
Discovering Records of Private VoIP Calls without
Wiretapping

Chang-Han Jong
ECE Department

University of Maryland
College Park, Maryland 20742, USA

chjong@umd.edu

Virgil D. Gligor
ECE Department and CyLab
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213, USA

gligor@cmu.edu

ABSTRACT

In this paper we show that any user of a VoIP service over a

private network, even one without a special attack capability (e.g.,

wiretapping), can discover calls between two targeted individuals,

with high probability. We conducted this privacy attack in an

experimental setting using three types of commercially available

closed-source phones that implement the standard IETF Session

Initiation Protocol (SIP) in hardware. We show that private call

records can be probabilistically derived by using a new class of

side-channels caused by resource contention. By sending care-

fully designed VoIP packets and analyzing the responses, an

ordinary user can detect the busy status of SIP phones without

alerting either the caller or the callee. Hence an ordinary user can

correlate the busy status of two given phones, or more, can detect

calls between them. We demonstrate the effectiveness of our

remote attack on three commercial closed-source phones, and

discuss countermeasures.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General –

security and protections.

General Terms

Experimentation, Security

Keywords

Privacy; Anonymity; Side-Channel Attacks; Protocol

1. INTRODUCTION
On January 10, 2010, the Washington Post reported that the

FBI broke US law by illegally obtaining over 2,000 records for

phone calls made by US citizens (call logs, but not call content)

without obtaining a “national security letter,” as required by the

Patriot Act of 2001 [28]. Since a call record does not contain

information about the call (e.g., voice patterns, data, content), one

cannot help but wonder: What makes the collection of call records

such an attractive data source as to cause the FBI to break US

law? Furthermore, why would the FBI break the law for so few

records, as compared to similar actions by the NSA, which

collected over 1.9 trillion call records between 2001 and 2004 [1,

19] ? These few records must provide important information.

Call-record analysis is one of the oldest tools used in defense,

law-enforcement, and business intelligence. Call records enable

an analyst to discover the social milieu of targeted individuals, or

groups. For example, a call-record database allows both single

link (e.g., time, initiation, duration, frequency of a call) and

cluster analysis of calls in the temporal, spatial, and frequency

domains. It can also indicate overlaps among different clusters,

such as those obtained from different investigations, and

similarity of clusters, such as those obtained when a group of

targets changes their phone numbers (to avoid tracking) but not

their communication habits. Relatively small call-record sets,

well under 10,000 records, have been sufficient to discover a

variety of law-breaking operations worldwide, ranging from drug

trafficking in New Zealand [29], to drug smuggling in a

Minnesota prison, to surreptitiously charging unsuspecting

pornography clients with expensive and unwanted 900-number

phone calls in Moldova [19]. Even smaller sets of call records

have been used to (illegally) detect boardroom leaks in a major

US corporation [20].

The question that motivates the privacy attack reported in this

paper is the following: would call-record analysis be possible in a

private VoIP network? Specifically, a private VoIP provides

anonymity for callers and callees, and for their relationship [24].

Informally, this means that the caller and callee’s phones are

indistinguishable from other phones in the VoIP network, and

neither the caller nor the callee can be linked to each other. In

such a setting, end-to-end encryption would force end-point

invasive wiretapping, or even end-host malware/Trojan insertion,

for call-record collection. This would be an expensive proposition,

which would undoubtedly require additional legal work, such as

court orders, and would face increased odds of detection by the

owners of the targeted phones. While a private VoIP network is

yet to be fully achieved in practice, a low-latency encrypted

channel using with one or more (trusted) forwarding proxies is a

reasonable approximation1 of such a network and could become

the medium of choice for the private calls in the rapidly growing

VoIP communications [3, 17]. In this paper, we answer our

motivating question affirmatively, by showing that any user of a

private VoIP network without any special attack capability – not

just a powerful government agency equipped with a national

security letter – can discover private calls between two or more

1 Low-latency anonymous networks provide anonymity through

multiple forwarding proxies where anonymity is still maintained
even if some of the proxies are compromised. Current deployed
systems such as Tor and I2P cannot provide low enough latency
for VoIP to become practical (<400ms delay). However,
commercial services such as anonymous.com provide
anonymity through a trusted proxy (VPN) where latency is low
enough.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee

ASIACCS’12, May 2–4, 2012, Seoul, Korea.
Copyright 2012 ACM 978-1-4503-1303-2/12/05…$10.00.

specified targeted phones. Discovery of private calls can breach

the relationship privacy of two or more phone users and can have

unpredictable effects, as we argue below.

Adversary Definition. In Figure 1, attack targets Alice and

Bob establish a VoIP session. The session can be delivered over

one or more forwarding proxies to provide anonymity, if its

latency satisfies the needs of VoIP (i.e., <400ms latency

recommended by ITU-T G.114; longer latency tolerance for

tactical environments) [3, 4, 13, 17]. The forwarding proxies can

be implemented in the network layer, transport layer, or

application layer. Adversary Eve’s goals are to discover whether

Alice and Bob communicate with each other using the private

VoIP network, the duration of the conversation, and if possible,

the call initiator. 2 Eve can also perform link analysis and

determine the strength of ties between Bob and Alice. The tie

strength can be accurately measured by interaction frequency,

evidence of recent communication, communication reciprocity,

and the existence of at least one mutual friend in linking the two

targeted parties [7].

Our adversary Eve does not need any added capabilities

beyond those of an ordinary user. As shown in Figure 2, she can

send probe VoIP packets to the targeted phones and receive

response VoIP packets in return, and need not have any

eavesdropping capabilities. Yet her probing is undetectable3 by

the end-users of the targeted phones unless the phone logs or

network traffic are analyzed; i.e., her packets alert neither Alice

nor Bob that their phones are being probed remotely.

Attack Overview. The simplest attack consists of the two steps

illustrated in Figure 3. In the first step, the Eve detects whether

both Alice’s phone and Bob’s phone are busy; i.e., she performs

busy-status detection for both phones. In the second step, Eve

verifies whether Alice’s phone and Bob’s are busy, or not busy, at

almost the same time; i.e., she performs call correlation. If the

phones’ busy statuses correlate, then Alice and Bob probably

share a VoIP call session during Eve’s probing period. Note that

2 In addition to the hypothetical role of an eager FBI agent lacking

a national security letter, Eve could alternatively be a jealous

girlfriend wanting t to determine whether her boyfriend Bob is

cheating with her best friend Alice.

3 We assume the unsuspecting end-user of a targeted phone

accesses the phone via the handset, hook, buttons, rings, and a

display.

the busy-status detection should be undetectable (not alerting the

phone end-users); otherwise the end-users of the targeted phones

can easily recognize the anomaly and stop using these phones.

Resource contention is what makes it possible to detect a

phone’s busy status in a private VoIP network. The resource,

namely the protocol buffer, is used to store the contexts of the

VoIP protocol negotiation. Certain VoIP packets (e.g., call-setup

packets) create a state machine in both the caller and callee

phones. The context of the state machine, including the status and

timer, is stored in a slot of the protocol buffer. When the desired

action is completed or times out, the buffer slot occupied by the

call is released. Call-termination packets can expedite buffer slot

release if the buffer slots are occupied due to call-setup packets.

In some VoIP phones, including those implemented with

dedicated hardware, the protocol buffer is a fixed-size array. As

expected, fixed-size protocol buffers can cause resource

contention. For example, in a protocol buffer containing N slots,

the call setup occupies 1 slot and the remaining N-1 slots are

available for other protocol instantiations. This implies that if the

adversary can detect the number of available protocol buffer slots,

she can determine a phone’s busy status. She can do this by

periodically sending VoIP packets, which would overflow all

available protocol buffer slots of the targeted phone, and detecting

whether a full-buffer condition is signaled back. By examining the

response to a full-buffer condition, the adversary can count the

number of available protocol buffer slots in a targeted phone. This

enables the adversary to detect the phone’s busy status in a matter

of seconds – much faster than with any of the current

eavesdropping/flow-analysis methods. Rapid busy-status

detection makes our attack feasible in any private VoIP network.

For our privacy attack experiments, we selected the IETF Session

Initiation Protocol (SIP), which has been widely adopted by the

telecommunication industry, the military, cable operators, and

consumers at large. Theoretically, the proposed attack may apply

to landline phones if the adversary has access to the

telecommunication signaling network (e.g., having a Private

Branch Exchange).

Contribution. The main contribution of this paper is the

definition of a new, powerful attack against call-records privacy,

which is launched with ordinary-user capability and succeeds with

very high probability in private VoIP networks. This attack not

only indicates that a fixed-size buffer in a SIP phone can result in

private information leakage, but also implies that other exclusive

resources, such as operating system resources (e.g., semaphore;

number of threads) may enable privacy breaches in SIP or other

VoIP phones. We tested our attack in closed-source commercial

Alice

Eve

Bob

 Other phone

 Other phone

Do Alice and Bob

communicate with each

other? When and for how
long? Who initiated the call?

Private VoIP

Network

Figure 1. Revealing call records in a private VoIP network Figure 2. Adversary capabilities

Eve

Undetectable

attack: adversary

packets cannot be
detected by the

targeted phone.

Adversary has

ordinary credentials
to send and receive

VoIP packets.

Private VoIP

network

No eavesdropping

ability

Targeted

phone

SIP phones, which do not provide implementation documentation,

a fact that provides further testimony for the practicality of this

attack. We propose countermeasures against this type of attack,

including protocol-buffer manipulation to reduce call-detection

probability, attack-discovery mechanisms, and firewalls.

2. THE ATTACK
In this section, we provide an overview of SIP with an

emphasis on the mechanisms related to SIP resource contention

side-channels. Then we show how busy-status detection is

enabled by six side-channels that we found by testing closed-

source commercial VoIP phones. (The reader who is familiar with

the IETF SIP specification can skip Section 2.1 below.)

2.1 Call Setup and Termination Overview
SIP is an HTTP-like application-layer protocol designed for

VoIP signaling and other applications that require devices to

setup/terminate sessions to exchange information [10]. SIP uses a

transaction as its basic message exchange component. A

transaction is composed of a request message, optional

provisional response messages, and a final response message. In

this paper we use the terms ‘transaction’ and ‘request’

interchangeably in the case where the request represents the

transaction itself. The communication initiated by the caller to a

callee’s phone can be relayed by one or more SIP proxy servers.

Relaying, which is typically used for billing, redirection and many

other telephony functions, generally does not affect our attacks.

 In Figure 4, we illustrate a call setup (Transaction 1) and

termination (Transaction 2) in SIP. In Transaction 1, the caller

first sends an INVITE request to the callee. A SIP request

message includes three parts. The first part contains the method

name, such as INVITE, to describe the main purpose of this

request. The second part contains headers, which specify

attributes (e.g. To: sip:wj@iptel.org). The third, and optional, part

is the payload, which usually includes media parameters encoded

by the Session Description Protocol (SDP). When the INVITE

request is received, the callee’s phone rings, and immediately

sends a provisional response, such as “180 RINGING,” to the

caller. (SIP responses are identified by a 3-digit number.)

Responses with a hundreds digit of value of 1 are called the

“provisional responses” (denoted 1xx in SIP specification) and

provide status information to the caller in the middle of the

transaction. In Transaction 1, the callee also decides to answer this

call by picking up the handset, so the callee’s phone sends back

Figure 5. A non-INVITE transaction at the server side Figure 4. SIP call setup and termination

Figure 3. Attack steps

Eve

 Targeted phone

 has a fixed-size

protocol buffer to
store protocol

negotiation contexts

a) Eve sends VoIP requests to

occupy/release the protocol

buffer slots

Private VoIP

network

b) Eve analyzes responses to determine if

targeted phone is busy (error or no

responsefull protocol buffer)

Step 1: Busy-status detection

Time

Busy

 Not busy

 Alice

 Bob

Busy

 Not busy

Close timing of call setup
and/or call termination =>

Alice and Bob have a VoIP

session
Eve

Step 2: Call correlation

Close call
termination

time

Close call

setup time

“200 OK” in response to the original INVITE request. “200 OK”

is among the “final responses”, which are specified by codes with

digits that do not begin with a 1 (i.e., 200-699 in SIP

specification).

After the caller sends an ACK request (as the final

acknowledgement), the caller and the callee will have already

reached an agreement on the media parameters for establishing a

voice channel, using a streaming protocol such as RTP.

Eventually one of the two parties (in this case, the callee) will

terminate the call by initiating Transaction 2 with a BYE request.

The other party replies using a “200 OK”, which terminates the

voice channel.

SIP defines the roles of server and client. When a SIP protocol

side receives SIP requests and sends SIP responses, it acts as a

server; when it sends SIP requests and receives SIP responses, it

acts as a client. Four state machines are defined to describe the

general behavior of INVITE and non-INVITE transactions for SIP

clients and server roles. Method-specific behavior is based on the

four state machines. In Figure 5, we illustrate one of the four state

machines for a non-INVITE transaction on the server side. When

the SIP phone (a Transaction User) receives a non-INVITE

transaction, such as BYE or OPTIONS, it enters the Trying state

and creates a transaction instance. After sending the provisional

responses (1xx), it enters the Proceeding state. If the SIP phone

(i.e., user) decides to send out a final response (200-699), it enters

the Completed state. When Timer J signals a time-limit exceeded

event or there is a transport layer error, the state machine ends up

in the Terminated state and the transaction expires. By default,

Timer J is set to 32 seconds for UDP and 0 seconds for

TCP/SCTP.4 Timer J also helps SIP to handle packets lost in UDP

via retransmission.

2.2 Busy-status Detection
Side-Channel. Like other stateful protocols, SIP needs a

protocol buffer for storing the protocol negotiation context for

each transaction. In some SIP phones, especially for those

implemented through dedicated hardware (i.e., hardware SIP

phones), the protocol buffer is implemented as a fixed-size array

for two reasons. First, SIP phones generally do not need a large

protocol buffer since they are not expected to receive dozens of

calls per second. Second, if the protocol buffer is a simple fixed-

size array, the SIP phone can recover from buffer flooding

automatically, after the flooding packets are gone. In contrast, if

the protocol buffer is allocated on demand, recovery is more

complex, as the SIP phone may enter unrecoverable states (e.g.,

kernel panic) due to unreleased, used-up memory. The

disadvantage is that this fixed-size array enables an adversary to

count the number of available slots in the protocol buffer and tell

whether a VoIP session exists; i.e., the adversary is able to tell

whether a buffer slot is used and the phone is busy. The adversary

exploits this side-channel to detect calls surreptitiously.

Detection Algorithm. Let N be the size of the protocol buffer.

To count the number of available buffer slots, the adversary sends

N+1 SIP request (i.e., probes) to the targeted phone, sending one

every d time units. d is chosen to be small enough so that no

request could expire and free up a slot before the last request is

4 SIP standards require both UDP and TCP to be implemented, but

UDP is generally more popular than the TCP because TCP has a

longer call-setup time due to a three-way hand-shake [5].

received. In some SIP implementations, when the buffer becomes

full, the phone ignores the next request, whereas in others it

returns an error. Suppose the protocol buffer size has h available

slots before the adversary begins sending requests. If the phone

ignores the request arriving after the protocol buffer is full, the

adversary will not receive the response number h+1, as shown in

Figure 6 (a). In the other case, the adversary will receive an error

response for the h+1st request, such as “486 Busy Here,” as shown

in Figure 6 (b). In either case, the adversary discovers the value of

h.

Detection Side Effects. Note that if the SIP phone, or proxy in

the transmission path, supports retransmission, the adversary will

get a delayed positive response to the h+1st request after the

protocol buffer slot becomes free. However, this delay is several

seconds or less, and cannot affect busy-status detection.

Another side effect arises because whenever the protocol

buffer becomes full, the phone is disabled for a period of time,

which we call the disabled period. For example, our experiments

with two phones show that the disabled period is close to 30

seconds (with parameters d=80ms, N=6 for 7940G, N=32 for

PAP2). The details of this calculation are shown in Appendix II.

During the disabled period, the targeted phone does not answer a

caller’s setup request. Only after the disabled period ends is the

targeted phone able to receive a call setup request issued by the

retransmission mechanism of the caller phone or proxy. This

disabled period causes the target-phone user to perceive a small

ring delay. However, as described later, it is possible to shorten

the disabled period in some phones such that the target-phone user

will experience almost no ring delay.

Target-Undetectable Probe Requests. Since we used closed-

source hardware phones, we had to find SIP methods and

parameters that could be used as probes for busy-status detection,

experimentally. Suitable SIP requests (i.e., probes) must fill the

protocol buffer and yet must not alert the targeted user (e.g., by

phone rings) that an attack is in progress. We experimented with

all SIP methods on the closed-source phones and found that

OPTIONS, INVITE, NOTIFY, and UPDATE methods are

suitable for implementing adversary probes. In describing the

suitable SIP requests, we use the naming convention “METHOD-

type,” such as “INVITE-require” or “OPTIONS-ordinary” below.

These SIP requests are discussed below. Examples of actual SIP-

request messages are given in Appendix I.

1) INVITE-require and INVITE-SDP requests. As described

in Section 2.1, the INVITE transaction performs the call setup. By

Figure 6. Possible target-phone responses when the protocol

buffer is full

(a)
(b) (a) (b)

default, upon receiving an ordinary INVITE request, the SIP

phone alerts (rings) the user. If this were always the case, the

INVITE transaction could not be used to perform busy-status

detection. However, an INVITE request that is invalid for making

a call will not ring, and hence could be used for busy-status

detection. We found two types of INVITE requests with this

capacity, namely INVITE-require and INVITE-SDP.

We use an INVITE-require request with a Require header

whose functionality is not supported by the callee [10]. For

example, the header “Require: 100rel” in an INVITE request

requires the callee to support an extension named 100rel. If the

callee does not support the requested function, the callee responds

immediately without alerting the user, but a protocol-buffer slot

still remains allocated in the callee’s phone. Hence, an INVITE

request with a header “Require:xx” is suitable for busy-status

detection. Similarly, the INVITE-SDP request can also attach an

invalid SDP message in the INVITE request (e.g., an

incomplete/invalid IP address in SDP). The INVITE with SDP is

a commonly used request since a call setup needs to exchange

media parameters through several SDP messages attached in the

call-setup messages [11].

Disabled-Period Shortening. For busy-status detection using

the INVITE method, there is a way to shorten the disabled period

dramatically; i.e., to less than 2 seconds. To do this we use ACK

requests, which terminate the INVITE transactions. Call setup is a

three-way handshake, including an INVITE request (caller to

callee), INVITE response (callee to caller), and ACK request

(caller to callee), as shown in Figure 4. Since an INVITE request

occupies a protocol buffer slot, an ACK request would release that

buffer slot. Hence, as soon as the adversary receives all INVITE

responses from the callee, it can send the ACK requests to force

the freeing of the occupied protocol-buffer slots.

2) OPTIONS-ordinary request. An ordinary (no special header

needed) OPTIONS request can also serve as busy-status detection

probe. An OPTIONS request is used to query the protocol

capability of a SIP device, and can be used as a trace route tool.

The adversary sends the OPTIONS requests to the phone and they

will occupy the protocol buffer slots.

3) NOTIFY-check-sync and NOTIFY-refer requests. SIP

provides an asynchronous event-notification scheme for signaling

events (e.g. voice mail is available) [12]. An event can be

subscribed to in advance and then will be delivered to a SIP

phone. (The Internet’s IANA organization maintains the database

of valid event parameters [9].) The events are sent via NOTIFY

requests. Thus, the adversary simply sends NOTIFY requests with

specific event identifiers (e.g. with the header “Event:refer”) to

occupy the protocol buffer slots.

4) UPDATE-ordinary request. The UPDATE method changes

the media parameters during a call. The UPDATE method is

seldom implemented, and thus it is possible that unsupported

UPDATE requests (and other unsupported methods) can still

occupy the SIP protocol-buffer slots and allow busy-status

detection.

2.3 Call Correlation
Busy-status detection can detect the busy status of a phone at a

specific time. However, depending on the phone type, the busy-

status detection can determine whether the phone is busy either 1)

at any time during the call, or 2) only at the beginning and/or the

end of the call.

Hence, we define three tests for correlating busy status to infer

a call. When both of the two targeted phones belong to the first

type, we use the continuity test: the busy period of one phone

(from time i to time j) should be close to the busy status of another

phone (from time x to y) such that |x-i|+|y-j|<ε, where ε is a

constant indicating the upper-bound of measurement error.

Otherwise, we use the weak or strong tests. The weak test is that

the two phones are busy at the beginning or at the end of the call

such that |x-i|<ε or |y-j|<ε. The strong test is that two targeted

Figure 9. Responses of BT-100 under INVITE-SDP attack

(as a caller)

0 5 10 15 20
4

5

6

7

8

9

10

11

12

nth response

re
s
p
o
n
s
e
 t

im
e
 (

m
s
)

ta
g
=

d
c0

4
b
3
2
6
8

d
d
3

f7
d
3

ta
g
=

6
8
e

3
8
cf

3
9

6
b
9

4
e
7
9

ta
g
=

1
a
f5

0
3

5
5
5

6
d
f9

4
b
5

ta
g
=

0
0
b

1
1
6
c5

e
2
1

1
e
c7

1
ta

g
=

f1
4

b
2
9

2
2
0

8
0
2
0

4
d
8

ta
g
=

b
2
5

8
d
8
9

e
4
3

7
4
4
e

6
4

ta
g
=

6
d
5

3
b
8
7

5
ca

2
3

e
5
2
3

ta
g
=

1
b
5

3
1
2
7

3
c9

3
9

5
3
2
3

ta
g
=

d
4
9

5
5
b
e

4
f4

7
f6

1
5
5

ta
g
=

F
4

C
9
F

4
D

5
-F

3
6
6
6
9
6

4
ta

g
=

F
4

C
9
F

4
D

5
-F

3
6
6
6
9
6

4
ta

g
=

F
4

C
9
F

4
D

5
-F

3
6
6
6
9
6

4
ta

g
=

F
4

C
9
F

4
D

5
-F

3
6
6
6
9
6

4
ta

g
=

F
4

C
9
F

4
D

5
-F

3
6
6
6
9
6

4
ta

g
=

F
4

C
9
F

4
D

5
-F

3
6
6
6
9
6

4
ta

g
=

F
4

C
9
F

4
D

5
-F

3
6
6
6
9
6

4
ta

g
=

6
a
a

5
9
5
b

5
0
d

6
a
b
e

7
5

ta
g
=

4
b
4

2
5
5
9

a
5
4

e
2
2
fd

2
ta

g
=

f7
e

2
8
1

fc
4
3
d
e
7
d

b
e

ta
g
=

1
3
fe

b
4

2
e
d

b
c5

c5
f7

ta
g
=

9
4
b

ce
8
e
e
6

4
c2

0
e
5

6
ta

g
=

b
8
a

7
2
1
b

6
e
1

9
5
e
f7

5
ta

g
=

8
f9

2
2
b

b
2
ff
f8

a
6
d
8

Busy

Not Busy Not Busy

0 1 2 3 4 5 6 7 8
0

200

400

600

nth response

re
s
p
o
n
s
 t

im
e
 (

m
s
)

Cisco 7940G (Not Busy)

420 Bad Extension

486 Busy Here

0 1 2 3 4 5 6 7 8
0

200

400

600

nth response

re
s
p
o
n
s
 t

im
e
 (

m
s
)

Cisco 7940G (Busy)

420 Bad Extension

486 Busy Here

Different response

Different response

Figure 7. Responses of 7940G under INVITE-require attack

(as a callee)

0 5 10 15 20 25 30
0

50

100

nth response

re
s
p
o
n
s
 t

im
e
 (

m
s
)

Linksys PAP2 (Not Busy)

420 Bad Extension

0 5 10 15 20 25 30
0

50

100

nth response

re
s
p
o
n
s
 t

im
e
 (

m
s
)

Linksys PAP2 (Busy)

420 Bad Extension

33th response

No 33th response

Figure 8. Responses of PAP2 under INVITE-require attack

(as a callee)

phones are both busy at the beginning and the end of the call such

that |x-i|<ε and |y-j|<ε.

3. THE ATTACK EXPERIMENTS
We set up a simple VoIP network including three (hardware)

SIP phones to perform the busy-status detection and call-

correlation steps. For busy-status detection, we show how the

phones respond to the probe requests. For call correlations, we

derive the detection rate.

3.1 Environment
We implemented a program named Voice Pulser to perform

busy-status detection. Since the proposed attack does not require

eavesdropping, we experimented on an ordinary LAN [14]. Voice

Pulser sent attack messages to the three phones, which were a

Linksys PAP2, a Cisco 7940G, and a Grandstream BT-100. The

PAP2 is a consumer-level product which was bundled by Vonage,

a major VoIP service provider. The 7490G is a medium-level

product that provides business phone features. Although Linksys

is a division of Cisco, the PAP2 and 7940G use different protocol

stacks and operating systems. The Grandstream BT-100 is an

entry-level VoIP phone. Communication between the testing

phones was relayed by a SIP proxy server.

3.2 Busy-status Detection

3.2.1 Attacks based on INVITE
We examined the phone responses under INVITE-require

(PAP2 and 7940G) and INVITE-SDP (BT-100) attacks with two

conditions, namely 1) when the phone did not receive or make a

call (Not Busy), and 2) when the phone made or received a call

and was still active on the line (Busy). Voice Pulser sent 33 and 7

attack SIP messages to the PAP2 and 7940G, respectively,

according their protocol buffer sizes. We sent 23 attack SIP attack

messages to the BT-100. Figure 8 shows how the PAP2 received

all 33 responses when it was not busy and missed the 33rd

response when it was busy. Figure 7 shows how the 7940G

responded with an error ‘486 Busy Here’ when the protocol buffer

was full. Figure 9 shows the BT-100 response, which was slightly

different. In the middle of the 23 probes, we made a call from the

BT-100. According to RFC 3261, a SIP phone should add a tag to

the To field when responding to a request. E.g., “To:

wj@iptel.org” in a request becomes

“To:wj@iptel.org;tag=aa69981” in the response. The tag must be

cryptographically random and globally unique (i.e., a nonce).

When the BT-100 was not busy, the To tag was a nonce

consisting of digits and letters. However, when the BT-100 was

busy, the To tag was fixed.

Based on the above observations, the adversary is able to

determine the busy status of the PAP2 by finding out whether the

33rd response is received, while the busy status of the 7940G is

shown when the 6th response is a “486 Busy Here”, and the busy

status of the BT-100 is found by checking whether two

consecutive responses have the same value for the To tag.

3.2.2 Attacks
We evaluated all types of attack messages listed in previous

section and show the results in Table 1 and Table 2. Table 1

indicates whether the busy-status detection was successful. Table

2 provides details for the phones responses to the probe requests

and how the busy status can be identified.

The PAP2 phone had different responses to different request

probes. It responded with “200 OK” to OPTIONS-ordinary,

NOTIFY-refer and NOTIFY-check-sync attacks. Even though

refer and check-sync events are not supported by PAP2, for

NOTIFY-refer and NOTIFY-check-sync, it responded “200 OK”

as well. For the INVITE-require probe, PAP2 rejected the request

with message “420 Bad Extension” because the requested

extension “xx” is not supported. Since the UPDATE method is

not supported by the PAP2, for UPDATE-ordinary, it responded

with “501 Not Implemented.” It is noteworthy that the protocol

buffer size N of PAP2 has a different value (N=33 instead of 32)

in the INVITE-require request probe. This due to the fact that

INVITE and non-INVITE transactions use different state

machines.

The 7940G phone allows busy-status detection for only

INVITE-based attack messages. We believe that the designers of

the 7940G tried to avoid any unnecessary resource usage so that

all requests, except those of the INVITE method, avoid filling the

protocol buffer. Ironically, their conservative resource-

management design enables disabled-period shortening.

Table 1. Phones against the attacks

 Linksys PAP2 Cisco 7940G Grandstream

BT-100
OPTIONS-

ordinary

Success(S1) Fail(F2) Fail(F2)

INVITE-
require

Success(S2) Success(S4) * Fail(F1)

INVITE-

SDP

Fail(F1) Success(S5) * Success(S6)#

NOTIFY-
refer

Success(S1) Fail(F2) Fail(F3)

NOTIFY-

check-sync

Success(S1) Fail(F2) Fail(F3)

UPDATE-
ordinary

Success(S3) Fail(F3) Fail(F3)

*: Disabled period shortening is supported
#: No disabled period

Table 2. Explanation of Table 1

Type How the SIP phone responds

S1 “200 OK” response for first h requests

No response for other requests
h=32 if not busy; h=31 if busy

S2 “420 Bad Extension” response for first h requests

No response for other requests

h=33 if not busy; h=32 if busy

S3 “501 Not Implemented” response for first h requests

No response for other requests

h=32 if not busy; h=31 if busy

S4 “420 Bad Extension” response for first h requests

“486 Busy here” response for other requests

h=6 if not busy; h=5 if busy

S5 “500 Internal Server Error” response for first h requests
 “486 Busy here” response for other requests

h=6 if not busy; h=5 if busy

S6 The To tag in the response is a nonce if not busy;
The To tag in the response is a fixed value if busy

h=1; no disabled period

When the phone is busy as the caller, To tag consists of

digits and upper-case letters;

When the phone is busy as the callee, To tag consists of
digits and lower-case letters.

F1 The phone rings

F2 “200 OK” response for all requests

F3 Other responses (415, 401, 501, etc.)

The BT-100 phone is only vulnerable to INVITE-SDP. In

contrast with the other phones, the adversary can easily identity

whether a BT-100 phone is the caller or callee. The To tag

consists of upper-case letters characters when the phone is the

caller; the To tag consists of lower-case letters when the phone is

the callee. Another difference is that the BT-100 phone does not

have a disabled period: attack messages do not occupy the

protocol buffer slots yet the busy status is still revealed.

3.2.3 Response-Time Behavior
It is also important to know how often the busy-status

detection can be performed. We used several different probing

intervals and found the minimum values as shown in Table 3. The

adversary can probe the PAP2 phone with a 34 seconds interval,

the 7940G phone with a 2 seconds interval (when the disabled

period is shortened), the BT-100 with a 3 seconds interval (no

disabled period).

The disabled period also affects the ring delay, which is the

time between the call setup and ring. Table 3 also shows the ring

delay. While the PAP2 phone has a longer ring delay under attack,

the 7940G and the BT-100 have no significant ring delay under

this attack. For all three phones, the ring delay is essentially

negligible for end-users unless they analyze the network traffic or

phone logs.

3.3 Call Correlation
A phone has four possible roles. For call setup, a phone can

either send the setup request (call-setup initiator) or receive it

(call-setup recipient). Similarly, for call termination, a phone can

either send the termination request (call-termination initiator) or

receive it (call-termination recipient).

First, we used the following steps to demonstrate a scenario

for call correlation in Figure 10. The 7940G called the PAP2 after

Voice Pulser had started, at 360 seconds, and the 7940G

terminated the call at 700sec. For the 7940G phone (call-setup

initiator and call-termination initiator), the phone revealed its busy

status during the entire call. In contrast, the PAP2 phone (call-

setup recipient and call-termination recipient) only showed that it

was busy when the call setup and call termination steps were

performed.

We then performed experiments where the three phones had

different roles. The experimental steps are as follows:

1. Use Voice Pulser to probe the PAP2 and the 7940G

(or BT-100) concurrently for their busy status with a

34 second interval.

2. Use one of the phones to call the other.

3. Pick up the callee phone after 10 seconds (before

ring), or after it rings, if the call setup requires more

than 10 seconds.

4. Hang up the caller phone.

Table 4 shows the results. For the detection rate, there was an

outstanding case when the PAP2 received the call setup request.

The detection rate was 53%, instead of either 0% or 100%. The

reason is that the PAP2 phone has a non-negligible disabled

period. In that case, whether the adversary could detect the call

setup depended on the time when the call setup was performed.

We performed 17 experiments, varying the call setup; i.e., the call

setup was performed at 5 seconds increments (60, 65,…, 140)

after the Voice Pulser started monitoring. The timing spread over

two Voice Pulser monitoring intervals (2×34 seconds).

The 7940G and BT-100 phones achieved a 100% detection

rate in all four roles. This means that if the adversary monitors

7940G or BT-100 phones, she will detect all VoIP calls between

them via the continuity test. In contrast, the adversary will not be

able to detect calls if a PAP2 phone is busy when it initiates or

terminates a call. However, this finding does not imply that the

PAP2 is invulnerable to our attack. If the adversary monitors a

PAP2 phone and a 7940G (or BT-100) phone, she can still detect

the VoIP calls between them, except in the case when the PAP2

calls the 7940G (or BT-100) and the PAP2 terminates the call.

Table 4 also shows that the false alarm rate was extremely

low. To estimate the false alarm rates, we probed the phones

continuously for over 13 hours (1459 probes). The PAP2 phone

only had a 0.2% false alarm rate whereas the 7940G and BT-100

had a rate of 0%.

We present the detection rates of call correlation for the

7940G and PAP2 in Table 5. Since the 7940G and BT-100 had

the same detection rates in all roles, they are identical in deriving

the detection rates of call correlation. In general, the detection

rates of the 7940G (and the equivalent BT-100) are better than the

detection rates of PAP2. If the two targeted phones are both a

7940G (or BT-100), as in case 6 of Table 5, then the detection rate

is 100%. In contrast, if the two targeted phones are both PAP2

models (case 5 of Table 5), then the detection rate is 0%. If the

two targeted phones are 7940G (or BT-100) and PAP2 phones,

the detection rates depend on phones’ type and their roles in a

call.

Table 3. Timing behavior of busy-status detection

 LinkSys

PAP2

Cisco

7940G

Grand-

stream

BT-100

Minimum Probing

Interval

34s 2s 3s

Ring delay under

attack* (mean/stddev)

4.8s/

6.3s

12.3s/

0.47s

0.1s/#

Regular ring delay*

(mean/stddev)

1.41s/

0.51s

12.4s/

0.50s

0.1s/#

*:17 samples
#: The phone rings immediately such that the investigator cannot

differentiate the ring delay between different tests

0 200 400 600 800 1000

time (sec)

Cisco 7940G (caller)

0 200 400 600 800 1000

Linksys PAP2 (callee)

time (sec)

Figure 10. A call correlation experiment: 7940G calls PAP2

at 360sec and terminates at 700sec (7940G as call setup

initiator and call termination initiator)

4. COUNTERMEASURES
Busy-status detection relies on the protocol-buffer contention

and undetectability of probing requests by a callee. Therefore,

mechanisms that could prevent or neutralize protocol-buffer

contention or enable probe detection by a callee would serve as

effective defenses.

Protocol-buffer randomization. Randomization is a classic, if

somewhat impractical, technique for defending against both

covert- and side-channel attacks. In our case, phone firmware can

be modified to provide randomization in the available size of the

protocol buffer or the transaction life. A limitation of this

technique is that it may be incompatible with the manufacture’s

firmware updates. A simpler countermeasure, though not a

permanent solution, is for the VoIP administrator to use Voice

Pulser to send “attack” packets at random intervals to the phones.

This would introduce “noise” and reduce the adversary’s ability to

estimate the number of available protocol buffer slots. To

maintain the phones’ operability, the “attack” packets should be

sent slowly enough that they would not fill the protocol buffer.

This approach is scalable in the sense that one installation could

protect many phones. One limitation of this approach is the

availability of the server hosting Voice Pulser. If the server is

unavailable, call privacy protection will also be unavailable.

Firewall. An application-layer firewall could filter packets

that exhibit probing patterns and limit the maximum probing rate.

For example, the INVITE-require attack could be avoided by

filtering INVITE requests with unsupported extensions. Such an

application-layer firewall has an inherent disadvantage: it can only

recognize busy-status detection attacks with known patterns.

Another drawback is that application-level firewalls cannot handle

encrypted communications such as the S/MIME used for SIP end-

to-end encryption. Furthermore, the state maintained in the

application-level firewall may become another side-channel.

Another approach is to monitor and block suspicious periodic

network traffic. Although it can be easily done, false detection is

an issue.

Full protocol-buffer alert. Alerting the user when the protocol

buffer is full is a simple way to “unblind” the previously

undetectable busy-status detection probes. The SIP phone or the

server could simply display a message on the screen, leave a voice

message, or send an email to alert the user of a potential attack.

5. RELATED WORK
Current VoIP privacy attacks against low-latency anonymous

network differ from our attack since they require much stronger,

and largely impractical, adversary capabilities; e.g. global

eavesdropping, full control of end-points, and malware insertion

capabilities. Wright et al. showed that the text can be extracted

from encrypted VoIP traffic by probabilistic methods [31].

Srivasta et al. confirmed the existence of VoIP calls by correlating

flows, and required a global adversary who knows the number of

flows between nodes (including VoIP nodes) of an anonymous

network [26]. In Wang, Chen and Jajodia’s watermarking attack,

the adversary perturbs and monitors the timing of the VoIP flows

between a VoIP node and a corresponding anonymous network

end-point [30]. Their attacks require the control of anonymous

network end-points. In other attacks, the adversary has to resort to

installing malware in the targeted phones [18]. However, such

attacks could be defeated by firmware integrity checks (e.g. use of

Trusted Platform Modules in phones) and would not scalable to

more than very few targets. More interestingly, privacy attacks in

anonymous networks cannot, and are not intended to, be used for

call detection since they require longer data acquisition times than

an entire phone call, which may only last for seconds or minutes

[2, 22].

The idea of correlating the busy status of SIP phones with call

records is also similar to that of associating users’ online/offline

status in Instant Messaging to infer friendship relations, as shown

in the work of Resig et al. [25]. They hypothesized that if two

users go online and go offline at about the same time, the two

Table 4. Performance of busy-status detection

Type Role

PAP2 7940G BT-100

Detection rate Call-setup initiator(caller); sending INVITE request 0% 100% 100%

Call-termination initiator; sending BYE request 0% 100% 100%

Call-setup recipient(callee); receiving INVITE request 53%* 100% 100%

Call-termination recipient; receiving BYE request 100% 100% 100%

False alarm rate No actions 0.2% 0% 0%

*: Tested by 17 samples

Table 5. Detection rate of call correlation derived from Table 4

 Call setup Call termination Detection rate
(continuity test)

Detection rate (weak
test)

Detection rate
(strong test)

initiator recipient Initiator recipient

Case 1 PAP2 7940G* PAP2 7940G N/A 0% 0%

Case 2 PAP2 7940G 7940G PAP2 N/A 100% 0%

Case 3 7940G PAP2 PAP2 7940G N/A 53% 0%

Case 4 7940G PAP2 7940G PAP2 N/A 100% 53%

Case 5 PAP2 PAP2 PAP2 PAP2 N/A 0% 0%

Case 6 7940G 7940G 7940G 7940G 100% 100% 100%
*: 7940G in this table can be replaced by BT-100 since they have same detection rate as shown in Table 4

users may be friends. In contrast with our work, Resig et al.

assume that the user status (online/offline) was explicitly provided

to the adversary by the users, while we must find the phone status

(busy/not busy) in a manner that is undetectable by the targeted

phone users.

The idea of obtaining remote host information by sending

packets and analyzing responses has been used in the past, but in

different ways with different goals. Operating-system

fingerprinting can identify the operating-system versions based on

how TCP/IP subsystem responds to attack packets [23]. For

example, the widely-used tool nmap [6] sends out packets in TCP,

UDP, and ICMP and analyzes the types of responses it gets, but

not their timing. While some of these techniques do not alert the

remote hosts in standard TCP/IP subsystems, they have very

different goals than ours. Our attacks discover the internal state

(busy status) of a network node, whereas operating system

fingerprinting only distinguishes different types of network nodes.

In another form of fingerprinting, Gong, Kiyavash, and

Borisov analyze the round-trip time to extract private information

from remote hosts [8]. They sent ICMP packets to a DSL router

and used the time series of response times to fingerprint the

websites accessed through that router. Our attack also obtains

remote private information through active probing, but differs

from the technique of Gong et al., in three ways. First, the goal of

our attacks is to obtain the call-records for targeted phones,

whereas their goal was to identify the website accessed by a host

behind a DSL router. Second, our attacks can penetrate

application-level proxies while their ICMP packets cannot; i.e.,

the target’s IP address is necessary for their attack, but not for

ours. Third, we assume that every entry in the protocol buffer

expires independently, whereas they use a FIFO queue to model

how ICMP packets are processed.

Although we use resource exhaustion in a similar way as

research on covert channels, ours is a side channel, not a covert

channel, since we do not need a Trojan Horse program installed

on a targeted phone to leak its busy status [18]. However, in

contrast with traditional side-channel attacks used in cryptography

[15, 16] and non-traditional ones used to detect clock skew in

remote hosts [21], our attack correlates the side channels of

multiple network nodes, rather than operating on a single node.

Our side-channel is based on resource-use detection and is

somewhat reminiscent of the resource exhaustion attack in the

TCP SYN flooding analyzed by Schuba et al. [27]. Both TCP

SYN flooding and our attack send packets to fill a buffer. 5

However, these attacks differ in their execution and goals: our

attack determines the current size of the buffers, whereas TCP

SYN flooding fills a host buffer to disable the host.

5 TCP is a three-way hand-shake protocol. The client sends a SYN

packet to the server; the server responds with a SYN/ACK

packet; finally the client sends ACK packets to the server. The

TCP protocol stack needs to use or allocate a buffer for

recording the context of each connection. When the adversary

sends numerous SYN packets to a host, the host will run out of

buffer slots eventually. Therefore the host cannot accept any

new connection. In other words, TCP SYN flooding is a denial

of service attack that disables a host by sending numerous TCP

SYN packets.

6. SUMMARY
We proposed an attack for discovering call records in a VoIP

service over a private network. We analyzed the SIP protocol and

discovered that the array-based buffers of three commercially

available closed-source hardware phones, which are used for

storing protocol negotiation contexts, can be exploited to leak the

busy status of a SIP phone. Through the leaked busy status of a

callee’s phone, an adversary can easily detect the VoIP

communication between phones. This attack is general enough to

hold in other types of hardware phones. To defend against such

attacks, we suggested several countermeasures based on

manipulating of the buffer, detecting full buffers and using

firewalls.

7. ACKNOWLEDGMENTS
This research was supported in part by CyLab at Carnegie

Mellon under grant DAAD19-02-1-0389 from the US Army

Research Office. The first author was also partially supported by

the MURI grant W 911 NF 0710287 from the Army Research

Office. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of any

sponsoring institution, the U.S. government, or any other entity.

8. APPENDIX
Appendix I: Probe Messages

Several attack SIP messages are listed here. Note that the

adversary should use different Call-ID in different requests so

they are not being identified as duplicates.

Message 1. OPTIONS probe message

OPTIONS sip:wj@iptel.org SIP/2.0

Via: SIP/2.0/UDP

127.0.0.1:5000;branch=z9hG4bK.1770151725;rport;alias

From: sip:voicepulser@127.0.0.1:5000;tag=1236798926

To: sip:wj@iptel.org

Call-ID: 1811209364@127.0.0.1

CSeq: 1 OPTIONS

Contact: sip:voicepulser@127.0.0.1:5000

Content-Length: 0

Max-Forwards: 70

User-Agent: Voice Pulser version 1

Accept: text/plain

Message 2. INVITE-require probe message

INVITE sip:wj@iptel.org SIP/2.0

Via: SIP/2.0/UDP

127.0.0.1:5000;branch=z9hG4bK.899244477;rport;alias

From: sip:voicepulser@127.0.0.1:5000;tag=524046249

To: sip:wj@iptel.org

Call-ID: 111248654@127.0.0.1

CSeq: 1 INVITE

Contact: sip:voicepulser@127.0.0.1:5000

Content-Length: 0

Max-Forwards: 70

User-Agent: Voice Pulser version 1

Accept: text/plain

Require:xx

Message 3. INVITE-SDP probe message

INVITE sip:wj@iptel.org SIP/2.0

Via: SIP/2.0/UDP

127.0.0.1:5000;branch=z9hG4bK.600541343;rport;alias

From: sip:voicepulser@127.0.0.1:5000;tag=1552686011

To: sip:wj@iptel.org

Call-ID: 1436339943@127.0.0.1

CSeq: 1 INVITE

Contact: sip:voicepulser@127.0.0.1:5000

Content-Length: 181

Content-type: application/sdp

Max-Forwards: 70

User-Agent: Voice Pulser version 1

Accept: text/plain

v=0

o=alice 2890844526 2890844526 IN IP4 192.168.1

s=

c=IN IP4 192.168.1a

t=0 0

m=audio 49170 RTP/AVP 0 8 97

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:97 iLBC/8000

Message 4. NOTIFY-refer probe message

NOTIFY sip:wj@iptel.org SIP/2.0

Via: SIP/2.0/UDP

127.0.0.1:5000;branch=z9hG4bK.1592896042;rport;alias

From: sip:voicepulser@127.0.0.1:5000;tag=499998901

To: sip:wj@iptel.org

Call-ID: 1599885472@127.0.0.1

CSeq: 1 NOTIFY

Contact: sip:voicepulser@127.0.0.1:5000

Content-Length: 0

Max-Forwards: 70

User-Agent: Voice Pulser version 1

Accept: text/plain

Event:refer

Subscription-State: active;expires=180

Appendix II: Calculation of Disabled Period
We illustrate the timing of busy-status detection and calculate

the disabled period, as shown in Figure 11. Consider the three

relevant time points of a transaction. The black diamond and the

white diamond show the time that the SIP phone receives the

request and responds the request, respectively, whereas the black

square denotes the end of a transaction. The interval between the

first two time points is the processing time r, a small time period

measured to be between 10ms and 100ms. After this interval, a

transaction waits for L seconds; e.g., L is 32 seconds (Timer J) for

non-INVITE UDP transactions. For INVITE UDP transactions, L

is 32 seconds (Timer H) if no ACK request is received, and is 5

seconds (Timer I) if an ACK request received. These timers are

standard [10].

In calculating the disabled period, we omit the network

transmission time since it is negligible compared to the disabled

period. In Figure 10, time 0 denotes the receipt of the 1st request.

For the first h requests, the SIP phone takes r seconds to respond

to each request. The phone will become available to accept a new

request after the 1st request expires, at time r+L. Thus, during time

(h-1)*d and time r +L, the phone is unable to accept a new request

for (r+L)-(h-1)×d seconds. The response to an INVITE request is

given after the disabled period.

Given parameters of PAP2 and 7940G along with an

estimated parameter r=20ms, we are able to calculate the disabled

period of both phones. PAP2 phone’s disabled period is 29.54

seconds with parameters L=32sec, d=80ms, and h=32. 7940G

phone’s disabled period (not shortened) is 31.62 seconds with a

different parameter h=6. However, by applying disabled-period

shortening, the shortened disabled period of 7940G is smaller than

2 seconds.

9. REFERENCES
[1] Cauley, L., “NSA has Massive Database of Americans’

Phone Calls,” USA Today, May 2006.

[2] Danezis, G. “Statistical Disclosure Attacks: Traffic

Confirmation in Open Environments, “ In Proc. of Security

and Privacy in the Age of Uncertainty (SEC), 2003, Athens,

Greece

[3] Danezis, G., and Diaz, C. ”A survey of anonymous

communication channels,” Microsoft Research Technical

Report (MSR-TR-2008-35), Jan. 2008

[4] Dingledine, R., Mathewson, N., and Syverson, P. “Tor: The

Second-Generation Onion Router, “ In Proc. of the 13th

USENIX Security Symposium, 2004, San Diego, CA

[5] Fathi, H., Chakraborty, S. S., and Prasad, R. “Optimization

of SIP Session Setup Delay for VoIP in 3G Wireless

Networks, “IEEE Transaction on Mobile Computing, Vol. 5,

No. 9, Sep. 2006

[6] Fyodor, “Remote OS Detection via TCP/IP Stack

FingerPrinting,” Phrack 54, 8, Dec 1998. URL

http://nmap.org/nmap-fingerprinting-article.txt

[7] Gilbert, E., and Karahalios, K. “Predicting Tie Strength With

Social Media," In Proc. of ACM CHI 2009, April 2009,

Boston, MA

[8] Gong, X., Kiyavash, N. and Borisov, N., “Fingerprinting

Websites Using Remote Traffic Analysis,” In Proc. of ACM

CCS, 2010, Chicago, IL

[9] IANA-defined SIP Parameters,

http://www.iana.org/assignments/sip-parameters

[10] IETF RFC 3261, “SIP: Session Initiation Protocol”

Figure 11. Disabled period

[11] IETF RFC 3264, “An Offer/Answer Model with the Session

Description Protocol (SDP)”

[12] IETF RFC 3265, “Session Initiation Protocol (SIP)-Specific

Event Notification”

[13] ITU-T G.114, One-way transmission time

[14] Jong, C.-H., Voice Pulser SIP attack program,

https://code.google.com/p/voice-pulser/

[15] Kocher, P.C. “Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS, and Other Systems,” In Proc. Of

CRYPTO, 1996, Santa Barbara, CA

[16] Kocher, P.C., Jaffe, J., and Jun, B. “Differential Power

Analysis,” In Proc. of CRYPTO, 1999, Santa Barbara, CA

[17] Kazatzopoulos, L., Delakouridis, C., and Marias, G.F.

“Providing Anonymity Services in SIP,” In Proc. of IEEE

PIMRC, 2008, Cannes, France

[18] Lin, Y.-B. and Tsai, M.-H. “Eavesdropping Through Mobile

Phone,” IEEE Transaction on Vehicular Technology, Vol 56,

Issue 6, Nov 2007

[19] Markoff, J. “Taking Spying to a Higher Level,” New York

Times, Feb. 2006.

[20] McKeay, M. ‘Taking Corporate Spying to a Higher Level,”

Computerworld, 2006.

[21] Murdoch, S. J. “Hot or Not: Revealing Hidden Services by

their Clock Skew, “In Proc. of ACM CCS, 2006, Alexandria,

VA

[22] Murdoch, S. J. and Danezis, G. “Low-Cost Traffic Analysis

of Tor,” In Proc. of the IEEE Symposium on Security and

Privacy, 2005, Oakland, CA

[23] Padhye, J. and Floyd, S. “On Inferring TCP Behavior,” In

Proc. of ACM SIGCOMM, 2001, San Diego, CA

[24] Pfitzmann, A. and Hansen, M. “A terminology for talking

about privacy by data minimization:Anonymity,

Unlinkability, Undetectability, Unobservability,

Pseudonymity, and Identity Management,” Version 0.34

Aug. 10, 2010, available on http://dud.inf.tu-

dresden.de/Anon_Terminology.shtml

[25] Resig, J., Dawara, S., Homan, C. M., and Teredesai, A.

“Extracting Social Networks from Instant Messaging

Populations, “ In Proc. Of LinkKDD, 2004, Seattle, WA

[26] Srivatsa, M., Iyengar, A., Liu, L., and Jiang, H. “Privacy in

VoIP Networks: Flow Analysis Attacks and Defense, “IEEE

Transaction on Parallel and Distributed Systems, Vol. 22,

No. 4, April 2011

[27] Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H.,

Sundaram, A., and Zamboni, D. “Analysis of a denial of

service attack on TCP, “ In Proc. of IEEE Symposium of

Security and Privacy, 1997, Oakland, California

[28] Solomon, J., Johnson, C. “FBI Broke Law for Years in

Phone Record Searches,” Washington Post, Jan. 2010.

[29] Superstructure Group, “SiD Case Study in Drug

Intelligence,” rel. 1.1, February 2011,

www.superstructuregroup.com/Resources/SiDCaseStudy_Dr

ugIntell.pdf (accessed Aug. 20, 2011)

[30] Wang, X., Chen, S., Jajodia, S. “Tracking Anonymous Peer-

to-Peer VoIP Calls on the Internet,” In Proc. of ACM CCS,

2005, Alexandria, VA

[31] Wright,C., Ballard, L., Coull, S., and Monrose, F. "Spot Me

If You Can: recovering spoken phrases in encrypted VOIP

conversations," In Proc. of IEEE Symposium on Security

and Privacy, May, 2008, Oakland, CA

