
POSTER: Detecting Inter-App Information Leakage Paths

Shweta Bhandari
MNIT Jaipur

Rajasthan, India
2014rcp9508@mnit.ac.in

Frederic Herbreteau
LaBRI - University of

Bordeaux, CNRS, France
fh@labri.fr

Vijay Laxmi
MNIT Jaipur

Rajasthan, India
vlaxmi@mnit.ac.in

Akka Zemmari
LaBRI - University of

Bordeaux, CNRS
zemmari@labri.fr

Partha S. Roop
The University of Auckland

Auckland, New Zealand
p.roop@auckland.ac.nz

Manoj Singh Gaur
MNIT Jaipur

Rajasthan, India
gaurms@mnit.ac.in

ABSTRACT
Sensitive (private) information can escape from one app to
another using one of the multiple communication methods
provided by Android for inter-app communication. This
leakage can be malicious. In such a scenario, individual be-
nign app, in collusion with other conspiring apps, if present,
can leak the private information. In this work in progress, we
present, a new model-checking based approach for inter-app
collusion detection. The proposed technique takes into ac-
count simultaneous analysis of multiple apps. We are able
to identify any set of conspiring apps involved in the col-
lusion. To evaluate the efficacy of our tool, we developed
Android apps that exhibit collusion through inter-app com-
munication. Eight demonstrative sets of apps have been
contributed to widely used test dataset named DroidBench.
Our experiments show that proposed technique can accu-
rately detect the presence/absence of collusion among apps.
To the best of our knowledge, our proposal has improved
detection capability than other techniques.

1. MOTIVATION
In Android, standard communication channels are based

on Intent-based ICC. A recent study [9] showed that almost
85% of all apps in the market place perform inter-app com-
munication via either explicit (11.3%) or implicit (73.1%)
Intents. Unfortunately, the ICC model can be exploited by
malware writers to deploy successful Privilege escalation at-
tack [8] or Collusion attacks [7, 13]. Collusion refers to the
scenario where two or more conspiring apps with a limited
set of permissions communicate with each other to gain in-
direct privilege escalation and can perform unauthorized ac-
tions. In particular, an app with necessary permissions can
access some sensitive information, send it using intents to
another app, and this app can send the information out.
This results in an information leak. The risk of this threat

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASIA CCS ’17 April 02-06, 2017, Abu Dhabi, United Arab Emirates
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4944-4/17/04.

DOI: http://dx.doi.org/10.1145/3052973.3055163

is that the individual app appears benign, but it may create
privacy leakage path in the presence of another app(s).

Many techniques have been proposed for the analysis of
Android apps. These include machine learning techniques
and behavioral analysis. However, most of the existing works
are focus on single app analysis [6, 10]. The attacker man-
ages to plant the privacy leakage path by placing the source
in one app and sink in another. Hence, can easily bypass
detection by existing tools. Therefore to detect collusion, a
set of apps need to be considered for analysis.

To demonstrate, we develop a scenario illustrated in Fig-
ure 1. It shows three colluding apps (named DeviceId, De-
viceId Service and Collector) that involve in the exfiltration
of device id. All the three apps communicate via Intent
objects. In the example, DeviceId invokes DeviceId Service
through startService() API call. Upon invocation, Devi-
ceId Service access sensitive information (unique device id)
that requires permission READ_

PHONE_STATE by calling sensitive Android API named get-

DeviceId(). This information is encapsulated in Intent and
sent to Collector app. Note that the Collector app does not
have permission to access device id on its own, but due to
inserted privacy leakage path, it can get the access. Then,
the sensitive information get ex-filtrated to an external file.
The sensitive information then ex-filtrate to an external file.
This ex-filtration is without user consent as the user has not
permitted Colletor app to access devide id information. The
inserted leakage path cannot be detected by VirusTotal [4],
AndroTotal [1], IccTA [12], FlowDroid [5] and Droidsafe [11].
The problem of collusion is dangerous in the sense that both
the apps required a minimal set of permission and hence are
treated as benign by the majority of available techniques.
The challenge of collusion detection lies in representing sen-
sitive data-flow by these apps and identifying the leakage
path spread across multiple apps.

2. CONTRIBUTIONS
The contributions are as follows:

1. We propose a technique where verification method is used
efficiently to check all the possible paths generated due
to inter-app communication and to verify if the paths
are admissible on the requirements of the safe state (no
collusion).

2. In this work in progress, only intents have been explored
as a means of inter-app communication mechanism. Based
on this, our proposed collusion checking property can de-

908

http://dx.doi.org/10.1145/3052973.3055163


Figure 1: Examples of the privacy leakage path spread across apps DeviceId, DeviceId Service and Collector

tect presence/absence of collusion. To check for privilege
escalation while colluding, Intents (that carry sensitive
information) have been augmented with permissions.

3. We are proposing, a multi-app analysis tool for collusion
detection.

4. We developed eight new apps that are diverse in the com-
ponents used for communication, and type of Intent based
communication channels (implicit, explicit, ordered). We
also inserted sensitive leakage paths in these apps. These
apps are contributed to the data set which can be used
for the comparison of the techniques to detect privacy
leakage through collusion.

3. PROPOSED APPROACH
In this section, we present the structure of our tool, which

is designed to detect potentially colluding apps. Figure 2
shows the overview of our tool The description of the figure
is as follows:

1. Android apps are implemented in Java and compiled into
Dalvik bytecode. So in step 1, we extracts Java bytecodes
from .dex files.

2. In step 2, we extract the main ICC classes like Intents,
Intent Filters, and URIs along with Component Name,
Bundle, Pending Intent and URI Builder classes.

3. In step 3, we extract methods corresponding to Sensitive
Resource Access (methods that require dangerous per-
mission).

4. Our tool stores all the collected information into a database
for each app as shown in steps 4.1 and 4.2. Information
is stored in the form of following tuple:

〈intentID, intentAction, intentPerm〉

5. In step 5, we model the stored information by construct-
ing App Promela Model for each app.

6. In step 6.1, these models are fed to SPIN Model Checker [3].
In step 6.2, we specify a collusion checking property in lin-
ear temporal logic (LTL) that says, the state of the model
should always be SAFE: [](state == SAFE)

7. At last, in step 7, SPIN check all the paths exhaustively
against the property. It will generate an error and provide
a counterexample of the path that does not satisfy the
LTL property. We will report that path in the colluding
apps.

4. EVALUATION
In this section, we evaluate results from our experiments

to judge the efficacy of our proposed tool. DroidBench [2]
had three sample apps demonstrating inter-app communica-
tion through activity component. We developed eight new
apps that exhibit collusion through inter-app communica-
tion. We open-sourced our experimental dataset of apps.
Experimental Results: To evaluate our approach, we
launch our tool on DroidBench samples. We conduct our
experiments in parts. Part I consists of two-apps scenario,
in which we took two apps at a time and checked for the
presence/absence of collusion due to their communication.
While selecting two apps out of 8 apps, total possible tests
cases are

(
8
2

)
= 28. But we reduce the number of test-cases

by using prior information about the app. If there is no
Intent communication between the apps, we can leave that
test-case as they are not transferring any information. This
reduces test-cases to 7 instead of 28. Table 1 summarizes the
result of our analysis of the first scenario. Part II consists
of 3-apps scenario, in which we analyze three apps simulta-
neously for collusion.

5. CONCLUSION
Private information leakage may pose a significant risk to

the security of Android mobile users. Currently, most of the
techniques target single-app analysis to detect privacy leak-
age path. However, the malicious app developers generate
the leakage path across multiple apps. Hence it is challeng-
ing to detect such leakage paths.

This paper addresses the major challenges of multi-app
analysis leading to information leakage. We presented our
work in progress technique, a tool based on model check-
ing for collusion detection. The proposal involves prepro-
cessing on Android apps under analysis to extract relevant
information. Extracted information can be further utilized
to reduce the number of test-case for evaluation. It also
helps in increasing the scalability of the tool. As a second
broader step, Our method provides a formal representation
of the extracted information. This step helps in a compact
representation of relevant information that can be given to
model-checking tool. In the end, our technique once devel-
oped shall apply model checking to verify if the collusion
checking property is satisfied by the model or not. If not,

909



Figure 2: Workflow of our proposed tool

DeviceId DeviceId DeviceId DeviceId Location1 Location Location Collector
Apps Broadcast1 Content Ordered Service1 Location1 Broadcast1 Service1 Collector

Provider1 Intent1 Service1 Location1 Broadcast1 Service1 Collector
DeviceId

Broadcast1 -NA- ) ) ) ) ) ) 3

DeviceId
Content -NA- ) ) ) ) ) 3

Provider1
DeviceId
Ordered -NA- ) ) ) ) 3
Intent1

DeviceId
Service1 -NA- ) ) ) 3

Location1
-NA- ) ) 3

Location
Broadcast1 -NA- ) 3

Location
Service1 -NA- 3

Collector
-NA-

): No Communication Exists, 7: Absence of Collusion, 3: Presence of Collusion, -NA- : Not Applicable
Table 1: Detection of collusion in two apps scenario from DroidBench

an alert is raised confirming the collusion among the apps
under analysis.

6. ACKNOWLEDGMENTS
This work is partially supported by Security Analysis Frame-

work for Android Platform (Grant 1000109932) by DeitY,
Government of India. The work is also partially supported
by DST-CNRS project IFC/DST-CNRS/2015-01/332 at MNIT
Jaipur.

7. REFERENCES
[1] Andrototal. http://andrototal.org/. [Online; accessed

10-May-2015].

[2] DroidBench 2.0. https://github.com/
secure-software-engineering/DroidBench. [Online;
accessed 02-June-2015].

[3] SPIN Model Checker. http://www.spinroot.com.
[Online; accessed 23-September-2015].

[4] Virustotal. http://virustotal.com/. [Online; accessed
10-May-2015].

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
ACM SIGPLAN Notices, volume 49, pages 259–269.
ACM, 2014.

[6] S. Bhandari, W. B. Jaballah, V. Jain, V. Laxmi,
A. Zemmari, M. S. Gaur, and M. Conti. Android app
collusion threat and mitigation techniques. arXiv
preprint arXiv:1611.10076, 2016.

[7] S. Bhandari, V. Laxmi, A. Zemmari, and M. S. Gaur.
Intersection automata based model for android
application collusion. In 2016 IEEE 30th International

Conference on Advanced Information Networking and
Applications (AINA), pages 901–908. IEEE, 2016.

[8] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer,
A. Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on android. In 19th Annual
Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February
5-8, 2012. The Internet Society, 2012.

[9] K. O. Elish, D. D. Yao, and G. R. Barbara. On the
need of precise inter-app icc classificationfor detecting
android malware collusions. In Proceedings of the
Security and Privacy Workshops, pages 116–127, 2015.

[10] P. Faruki, S. Bhandari, V. Laxmi, M. Gaur, and
M. Conti. Droidanalyst: Synergic app framework for
static and dynamic app analysis. In Recent Advances
in Computational Intelligence in Defense and Security,
pages 519–552. Springer, 2016.

[11] M. I. Gordon, D. Kim, J. Perkins, L. Gilham,
N. Nguyen, and M. Rinard. Information-flow analysis
of android applications in droidsafe. In Proc. of the
Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2015.

[12] L. Li, A. Bartel, T. F. D. A. Bissyande, J. Klein,
Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel. Iccta: detecting
inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering (ICSE 2015), 2015.

[13] C. Marforio, H. Ritzdorf, A. Francillon, and
S. Capkun. Analysis of the communication between
colluding applications on modern smartphones. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 51–60. ACM, 2012.

910

http://andrototal.org/
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
http://www.spinroot.com
http://virustotal.com/

	Motivation
	Contributions
	Proposed Approach
	Evaluation
	Conclusion
	Acknowledgments
	References



