return, and need not have any 

eavesdropping capabilities.  Yet her probing is undetectable3 by 

the end-users of the targeted phones unless the phone logs or 

network traffic are analyzed; i.e., her packets alert neither Alice 

nor Bob that their phones are being probed remotely.  

Attack Overview. The simplest attack consists of the two steps 

illustrated in Figure 3. In the first step, the Eve detects whether 

both Alice’s phone and Bob’s phone are busy; i.e., she performs 

busy-status detection for both phones. In the second step, Eve 

verifies whether Alice’s phone and Bob’s are busy, or not busy, at 

almost the same time; i.e., she performs call correlation. If the 

phones’ busy statuses correlate, then Alice and Bob probably 

share a VoIP call session during Eve’s probing period. Note that 

                                                                 

 

2 In addition to the hypothetical role of an eager FBI agent lacking 

a national security letter, Eve could alternatively be a jealous 

girlfriend wanting t to determine whether her boyfriend Bob is 

cheating with her best friend Alice. 

3  We assume the unsuspecting end-user of a targeted phone 

accesses the phone via the handset, hook, buttons, rings, and a 

display. 

the busy-status detection should be undetectable (not alerting the 

phone end-users); otherwise the end-users of the targeted phones 

can easily recognize the anomaly and stop using these phones.  

Resource contention is what makes it possible to detect a 

phone’s busy status in a private VoIP network. The resource, 

namely the protocol buffer, is used to store the contexts of the 

VoIP protocol negotiation. Certain VoIP packets (e.g., call-setup 

packets) create a state machine in both the caller and callee 

phones. The context of the state machine, including the status and 

timer, is stored in a slot of the protocol buffer. When the desired 

action is completed or times out, the buffer slot occupied by the 

call is released. Call-termination packets can expedite buffer slot 

release if the buffer slots are occupied due to call-setup packets.   

In some VoIP phones, including those implemented with 

dedicated hardware, the protocol buffer is a fixed-size array. As 

expected, fixed-size protocol buffers can cause resource 

contention. For example, in a protocol buffer containing N slots, 

the call setup occupies 1 slot and the remaining N-1 slots are 

available for other protocol instantiations. This implies that if the 

adversary can detect the number of available protocol buffer slots, 

she can determine a phone’s busy status. She can do this by 

periodically sending VoIP packets, which would overflow all 

available protocol buffer slots of the targeted phone, and detecting 

whether a full-buffer condition is signaled back. By examining the 

response to a full-buffer condition, the adversary can count the 

number of available protocol buffer slots in a targeted phone. This 

enables the adversary to detect the phone’s busy status in a matter 

of seconds – much faster than with any of the current 

eavesdropping/flow-analysis methods. Rapid busy-status 

detection makes our attack feasible in any private VoIP network. 

For our privacy attack experiments, we selected the IETF Session 

Initiation Protocol (SIP), which has been widely adopted by the 

telecommunication industry, the military, cable operators,   and 

consumers at large. Theoretically, the proposed attack may apply 

to landline phones if the adversary has access to the 

telecommunication signaling network (e.g., having a Private 

Branch Exchange).  

Contribution. The main contribution of this paper is the 

definition of a new, powerful attack against call-records privacy, 

which is launched with ordinary-user capability and succeeds with 

very high probability in private VoIP networks. This attack not 

only indicates that a fixed-size buffer in a SIP phone can result in 

private information leakage, but also implies that other exclusive 

resources, such as operating system resources (e.g., semaphore; 

number of threads) may enable privacy breaches in SIP or other 

VoIP phones.  We tested our attack in closed-source commercial 
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SIP phones, which do not provide implementation documentation, 

a fact that provides further testimony for the practicality of this 

attack. We propose countermeasures against this type of attack, 

including protocol-buffer manipulation to reduce call-detection 

probability, attack-discovery mechanisms, and firewalls. 

2. THE ATTACK 
In this section, we provide an overview of SIP with an 

emphasis on the mechanisms related to SIP resource contention 

side-channels. Then we show how busy-status detection is 

enabled by six side-channels that we found by testing closed-

source commercial VoIP phones. (The reader who is familiar with 

the IETF SIP specification can skip Section 2.1 below.) 

2.1 Call Setup and Termination Overview 
SIP is an HTTP-like application-layer protocol designed for 

VoIP signaling and other applications that require devices to 

setup/terminate sessions to exchange information [10]. SIP uses a 

transaction as its basic message exchange component. A 

transaction is composed of a request message, optional 

provisional response messages, and a final response message. In 

this paper we use the terms ‘transaction’ and ‘request’ 

interchangeably in the case where the request represents the 

transaction itself. The communication initiated by the caller to a 

callee’s phone can be relayed by one or more SIP proxy servers. 

Relaying, which is typically used for billing, redirection and many 

other telephony functions, generally does not affect our attacks.  

 In Figure 4, we illustrate a call setup (Transaction 1) and 

termination (Transaction 2) in SIP. In Transaction 1, the caller 

first sends an INVITE request to the callee. A SIP request 

message includes three parts. The first part contains the method 

name, such as INVITE, to describe the main purpose of this 

request. The second part contains headers, which specify 

attributes (e.g. To: sip:wj@iptel.org). The third, and optional, part 

is the payload, which usually includes media parameters encoded 

by the Session Description Protocol (SDP). When the INVITE 

request is received, the callee’s phone rings, and immediately 

sends a provisional response, such as “180 RINGING,” to the 

caller. (SIP responses are identified by a 3-digit number.) 

Responses with a hundreds digit of value of 1 are called the 

“provisional responses” (denoted 1xx in SIP specification) and 

provide status information to the caller in the middle of the 

transaction. In Transaction 1, the callee also decides to answer this 

call by picking up the handset, so the callee’s phone sends back 

Figure 5. A non-INVITE transaction at the server side  Figure 4. SIP call setup and termination 
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“200 OK” in response to the original INVITE request. “200 OK” 

is among the “final responses”, which are specified by codes with 

digits that do not begin with a 1 (i.e., 200-699 in SIP 

specification). 

After the caller sends an ACK request (as the final 

acknowledgement), the caller and the callee will have already 

reached an agreement on the media parameters for establishing a 

voice channel, using a streaming protocol such as RTP.  

Eventually one of the two parties (in this case, the callee) will 

terminate the call by initiating Transaction 2 with a BYE request. 

The other party replies using a “200 OK”, which terminates the 

voice channel. 

SIP defines the roles of server and client. When a SIP protocol 

side receives SIP requests and sends SIP responses, it acts as a 

server; when it sends SIP requests and receives SIP responses, it 

acts as a client. Four state machines are defined to describe the 

general behavior of INVITE and non-INVITE transactions for SIP 

clients and server roles.  Method-specific behavior is based on the 

four state machines. In Figure 5, we illustrate one of the four state 

machines for a non-INVITE transaction on the server side.  When 

the SIP phone (a Transaction User) receives a non-INVITE 

transaction, such as BYE or OPTIONS, it enters the Trying state 

and creates a transaction instance. After sending the provisional 

responses (1xx), it enters the Proceeding state. If the SIP phone 

(i.e., user) decides to send out a final response (200-699), it enters 

the Completed state. When Timer J signals a time-limit exceeded 

event or there is a transport layer error, the state machine ends up 

in the Terminated state and the transaction expires. By default, 

Timer J is set to 32 seconds for UDP and 0 seconds for 

TCP/SCTP.4 Timer J also helps SIP to handle packets lost in UDP 

via retransmission.  

2.2 Busy-status Detection 
Side-Channel. Like other stateful protocols, SIP needs a 

protocol buffer for storing the protocol negotiation context for 

each transaction. In some SIP phones, especially for those 

implemented through dedicated hardware (i.e., hardware SIP 

phones), the protocol buffer is implemented as a fixed-size array 

for two reasons. First, SIP phones generally do not need a large 

protocol buffer since they are not expected to receive dozens of 

calls per second. Second, if the protocol buffer is a simple fixed-

size array, the SIP phone can recover from buffer flooding 

automatically, after the flooding packets are gone.  In contrast, if 

the protocol buffer is allocated on demand, recovery is more 

complex, as the SIP phone may enter unrecoverable states (e.g., 

kernel panic) due to unreleased, used-up memory. The 

disadvantage is that this fixed-size array enables an adversary to 

count the number of available slots in the protocol buffer and tell 

whether a VoIP session exists; i.e., the adversary is able to tell 

whether a buffer slot is used and the phone is busy.  The adversary 

exploits this side-channel to detect calls surreptitiously.  

Detection Algorithm. Let N be the size of the protocol buffer. 

To count the number of available buffer slots, the adversary sends 

N+1 SIP request (i.e., probes) to the targeted phone, sending one 

every d time units. d is chosen to be small enough so that no 

request could expire and free up a slot before the last request is 

                                                                 

 

4 SIP standards require both UDP and TCP to be implemented, but 

UDP is generally more popular than the TCP because TCP has a 

longer call-setup time due to a three-way hand-shake [5]. 

received. In some SIP implementations, when the buffer becomes 

full, the phone ignores the next request, whereas in others it 

returns an error. Suppose the protocol buffer size has h available 

slots before the adversary begins sending requests. If the phone 

ignores the request arriving after the protocol buffer is full, the 

adversary will not receive the response number h+1, as shown in 

Figure 6 (a). In the other case, the adversary will receive an error 

response for the h+1st request, such as “486 Busy Here,” as shown 

in Figure 6 (b). In either case, the adversary discovers the value of 

h.  

Detection Side Effects. Note that if the SIP phone, or proxy in 

the transmission path, supports retransmission, the adversary will 

get a delayed positive response to the h+1st request after the 

protocol buffer slot becomes free.  However, this delay is several 

seconds or less, and cannot affect busy-status detection. 

Another side effect arises because whenever the protocol 

buffer becomes full, the phone is disabled for a period of time, 

which we call the disabled period. For example, our experiments 

with two phones show that the disabled period is close to 30 

seconds (with parameters d=80ms, N=6 for 7940G, N=32 for 

PAP2). The details of this calculation are shown in Appendix II.   

During the disabled period, the targeted phone does not answer a 

caller’s setup request. Only after the disabled period ends is the 

targeted phone able to receive a call setup request issued by the 

retransmission mechanism of the caller phone or proxy. This 

disabled period causes the target-phone user to perceive a small 

ring delay. However, as described later, it is possible to shorten 

the disabled period in some phones such that the target-phone user 

will experience almost no ring delay.  

Target-Undetectable Probe Requests. Since we used closed-

source hardware phones, we had to find SIP methods and 

parameters that could be used as probes for busy-status detection, 

experimentally.  Suitable SIP requests (i.e., probes) must fill the 

protocol buffer and yet must not alert the targeted user (e.g., by 

phone rings) that an attack is in progress. We experimented with 

all SIP methods on the closed-source phones and found that 

OPTIONS, INVITE, NOTIFY, and UPDATE methods are 

suitable for implementing adversary probes. In describing the 

suitable SIP requests, we use the naming convention “METHOD-

type,” such as “INVITE-require” or “OPTIONS-ordinary” below.  

These SIP requests are discussed below. Examples of actual SIP-

request messages are given in Appendix I. 

1) INVITE-require and INVITE-SDP requests. As described 

in Section 2.1, the INVITE transaction performs the call setup. By 

Figure 6. Possible target-phone responses when the protocol 

buffer is full 

(a) 
(b) (a) (b) 



default, upon receiving an ordinary INVITE request, the SIP 

phone alerts (rings) the user. If this were always the case, the 

INVITE transaction could not be used to perform busy-status 

detection. However, an INVITE request that is invalid for making 

a call will not ring, and hence could be used for busy-status 

detection.  We found two types of INVITE requests with this 

capacity,  namely INVITE-require and INVITE-SDP.  

We use an INVITE-require request with a Require header 

whose functionality is not supported by the callee [10]. For 

example, the header “Require: 100rel” in an INVITE request 

requires the callee to support an extension named 100rel. If the 

callee does not support the requested function, the callee responds 

immediately without alerting the user, but a protocol-buffer slot 

still remains allocated in the callee’s phone. Hence, an INVITE 

request with a header “Require:xx” is suitable for busy-status 

detection. Similarly, the INVITE-SDP request can also attach an 

invalid SDP message in the INVITE request (e.g., an 

incomplete/invalid IP address in SDP). The INVITE with SDP is 

a commonly used request since a call setup needs to exchange 

media parameters through several SDP messages attached in the 

call-setup messages [11].  

Disabled-Period Shortening. For busy-status detection using 

the INVITE method, there is a way to shorten the disabled period 

dramatically; i.e., to less than 2 seconds. To do this we use ACK 

requests, which terminate the INVITE transactions. Call setup is a 

three-way handshake, including an INVITE request (caller to 

callee), INVITE response (callee to caller), and ACK request 

(caller to callee), as shown in Figure 4. Since an INVITE request 

occupies a protocol buffer slot, an ACK request would release that 

buffer slot. Hence, as soon as the adversary receives all INVITE 

responses from the callee, it can send the ACK requests to force 

the freeing of the occupied protocol-buffer slots.  

2) OPTIONS-ordinary request. An ordinary (no special header 

needed) OPTIONS request can also serve as busy-status detection 

probe. An OPTIONS request is used to query the protocol 

capability of a SIP device, and can be used as a trace route tool. 

The adversary sends the OPTIONS requests to the phone and they 

will occupy the protocol buffer slots. 

3) NOTIFY-check-sync and NOTIFY-refer requests. SIP 

provides an asynchronous event-notification scheme for signaling 

events (e.g. voice mail is available) [12]. An event can be 

subscribed to in advance and then will be delivered to a SIP 

phone. (The Internet’s IANA organization maintains the database 

of valid event parameters [9].) The events are sent via NOTIFY 

requests. Thus, the adversary simply sends NOTIFY requests with 

specific event identifiers (e.g. with the header “Event:refer”) to 

occupy the protocol buffer slots.  

4) UPDATE-ordinary request. The UPDATE method changes 

the media parameters during a call. The UPDATE method is 

seldom implemented, and thus it is possible that unsupported 

UPDATE requests (and other unsupported methods) can still 

occupy the SIP protocol-buffer slots and allow busy-status 

detection.  

2.3 Call Correlation 
Busy-status detection can detect the busy status of a phone at a 

specific time. However, depending on the phone type, the busy-

status detection can determine whether the  phone is busy either 1) 

at any time during the call, or 2) only at the beginning and/or the 

end of the call.  

Hence, we define three tests for correlating busy status to infer 

a call. When both of the two targeted phones belong to the first 

type, we use the continuity test: the busy period of one phone 

(from time i to time j) should be close to the busy status of another 

phone (from time x to y) such that |x-i|+|y-j|<ε, where ε is a 

constant indicating the upper-bound of measurement error. 

Otherwise, we use the weak or strong tests. The weak test is that 

the two phones are busy at the beginning or at the end of the call 

such that |x-i|<ε or |y-j|<ε. The strong test is that two targeted 

Figure 9. Responses of BT-100 under INVITE-SDP attack 
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phones are both busy at the beginning and the end of the call such 

that |x-i|<ε and |y-j|<ε. 

3. THE ATTACK EXPERIMENTS 
We set up a simple VoIP network including three (hardware) 

SIP phones to perform the busy-status detection and call-

correlation steps. For busy-status detection, we show how the 

phones respond to the probe requests. For call correlations, we 

derive the detection rate. 

3.1 Environment 
We implemented a program named Voice Pulser to perform 

busy-status detection. Since the proposed attack does not require 

eavesdropping, we experimented on an ordinary LAN [14]. Voice 

Pulser sent attack messages to the three phones, which were a 

Linksys PAP2, a Cisco 7940G, and a Grandstream BT-100. The 

PAP2 is a consumer-level product which was bundled by Vonage, 

a major VoIP service provider. The 7490G is a medium-level 

product that provides business phone features. Although Linksys 

is a division of Cisco, the PAP2 and 7940G use different protocol 

stacks and operating systems. The Grandstream BT-100 is an 

entry-level VoIP phone. Communication between the testing 

phones was relayed by a SIP proxy server. 

3.2 Busy-status Detection  

3.2.1 Attacks based on INVITE 
We examined the phone responses under INVITE-require 

(PAP2 and 7940G) and INVITE-SDP (BT-100) attacks with two 

conditions, namely 1) when the phone did not receive or make a 

call (Not Busy), and 2) when the phone made or received a call 

and was still active on the line (Busy). Voice Pulser sent 33 and 7 

attack SIP messages to the PAP2 and 7940G, respectively, 

according their protocol buffer sizes. We sent 23 attack SIP attack 

messages to the BT-100. Figure 8 shows how the PAP2 received 

all 33 responses when it was not busy and missed the 33rd 

response when it was busy. Figure 7 shows how the 7940G 

responded with an error ‘486 Busy Here’ when the protocol buffer 

was full. Figure 9 shows the BT-100 response, which was slightly 

different.  In the middle of the 23 probes, we made a call from the 

BT-100. According to RFC 3261, a SIP phone should add a tag to 

the To field when responding to a request. E.g., “To: 

wj@iptel.org” in a request becomes 

“To:wj@iptel.org;tag=aa69981” in the response. The tag must be 

cryptographically random and globally unique (i.e., a nonce). 

When the BT-100 was not busy, the To tag was a nonce 

consisting of digits and letters. However, when the BT-100 was 

busy, the To tag was fixed.  

Based on the above observations, the adversary is able to 

determine the busy status of the PAP2 by finding out whether the 

33rd response is received, while the busy status of the 7940G is 

shown when the 6th response is a “486 Busy Here”, and the busy 

status of the BT-100 is found by checking whether two 

consecutive responses have the same value for the To tag.  

3.2.2 Attacks 
We evaluated all types of attack messages listed in previous 

section and show the results in Table 1 and Table 2. Table 1 

indicates whether the busy-status detection was successful. Table 

2 provides details for the phones responses to the probe requests 

and how the busy status can be identified. 

The PAP2 phone had different responses to different request 

probes. It responded with “200 OK” to OPTIONS-ordinary, 

NOTIFY-refer and NOTIFY-check-sync attacks. Even though 

refer and check-sync events are not supported by PAP2, for 

NOTIFY-refer and NOTIFY-check-sync, it responded “200 OK” 

as well. For the INVITE-require probe, PAP2 rejected the request 

with message “420 Bad Extension” because the requested 

extension “xx” is not supported. Since the UPDATE method is 

not supported by the PAP2, for UPDATE-ordinary, it responded 

with “501 Not Implemented.” It is noteworthy that the protocol 

buffer size N of PAP2 has a different value (N=33 instead of 32) 

in the INVITE-require request probe. This due to the fact that 

INVITE and non-INVITE transactions use different state 

machines.  

The 7940G phone allows busy-status detection for only 

INVITE-based attack messages. We believe that the designers of 

the 7940G tried to avoid any unnecessary resource usage so that 

all requests, except those of the INVITE method, avoid filling the 

protocol buffer. Ironically, their conservative resource-

management design enables disabled-period shortening.  

Table 1. Phones against the attacks 

 Linksys PAP2  Cisco 7940G  Grandstream 

BT-100 
OPTIONS-

ordinary 

Success(S1) Fail(F2) Fail(F2) 

INVITE-
require 

Success(S2)  Success(S4) * Fail(F1) 

INVITE-

SDP 

Fail(F1) Success(S5) * Success(S6)# 

NOTIFY-
refer 

Success(S1) Fail(F2) Fail(F3) 

NOTIFY-

check-sync 

Success(S1) Fail(F2) Fail(F3) 

UPDATE-
ordinary 

Success(S3) Fail(F3) Fail(F3) 

*: Disabled period shortening is supported 
#: No disabled period 

 

Table 2. Explanation of Table 1 

Type How the SIP phone responds 

S1 “200 OK” response for first h requests 

No response for other requests  
h=32 if not busy; h=31 if busy 

S2 “420 Bad Extension” response for first h requests 

No response for other requests  

h=33 if not busy;  h=32 if busy 

S3 “501 Not Implemented” response for first h requests 

No response for other requests  

h=32 if not busy; h=31 if busy 

S4  “420 Bad Extension” response for first h requests 

“486 Busy here” response for other requests 

h=6 if not busy; h=5 if busy 

S5  “500 Internal Server Error” response for first h requests 
 “486 Busy here” response for other requests 

h=6 if not busy; h=5 if busy 

S6 The To tag in the response is a nonce if not busy;  
The To tag in the response is a fixed value if busy 

h=1; no disabled period 

 
When the phone is busy as the caller, To tag consists of 

digits and upper-case letters; 

When the phone is busy as the callee, To tag consists of 
digits and lower-case letters. 

F1 The phone rings 

F2  “200 OK” response for all requests 

F3  Other responses (415, 401, 501, etc.) 

 
 

 



The BT-100 phone is only vulnerable to INVITE-SDP. In 

contrast with the other phones, the adversary can easily identity 

whether a BT-100 phone is the caller or callee. The To tag 

consists of upper-case letters characters when the phone is the 

caller; the To tag consists of lower-case letters when the phone is 

the callee. Another difference is that the BT-100 phone does not 

have a disabled period: attack messages do not occupy the 

protocol buffer slots yet the busy status is still revealed.  

3.2.3 Response-Time Behavior 
It is also important to know how often the busy-status 

detection can be performed. We used several different probing 

intervals and found the minimum values as shown in Table 3. The 

adversary can probe the PAP2 phone with a 34 seconds interval, 

the 7940G phone with a 2 seconds interval (when the disabled 

period is shortened), the BT-100 with a 3 seconds interval  (no 

disabled period).  

The disabled period also affects the ring delay, which is the 

time between the call setup and ring. Table 3 also shows the ring 

delay. While the PAP2 phone has a longer ring delay under attack, 

the 7940G and the BT-100 have no significant ring delay under 

this attack. For all three phones, the ring delay is essentially 

negligible for end-users unless they analyze the network traffic or 

phone logs.  

3.3 Call Correlation 
A phone has four possible roles. For call setup, a phone can 

either send the setup request (call-setup initiator) or receive it 

(call-setup recipient). Similarly, for call termination, a phone can 

either send the termination request (call-termination initiator) or 

receive it (call-termination recipient). 

First, we used the following steps to demonstrate a scenario 

for call correlation in Figure 10. The 7940G called the PAP2 after 

Voice Pulser had started, at 360 seconds, and the 7940G 

terminated the call at 700sec. For the 7940G phone (call-setup 

initiator and call-termination initiator), the phone revealed its busy 

status during the entire call. In contrast, the PAP2 phone (call-

setup recipient and call-termination recipient) only showed that it 

was busy when the call setup and call termination steps were 

performed.  

We then performed experiments where the three phones had 

different roles. The experimental steps are as follows:  

1. Use Voice Pulser to probe the PAP2 and the 7940G 

(or BT-100) concurrently for their busy status with a 

34 second interval.  

2. Use one of the phones to call the other. 

3. Pick up the callee phone after 10 seconds (before 

ring), or after it rings, if the call setup requires more 

than 10 seconds. 

4. Hang up the caller phone. 

Table 4 shows the results. For the detection rate, there was an 

outstanding case when the PAP2 received the call setup request.  

The detection rate was 53%, instead of either 0% or 100%. The 

reason is that the PAP2 phone has a non-negligible disabled 

period. In that case, whether the adversary could detect the call 

setup depended on the time when the call setup was performed. 

We performed 17 experiments, varying the call setup; i.e., the call 

setup was performed at 5 seconds increments (60, 65,…, 140) 

after the Voice Pulser started monitoring.  The timing spread over 

two Voice Pulser monitoring intervals (2×34 seconds). 

The 7940G and BT-100 phones achieved a 100% detection 

rate in all four roles. This means that if the adversary monitors 

7940G or BT-100 phones, she will detect all VoIP calls between 

them via the continuity test. In contrast, the adversary will not be 

able to detect calls if a PAP2 phone is busy when it initiates or 

terminates a call. However, this finding does not imply that the 

PAP2 is invulnerable to our attack. If the adversary monitors a 

PAP2 phone and a 7940G (or BT-100) phone, she can still detect 

the VoIP calls between them, except in the case when the PAP2 

calls the 7940G (or BT-100) and the PAP2 terminates the call.  

Table 4 also shows that the false alarm rate was extremely 

low. To estimate the false alarm rates, we probed the phones 

continuously for over 13 hours (1459 probes). The PAP2 phone 

only had a 0.2% false alarm rate whereas the 7940G and BT-100 

had a rate of 0%. 

We present the detection rates of call correlation for the 

7940G and PAP2 in Table 5. Since the 7940G and BT-100 had 

the same detection rates in all roles, they are identical in deriving 

the detection rates of call correlation. In general, the detection 

rates of the 7940G (and the equivalent BT-100) are better than the 

detection rates of PAP2. If the two targeted phones are both a 

7940G (or BT-100), as in case 6 of Table 5, then the detection rate 

is 100%. In contrast, if the two targeted phones are both PAP2 

models (case 5 of Table 5), then the detection rate is 0%. If the 

two targeted phones are 7940G (or BT-100) and PAP2 phones, 

the detection rates depend on phones’ type and their roles in a 

call.  

Table 3. Timing behavior of busy-status detection 

 LinkSys  

PAP2 

Cisco  

7940G 

Grand-

stream  

BT-100 

Minimum Probing 

Interval  

34s 2s 3s 

Ring delay under 

attack* (mean/stddev) 

4.8s/ 

6.3s 

12.3s/ 

0.47s 

0.1s/# 

Regular ring delay* 

(mean/stddev) 

1.41s/ 

0.51s 

12.4s/ 

0.50s 

0.1s/# 

*:17 samples 
#: The phone rings immediately such that the investigator cannot 

differentiate the ring delay between different tests 

 

0 200 400 600 800 1000

time (sec)

Cisco 7940G (caller)

0 200 400 600 800 1000

Linksys PAP2 (callee)

time (sec)

Figure 10. A call correlation experiment: 7940G calls PAP2  

at 360sec and terminates at 700sec (7940G as call setup 

initiator and call termination initiator) 



4. COUNTERMEASURES 
Busy-status detection relies on the protocol-buffer contention 

and undetectability of probing requests by a callee. Therefore, 

mechanisms that could prevent or neutralize protocol-buffer 

contention or enable probe detection by a callee would serve as 

effective defenses. 

Protocol-buffer randomization. Randomization is a classic, if 

somewhat impractical, technique for defending against both 

covert- and side-channel attacks. In our case, phone firmware can 

be modified to provide randomization in the available size of the 

protocol buffer or the transaction life. A limitation of this 

technique is that it may be incompatible with the manufacture’s 

firmware updates. A simpler countermeasure, though not a 

permanent solution, is for the VoIP administrator to use Voice 

Pulser to send “attack” packets at random intervals to the phones. 

This would introduce “noise” and reduce the adversary’s ability to 

estimate the number of available protocol buffer slots. To 

maintain the phones’ operability, the “attack” packets should be 

sent slowly enough that they would not fill the protocol buffer. 

This approach is scalable in the sense that one installation could 

protect many phones. One limitation of this approach is the 

availability of the server hosting Voice Pulser. If the server is 

unavailable, call privacy protection will also be unavailable.  

Firewall. An application-layer firewall could filter packets 

that exhibit probing patterns and limit the maximum probing rate. 

For example, the INVITE-require attack could be avoided by 

filtering INVITE requests with unsupported extensions. Such an 

application-layer firewall has an inherent disadvantage: it can only 

recognize busy-status detection attacks with known patterns. 

Another drawback is that application-level firewalls cannot handle 

encrypted communications such as the S/MIME used for SIP end-

to-end encryption. Furthermore, the state maintained in the 

application-level firewall may become another side-channel. 

Another approach is to monitor and block suspicious periodic 

network traffic. Although it can be easily done, false detection is 

an issue.  

Full protocol-buffer alert. Alerting the user when the protocol 

buffer is full is a simple way to “unblind” the previously 

undetectable busy-status detection probes. The SIP phone or the 

server could simply display a message on the screen, leave a voice 

message, or send an email to alert the user of a potential attack.  

5. RELATED WORK 
Current VoIP privacy attacks against low-latency anonymous 

network differ from our attack since they require much stronger, 

and largely impractical, adversary capabilities; e.g. global 

eavesdropping, full control of end-points, and malware insertion 

capabilities. Wright et al. showed that the text can be extracted 

from encrypted VoIP traffic by probabilistic methods [31]. 

Srivasta et al. confirmed the existence of VoIP calls by correlating 

flows, and required a global adversary who knows the number of 

flows between nodes (including VoIP nodes) of an anonymous 

network [26]. In Wang, Chen and Jajodia’s watermarking attack, 

the adversary perturbs and monitors the timing of the VoIP flows 

between a VoIP node and a corresponding anonymous network 

end-point [30]. Their attacks require the control of anonymous 

network end-points. In other attacks, the adversary has to resort to 

installing malware in the targeted phones [18]. However, such 

attacks could be defeated by firmware integrity checks (e.g. use of 

Trusted Platform Modules in phones) and would not scalable to 

more than very few targets. More interestingly, privacy attacks in 

anonymous networks cannot, and are not intended to, be used for 

call detection since they require longer data acquisition times than 

an entire phone call, which may only last for seconds or minutes 

[2, 22].  

The idea of correlating the busy status of SIP phones with call 

records is also similar to that of associating users’ online/offline 

status in Instant Messaging to infer friendship relations, as shown 

in the work of Resig et al. [25]. They hypothesized that if two 

users go online and go offline at about the same time, the two 

Table 4. Performance of busy-status detection 

Type Role 

 

PAP2 7940G BT-100 

Detection rate Call-setup initiator(caller); sending INVITE request 0% 100% 100% 

Call-termination initiator; sending BYE request 0% 100% 100% 

Call-setup recipient(callee); receiving INVITE request 53%* 100% 100% 

Call-termination recipient; receiving BYE request 100% 100% 100% 

False alarm rate No actions 0.2% 0% 0% 

*: Tested by 17 samples 

 

Table 5. Detection rate of call correlation derived from Table 4 

 Call setup Call termination Detection rate 
(continuity test) 

Detection rate (weak 
test) 

Detection rate 
(strong test) 

initiator recipient Initiator recipient 

Case 1 PAP2 7940G* PAP2 7940G N/A 0% 0% 

Case 2 PAP2 7940G 7940G PAP2 N/A 100% 0% 

Case 3 7940G PAP2 PAP2 7940G N/A 53% 0% 

Case 4 7940G PAP2 7940G PAP2 N/A 100% 53% 

Case 5 PAP2 PAP2 PAP2 PAP2 N/A 0% 0% 

Case 6 7940G 7940G 7940G 7940G 100% 100% 100% 
*: 7940G in this table can be replaced by BT-100 since they have same detection rate as shown in Table 4 

 

 



users may be friends. In contrast with our work, Resig et al. 

assume that the user status (online/offline) was explicitly provided 

to the adversary by the users, while we must find the phone status 

(busy/not busy) in a manner that is undetectable by the targeted 

phone users.  

The idea of obtaining remote host information by sending 

packets and analyzing responses has been used in the past, but in 

different ways with different goals. Operating-system 

fingerprinting can identify the operating-system versions based on 

how TCP/IP subsystem responds to attack packets [23]. For 

example, the widely-used tool nmap [6] sends out packets in TCP, 

UDP, and ICMP and analyzes the types of responses it gets, but 

not their timing. While some of these techniques do not alert the 

remote hosts in standard TCP/IP subsystems, they have very 

different goals than ours. Our attacks discover the internal state 

(busy status) of a network node, whereas operating system 

fingerprinting only distinguishes different types of network nodes.  

In another form of fingerprinting, Gong, Kiyavash, and 

Borisov analyze the round-trip time to extract private information 

from remote hosts [8]. They sent ICMP packets to a DSL router 

and used the time series of response times to fingerprint the 

websites accessed through that router. Our attack also obtains 

remote private information through active probing, but differs 

from the technique of Gong et al., in three ways. First, the goal of 

our attacks is to obtain the call-records for targeted phones, 

whereas their goal was to identify the website accessed by a host 

behind a DSL router. Second, our attacks can penetrate 

application-level proxies while their ICMP packets cannot; i.e., 

the target’s IP address is necessary for their attack, but not for 

ours. Third, we assume that every entry in the protocol buffer 

expires independently, whereas they use a FIFO queue to model 

how ICMP packets are processed.  

Although we use resource exhaustion in a similar way as 

research on covert channels, ours is a side channel, not a covert 

channel, since we do not need a Trojan Horse program installed 

on a targeted phone to leak its busy status [18]. However, in 

contrast with traditional side-channel attacks used in cryptography 

[15, 16] and non-traditional ones used to detect clock skew in 

remote hosts [21], our attack correlates the side channels of 

multiple network nodes, rather than operating on a single node. 

Our side-channel is based on resource-use detection and is 

somewhat reminiscent of the resource exhaustion attack in the 

TCP SYN flooding analyzed by Schuba et al. [27]. Both TCP 

SYN flooding and our attack send packets to fill a buffer. 5 

However, these attacks differ in their execution and goals: our 

attack determines the current size of the buffers, whereas TCP 

SYN flooding fills a host buffer to disable the host. 

                                                                 

 

5 TCP is a three-way hand-shake protocol. The client sends a SYN 

packet to the server; the server responds with a SYN/ACK 

packet; finally the client sends ACK packets to the server. The 

TCP protocol stack needs to use or allocate a buffer for 

recording the context of each connection. When the adversary 

sends numerous SYN packets to a host, the host will run out of 

buffer slots eventually. Therefore the host cannot accept any 

new connection. In other words, TCP SYN flooding is a denial 

of service attack that disables a host by sending numerous TCP 

SYN packets. 

 

6. SUMMARY 
We proposed an attack for discovering call records in a VoIP 

service over a private network. We analyzed the SIP protocol and 

discovered that the array-based buffers of three commercially 

available closed-source hardware phones, which are used for 

storing protocol negotiation contexts, can be exploited to leak the 

busy status of a SIP phone. Through the leaked busy status of a 

callee’s phone, an adversary can easily detect the VoIP 

communication between phones. This attack is general enough to 

hold in other types of hardware phones. To defend against such 

attacks, we suggested several countermeasures based on 

manipulating of the buffer, detecting full buffers and using 

firewalls.  
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8. APPENDIX 
Appendix I: Probe Messages 

Several attack SIP messages are listed here. Note that the 

adversary should use different Call-ID in different requests so 

they are not being identified as duplicates. 

Message 1. OPTIONS probe message 

OPTIONS sip:wj@iptel.org SIP/2.0 

Via: SIP/2.0/UDP 

127.0.0.1:5000;branch=z9hG4bK.1770151725;rport;alias 

From: sip:voicepulser@127.0.0.1:5000;tag=1236798926 

To: sip:wj@iptel.org 

Call-ID: 1811209364@127.0.0.1 

CSeq: 1 OPTIONS 

Contact: sip:voicepulser@127.0.0.1:5000 

Content-Length: 0 

Max-Forwards: 70 

User-Agent: Voice Pulser version 1 

Accept: text/plain 

 

 
Message 2. INVITE-require probe message 

INVITE sip:wj@iptel.org SIP/2.0 

Via: SIP/2.0/UDP 

127.0.0.1:5000;branch=z9hG4bK.899244477;rport;alias 

From: sip:voicepulser@127.0.0.1:5000;tag=524046249 

To: sip:wj@iptel.org 

Call-ID: 111248654@127.0.0.1 

CSeq: 1 INVITE 

Contact: sip:voicepulser@127.0.0.1:5000 

Content-Length: 0 

Max-Forwards: 70 

User-Agent: Voice Pulser version 1 

Accept: text/plain 

Require:xx 

 

 



Message 3. INVITE-SDP probe message 

INVITE sip:wj@iptel.org SIP/2.0 

Via: SIP/2.0/UDP 

127.0.0.1:5000;branch=z9hG4bK.600541343;rport;alias 

From: sip:voicepulser@127.0.0.1:5000;tag=1552686011 

To: sip:wj@iptel.org 

Call-ID: 1436339943@127.0.0.1 

CSeq: 1 INVITE 

Contact: sip:voicepulser@127.0.0.1:5000 

Content-Length: 181 

Content-type:  application/sdp 

Max-Forwards: 70 

User-Agent: Voice Pulser version 1 

Accept: text/plain 

 

v=0 

o=alice 2890844526 2890844526 IN IP4 192.168.1 

s= 

c=IN IP4 192.168.1a 

t=0 0 

m=audio 49170 RTP/AVP 0 8 97 

a=rtpmap:0 PCMU/8000 

a=rtpmap:8 PCMA/8000 

a=rtpmap:97 iLBC/8000 

 
Message 4. NOTIFY-refer probe message 

NOTIFY sip:wj@iptel.org SIP/2.0 

Via: SIP/2.0/UDP 

127.0.0.1:5000;branch=z9hG4bK.1592896042;rport;alias 

From: sip:voicepulser@127.0.0.1:5000;tag=499998901 

To: sip:wj@iptel.org 

Call-ID: 1599885472@127.0.0.1 

CSeq: 1 NOTIFY 

Contact: sip:voicepulser@127.0.0.1:5000 

Content-Length: 0 

Max-Forwards: 70 

User-Agent: Voice Pulser version 1 

Accept: text/plain 

Event:refer 

Subscription-State: active;expires=180 

 

 

Appendix II: Calculation of Disabled Period 
We illustrate the timing of busy-status detection and calculate 

the disabled period, as shown in Figure 11. Consider the three 

relevant time points of a transaction. The black diamond and the 

white diamond show the time that the SIP phone receives the 

request and responds the request, respectively, whereas the black 

square denotes the end of a transaction. The interval between the 

first two time points is the processing time r, a small time period 

measured to be between 10ms and 100ms. After this interval, a 

transaction waits for L seconds; e.g., L is 32 seconds (Timer J) for 

non-INVITE UDP transactions.  For INVITE UDP transactions, L 

is 32 seconds (Timer H) if no ACK request is received, and is 5 

seconds (Timer I) if an ACK request received. These timers are 

standard [10]. 

In calculating the disabled period, we omit the network 

transmission time since it is negligible compared to the disabled 

period. In Figure 10, time 0 denotes the receipt of the 1st request. 

For the first h requests, the SIP phone takes r seconds to respond 

to each request. The phone will become available to accept a new 

request after the 1st request expires, at time r+L. Thus, during time 

(h-1)*d and time r +L, the phone is unable to accept a new request 

for (r+L)-(h-1)×d seconds.  The response to an INVITE request is 

given after the disabled period.  

Given parameters of PAP2 and 7940G along with an 

estimated parameter r=20ms, we are able to calculate the disabled 

period of both phones. PAP2 phone’s disabled period is 29.54 

seconds with parameters L=32sec, d=80ms, and h=32. 7940G 

phone’s disabled period (not shortened) is 31.62 seconds with a 

different parameter h=6. However, by applying disabled-period 

shortening, the shortened disabled period of 7940G is smaller than 

2 seconds. 
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