
An Integrated Framework for Security Protocol Analysis
Marcin Olszewski
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052, USA

marcino@microsoft.com

Lukasz Cyra
Gdansk University of Technology

11/12 Gabriela Narutowicza Street
80-952 Gdansk-Wrzeszcz, Poland

lukasz.cyra@eti.pg.gda.pl

ABSTRACT

Assurance of security protocols needs particular attention. Flaws

in a protocol can devastate security of the applications that rely on

it. Analysis of the protocols is difficult and it is recommended that

formal methods are employed to provide for higher levels of

assurance. However, the formal methods can cover only a part of

the scope of the problem. It is important that the formal models

are valid representations of the protocol and that the application

context is adequately represented. In the paper we present an

analytical framework that integrates the object-oriented and

formal modeling approaches. Object models are used to capture

the relevant aspects of the protocol and its security context and to

communicate with the protocol designers. Formal models are

applied to verify the protocol security properties. Applicability of

the framework was demonstrated by several industrial case

studies.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network

protocols - protocol verification; F.4.3 [Mathematical Logic and

Formal Languages]: Formal Languages

General Terms

Documentation, Design, Security, Verification.

Keywords

analytical framework, object orientation

1. INTRODUCTION
Security protocols are subjected to subtle design errors that are

difficult to analyze. Assuring such protocols requires application

of advanced analytical methods and is commonly perceived as a

niche where formal methods can be successfully applied. In recent

years there were numerous attempts to apply formal methods to

security protocols analysis [1].

Successful application of formal methods in the analysis of

security protocols faces several limitations. Verification of

protocol properties implies complex computations which can

easily exceed the available resources. In many cases the

practically significant protocols are too complex to be efficiently

analyzed. This complexity can be sometimes managed by

applying abstraction and decomposition principles.

A formal model is always a simplification of the real protocol and

is based on numerous assumptions [2]. To achieve the traceability

of modeling decisions and assumptions and to be able to relate the

results of formal analysis to original designs, the analysis should

be carried out within a proper framework. Such a framework

should support the informal-to-formal transformation of the

protocol specification, identification and documentation of the

underlying assumptions and clear and complete presentation of

the results of the analyses. It should also facilitate considering the

protocol in its operational environment and monitoring the

validity of the underlying assumptions. The framework should be

flexible enough to accommodate different formal techniques and

benefit from their diversity.

We propose an integrated framework for security protocol

analysis which combines formal modeling techniques for

cryptographic protocol verification with object-oriented analysis

in a well-defined engineering process. The framework ‘forces’ its

user to document the results of the analyses and to identify and

document all the underlying assumptions. Semiformal object-

oriented modeling combined with formal modeling and analysis

complement each other making use of their strengths:

comprehensibility and versatility of object models and precision,

unambiguity and rigor of the formalism.

In the subsequent sections we first overview the related works,

then briefly describe the proposed framework and demonstrate its

applicability in the context of two case studies. In conclusions we

summarize our contribution and present plans for future research.

2. RELATED WORK
To date, numerous formal approaches to security protocol analysis

have been proposed [1, 3]. Main differences are in the general

modeling approach taken by a method and in the ways of

performing the analyses. The latter distinguishes between theorem

proving and model checking. Theorem proving includes

techniques based on specialized logics, such as BAN [4], but also

methods like Paulson’s inductive approach [5] or those relying on

abstract algebras and morphisms [3]. Model checking approaches

include methods created specifically for the security domain, like

AVISPA [6] or strand-spaces of Athena [7], but also approaches

derived or adapted from already established formal frameworks,

like CSP process algebra [8], FOCUS [9] or spi-calculus [10].

In our work we concentrate on model checking techniques use

them a ‘building blocks’ of the proposed framework. Those

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ASIACCS'08, March 18-20, Tokyo, Japan

Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

77

blocks are embedded in the UML based context which provides

support to the modeling task before the actual formalization of the

protocol. In practice, such modeling is performed most times very

informally. It is supported by textual descriptions and some

diagrams, or the so-called „standard notation” – with Alice and

Bob exchanging messages [11]. Our contribution is by proposing

UML as a main mechanism to support this ‘before formalization’

modeling task.

UML models of a protocol have to be eventually transformed into

formal models. In general, the problem of refinement of UML

models into more precise notations and languages or even

executable code is a complex [12, 13] and still a subject of active

research in the field of software engineering. Some recent results

are based on the concept of viewpoints and unification [14]. A

viewpoint is a partial model of a system, prepared in an object-

oriented notation, such as UML. Unification is a process of

combining partial models into a complete formal specification

which may become further refined towards executable code.

Modeling security-critical systems and protocols in UML is not a

new idea. In [15] Jurjens proposes UMLsec – a UML dialect for

modeling heterogonous systems and their security properties

including communication activities. UMLsec has a wide scope

and is a powerful modeling tool. Models are prepared with the

purpose of formalization and analysis, including code generation.

Our modeling approach is more focused than UMLsec. It uses

simpler and fewer modeling constructs. Our approach is pattern-

oriented. By using patterns we make the UML modeling more

streamlined by clearly defining the focus of analysis. UMLsec has

a far larger scope and addresses many issues outside the security

protocol analysis. By focusing our framework on security

protocols we managed to obtain a tool which is simpler but at the

same time covers some areas specific to protocols which were

neglected in [15], such as modeling assumptions or constraints

resulting from formalization.

Integration of UML and formal methods for the purpose of

cryptographic protocols specification, design and analysis was

studied in the CASENET project [16]. CASENET delivered an

integrated approach encompassing the entire lifecycle of a

protocol – from gathering of functional requirements through

protocol specification and design to implementation (or rather,

construction from modular components), validation and testing.

UML diagrams are used to capture requirements and model the

dynamics of protocols, the notation is assisted by a SRL formal

language. A suit of advanced applications support the CASENET

methodology, including a powerful commercial validation tool

SAFIRE. Our framework is more light weight than the CASENET

approach. It focuses on protocol modeling and analysis and on

traceability of the analysis process and communicating the results

to the stakeholders. In particular, protocol design and

implementation fall outside the scope of our framework. Protocol

modeling and specification in CASENET are very tightly

integrated with the supporting tools which can be considered an

advantage in terms of automation and scalability. Our framework

assumes a loose coupling with formal methods and supporting

tools, which gives more flexibility and helps in exploiting an

additional potential resulting from their diversity. In the sequel we

report on our experience with using different formalisms:

CSP/Casper, FOCUS and AVISPA.

3. FRAMEWORK DESCRIPTION

3.1 Framework architecture
The framework integrates various methods and tools with the

intention of supporting the user while carrying different phases of

protocol analysis, starting from an informal, ‘technical’

formulation of the protocol and its environment, through

modeling the protocol and its context using semiformal, graphical

notations and tools and ending at a formal model and its precise,

mathematically founded analyses.

The main components of the framework are illustrated in Figure 1.

Figure 1. Components of the integrated framework for

protocol analysis

The heart of the framework is the analytical procedure which

defines a workflow to be followed while applying the framework.

Here is an overview of the procedure steps:

Analysis of input material – Elicitation of facts relevant to

protocol modeling and analysis based on documentation such as

protocol specifications, design documents, technical reports but

also taking into account interviews with designers, meeting

reports etc.

Identification of assumptions and simplifications –

Identification and documentation of assumptions related to the

protocol and its environment. It also includes identification and

documentation of all simplifications necessary for making the

modeling and formal analysis feasible.

Identification of security goals – Identification and specification

of the security objectives of the protocol (and all its subprotocols)

– verifying whether the protocol actually satisfies these goals is

the purpose of formal analysis.

Validation of analysis scope – Validation of the results of the

previous steps (with the help of domain experts and protocol

designers).

Semiformal modeling and analysis – Developing UML object

models that represent protocol participants and their interactions

(protocol dynamics), the threat model, and documenting in the

models all the security objectives and underlying assumptions.

Formal modeling and analysis – Developing formal model of the

protocol; verification of the formal model against the security

objectives of the protocol. Formal modeling and analysis can be

carried out using one of the following methods and tools:

Casper/CSP, FOCUS and AVISPA.

Documenting the results – The results of the analysis are

documented using the predefined template.

78

3.2 UML modeling
The object modeling component of the framework is based on

UML [17]. The language was extended by stereotypes proposed

for common elements of protocols models, for example

<<protocol agent>>, <<session>> and <<secure message>>

which were derived respectively from UML actor, object state and

object interaction. The next step towards this direction is a

complete domain-specific UML profile [18] which is in line with

the OMG recommendation for those UML users who want

unambiguity and support for tool automation [19]. UML 2.0

offers a revised profiling mechanism. Stereotypes are introduced

by means of inheritance from a standard UML metaclass, and

domain-specific features of the new stereotypes are expressed

formally using the Object Constraint Language (OCL).

Figure 2. Security protocol modeling perspectives

To help the users in using the proposed UML extension we

provide a set of patterns. Each pattern defines a scheme for

constructing a particular aspect of the protocol model from a

specific perspective. While defining the patterns took into account

the needs of formalization of the protocols. For instance, all three

formal techniques we have experimented with: CSP/Casper,

AVISPA and FOCUS required the following aspects to be

included in the specification:

protocol participants (agents) – agent behavior in response to

received data, expectations towards security services offered by

the protocol, properties of channels used to send and receive

messages

protocol dynamics - the way messages are constructed from

variables and sent between agents

threat model - capabilities and knowledge of the intruder

protocol decomposition – partitioning a protocol into smaller

subprotocols to limit the scope, size and structure of the network

running the protocol, declaration of protocol sessions for agents to

run in a given scenario

We have identified a set of perspectives which forms a common

modeling baseline for formal security protocol analysis. The

perspectives are shown in Figure 2. The “Assumptions” aspect is

put in the central place, as we recognize that identification and

documentation of assumptions should be the central theme of

protocol modeling regardless of the perspective.

The modeling patterns serve a number of purposes. Firstly, they

help to focus on one particular problem at a given stage.

Secondly, they help the analyst to better understand the way each

concept is used not by studying the OCL constraints but by

observing how this concept behaves in relation to other concepts.

The patterns are defined in accordance with the following

template:

Pattern name – a descriptive name of the pattern

Intent – which modeling issues are addressed by the pattern

Definition - UML diagram defining the pattern; description of the

pattern and its elements

How it works – explanation of how the pattern works in practice;

supported by a real example from one of the Case Studies

Reference to other patterns – as patterns are used together to

model different aspects of the protocol, this section explains the

relationships between this pattern and the others

Variants - because of a few differences of how certain aspects of

the protocol are modeled in AVISPA, CSP/Casper and FOCUS,

several patterns have more then one variant tailored to suit

specific requirements of a corresponding formalism

The patterns impose some structure on the UML models which is

then reflected in formal models. This has certain advantages,

which will be explained in the following sections.

Example pattern definitions are shown in Figure 3 and Figure 4.

anAgent : Agent

[anAgent's state in scenario #n]

anAgent's state in scenario #n

doing RoleOne's

run #1

doing RoleTwo's

run #1

doing RoleTwo's

run #2

doing RoleOne's

run #1

doing RoleTwo's

run #1

doing RoleTwo's

run #2

Figure 3. An Agent’s sessions pattern definition – CSP variant

79

Agent 1 / Role R : Agent 1's type
Agent 2 / Role R : Agent 2's type

Agent 1 / Role S : Agent 1's typetheIntruder / Role S : Intruder

Figure 4. An Agent’s sessions pattern definition – AVISPA

variant

The pattern specifies possible behaviors of an agent. In CSP

variant of the pattern (see Figure 3) each agent is characterized by

a single compound state which contains sub-states representing

individual sessions the agent can run. The agent can assume

multiple roles and run the sessions concurrently or consecutively.

Even though there are strong similarities and significant overlap

between different formal approaches to protocol modeling and

analysis, there are also a few important differences which must be

taken into account. For example, the “Agent’s sessions” pattern

represents a specific facet of CSP/Casper. In this approach the

network running the protocol (also called a system) is described

by specifying a number and sequence of sessions each agent can

run and what roles he can take in each session. What is important

is that the analyst does not specify what other agents will

collaborate in each session. The model checker tries all

possibilities by testing each possible combination of agent

identities, provided that those other agents are allowed to run a

session taking a complementary role.

The AVISPA and FOCUS methods take a different approach. The

analyst assigns sessions and roles to each agent in the system but

he also explicitly says which agents are running each session.

Different combinations require either a more complex model with

more sessions (which may quickly become too large to process) or

one can model a separate security scenario with its own script. To

capture this property of AVISPA/FOCUS, we proposed more then

one variant of the Agent’s sessions pattern. While Figure 3 shows

the CSP variant of the pattern, Figure 4 presents the version

intended for AVISPA/FOCUS users. In this case the model takes

the form of a collaboration diagram depicting instances of

different types of agents with object links representing the fact

that given agents are involved in a protocol session and are taking

roles specified in collaboration.

Note that with this variant the intruder has to be explicitly

mentioned in a model if he should participate in a protocol session

posing as a legitimate agent. That is just another difference

between AVISPA or FOCUS and CSP/Casper. The former

method allows the intruder to run an arbitrary number of sessions

without explicitly specifying this fact in the threat model.

3.3 Assumptions
Modeling inevitably involves making assumptions. Understanding

those assumptions and their implications is crucial for the

analyses and the interpretation of the results. The framework

supports assumption management in two ways: the metamodel

helps in identifying the areas that should be considered for

possible assumptions and the analytical patterns provide means

for documenting the assumptions. We distinguish different types

of assumptions, including: scope of analysis, security of

cryptographic mechanisms, scope of threats and protocol

simplification. The assumption documentation template is given

in Table 1.

Table 1. Assumption documentation template

ID Unique assumption identifier

Type Assumption type

Body Assumption expression

Motivation Explanation why the assumption is needed

Rationale Justification why this assumption is valid

Impact How this assumption influences the analysis

process and its results

Comments Other relevant information

In addition to the above textual documentation, assumptions are

also documented in object diagrams using stereotyped nodes

<<assumption>>, which point to the assumptions documentation

by referring to their ID, as illustrated in Figure 3.

Digital

signatures
<<assumption>>

A_public_keys_valid

Figure 5. Documenting assumptions

3.4 Formal analysis
To provide for unambiguity of specifications and precision of the

analyses the framework employs formal modeling. Formal models

are derived from the object models during the formalization step

of the analytical procedure. By integrating more that one formal

method into our framework, we can benefit from added diversity

at the same time reusing most of the work needed to prepare semi-

formal models and identify and document the necessary

assumptions. At present, the framework supports three protocol

analysis techniques based on model checking: CSP/FDR,

AVISPA and FOCUS.

Formal specifications are prepared manually by applying some

formalization rules and guidelines. Formalization rules refer to

entire patterns or their larger fragments. This approach was

inspired by the techniques of model formalization based on

viewpoints [14, 13]. Our formalization rules and guidelines

follow the ideas of model unification (but in a less formal way).

Unification recognizes viewpoint consistency as a fundamental

issue (inconsistent models cannot be unified to a well-formed

formal specification). In our approach this problem is somewhat

lessened, if the analyst follows the modeling patterns accurately.

The rules leave some room for interpretation and therefore we do

not claim to have a rigorous method of semi-formal model

refinement. Our formalization rules meet the requirements

postulated in [12]: (1) their scope goes beyond basic model

elements to entire patterns; (2) they are documented in a natural

language, same as the patterns themselves; (3) the models link

individual assumptions to specific model elements which provides

for greater traceability.

Figure 6 shows an example procedure of translating a model using

the Agent Sessions pattern into Casper instructions. Casper scripts

are then automatically compiled into machine readable dialect of

CSP and verified using the FDR model checker.

80

Figure 6. How to formalize the Agent’s Sessions pattern

4. Distributed digital signatures case study
This case study was conducted within the R&D project sponsored

by the Polish Scientific Council, Grant No. 6 T11 2003 C\0 6280

and led by Unizeto Ltd, Poland [20, 21]. The objective of the

project was to develop and deploy a system supporting strong

digital signatures in a distributed, public environment. The

distributed architecture of the system and the new approach it

takes to creating digital signatures resulted with the need to design

a suit of secure cryptographic protocols. It was decided to analyze

the protocols using formal techniques.

Figure 7. Protocols analyzed in the Unizeto Ltd. R&D project

The architecture of the developed system went through a

significant change during the project, which directly influenced

the designs of security protocols. The evolution of protocols and

the formal analyses performed are shown in Figure 7.

The first suit of protocols consisted of five designs, the Trusted

Signature Protocol (TSC) and four auxiliary ones [21]. TSC was

responsible for establishing a secure channel between agents

during the actual document signing. The protocol was modeled

semi-formally and then analyzed formally using CSP/Casper and

for additional verification with FOCUS. Later in the project, the

signature creation transaction was divided into two smaller parts,

the first one being an initial authentication of the pin-pad to the

trusted computing module (PINpad-TRSM) and the second one

authentication of the smartcard to the trusted module and

producing a signature (ICC-TRSM). Both protocols have been

analyzed using two formal methods: CSP/Casper and AVISPA.

The way the combination of our framework and the CSP/Casper

formal method were applied to the Trusted Signature Protocol has

already been reported in [22]. In the following section we will

focus on explaining how the protocol was analyzed with FOCUS.

Model element Sessions performed by agents

UML Casper formal specification

Protocol sessions which an agent can run in a given security

scenario are modeled using a state model. Each agent abject

is assigned a compound state which consists of several

atomic states, each representing one protocol run. Individual

atomic states can be either consecutive or parallel.

Individual runs an agent can run are represented as

instances of CSP processes. Each type of process

corresponds to a single role an agent can assume. Atomic

UML states comprising agent’s compound state are

mapped into process instances, which are parameterized

using an appropriate agent identity variable. Parallelism of

agent sessions can also expressed in Casper.

Agent Sessions Description diagram:

#FREE VARIABLES

-- DEFINE AN AGENT VARIABLE

AINITIATOR, ARESPONDER : AGENT

#PROCESSES

-- AGENT ROLES ARE MAPPED TO CSP PROCESSES

-- PARAMETRISED WITH AGENT’S ID

INITIATOR(AINITATOR, <DATA VARIABLES>)

RESPONDER(AINITATOR, <DATA VARIABLES>)

#ACTUAL VARIABLES

-- CREATE AN INSTANCE FOR YOUR AGENT

THETERMINAL : AGENT

#SYSTEM

-- DECLARE POSSIBLE RUNS BY CREATING

-- INSTANCES OF CSP PROCESSES

INITIATOR(THETERMINAL)

RESPONDER(THETERMINAL)

theTerminal : Agent

[theTerminal's state in scenario #n]

theTerminal's state in scenario #n

doing Initiator

run #1

doing Responder

run #1

doing Initiator

run #1

doing Responder

run #1

81

4.1 Trusted Signature Creation Protocol
The distributed system for digital signatures involves three types

of agents: Application Provider, Service Provider and Signing

Entity. The Application Provider (AP) represents a company or a

government entity that is providing customers with an interactive

web application which at some point requires submitting securely

signed forms or documents. The Service Provider (SP) supplies

the infrastructure and the service intended for creating digital

signatures remotely. It is a trusted third party responsible for the

overall security of the entire solution. The Signing Entity (SE)

represents an independent party interested in using the application

Figure 8. Trusted Signature Creation Protocol

offered by the AP. The service provider supplies the SE with a

personal smartcard and the PIN number for accessing the private

signature key stored on the card. The system is designed to allow

the SE to sign electronic documents remotely on the Internet,

providing he has access to a terminal equipped with a smartcard

reader and a PIN pad. The goal of the protocol is to establish a

secure channel between the SE and SP, transmit the data to be

signed to the smartcard held by SE and deliver the signed

document first to SP and then to AP to finalize the transaction.

The UML model of the TSC protocol is presented in Figure 8. For

clarity, we have removed the Application Provider from the

model, as his involvement in the protocol is limited to receiving

the signed data in the last message of the protocol. For the same

reason we have omitted any <<assumption>> notes present in the

full model. The notation used in the model is briefly explained in

Figure 9.

4.2 Modeling the TSC protocol with FOCUS
The FOCUS formal method [9] together with its supporting tool,

AutoFocus [23], were applied in the formal modeling process.

The AutoFocus tool was originally intended for developing

reliable embedded systems. It was adapted to cryptographic

SE : Signing Entity SP : Service

Provider

1. { SE, PK_AUT(SE) }{ SK_SIG(CA) }, TRANS_ID

2. RND(SP)

3. {{ PART_KEY(SE), RND(SP), SP }{ SK_AUT(SE) }}{ PK_AUT(SP) }, RND(SE)

4. {{ PART_KEY(SP), RND(SE), SE }{ SK_AUT(SP) }}{ PK_AUT(SE) }

5. { PIN }{ SK }, { SK }{ PK_AUT(SP) }

6. { PIN }{ SM_KEY }, h(PIN, SM_KEY_MAC)

7. { g(DTBS) }{ SM_KEY }, h(g(DTBS), SM_KEY_MAC)

8. {{g(DTBS)}{SK_SIG(SE)}}{SM_KEY},h({g(DTBS)}{SK_SIG(SE)}, SM_KEY_MAC)

<<generate>>
RND(SP)

<<check>>

SE, TRANS_ID

<<generate>>
PART_KEY(SE), RND(SE)

<<check>>

SP, RND(SP)

<<generate>>
PART_KEY(SP)

<<check>>

SE, RND(SE)

<<generate>>
SK

<<generate>>

SM_KEY = f1(PART_KEY(SE), PART_KEY(SP))

SM_KEY_MAC = f2(PART_KEY(SE), PART_KEY(SP))

<<check>>

PIN

<<generate>>
SM_KEY = f1(PART_KEY(SE), PART_KEY(SP))
SM_KEY_MAC = f2(PART_KEY(SE), PART_KEY(SP))

<<Pre-conditions>>
SE

knows {SE, PK_AUT(SE)}{SK_SIG(CA)}

knows PIN
knows PK_AUT(*), PK_SIG(SE),
knows SK_AUT(SE), SK_SIG(SE).
knows SE, SP, TRANS_ID, g(DTBS)

<<Pre-conditions>>

SP

knows PK_AUT(SP)

knows PK_SIG(CA), PK_SIG(SP)

knows SK_AUT(SP), SK_SIG(SP)

knows SP, SE, TRANS_ID

TSC

Subprotocol A

TSC

Subprotocol B

82

Figure 9. Notation used in the model of the TSC protocol

protocol analysis because FOCUS allows modeling of all relevant

cryptographic operations and functions [24]. However, the

flexibility of the formal language and its universal nature result in

a relatively high degree of model complexity.

A security protocol specification in FOCUS can be documented

using a number of diagrams. Agents and communication channels

that connect them are modeled with System Structure Diagrams

(SSD). Internal behavior of agents is represented using State

Transition Diagrams (STD). Sequence diagrams, which are used

to represent how a protocol session is run, are shown as extended

Event Traces Diagrams (EET). Finally, types of messages and

variables as well as functions are declared as Data Type Definition

(DTD) specifications.

The biggest challenge which we encountered in the process of the

protocol analysis, was the complexity of the resulting protocol

specification. Experiments with formalization and verification of

the entire protocol model failed. This led to a decision that

decomposition of the model is necessary. The TSC protocol was

divided into two parts, as shown in Figure 8.

The first part – TSC Subprotocol A - consists of the first four

messages. The objective of Subprotocol A is to have the Signing

Entity (SE) and Service Provider (SP) successfully establish

values of secret keys SM_KEY and SM_KEY_MAC. The second

part – TSC Subprotocol B - consists of the last five messages

(four, if you do not count communication with the Application

Provider at the very end of the session). The objective of

Subprotocol B is to provide the Application Provider (AP) and

the SP with a properly signed hash of the document to be signed:

g(DTBS). This goal is achieved with the help of a secret pair of

keys: SM_KEY and SM_KEY_MAC established as a result of

Subprotocol A. Separate formal models were created for both

subprotocols. Then it was proved in a classical, deductive way

that if both subprotocols are secure then the whole scheme is

secure as well.

Specifications for both subprotocols included three active parties:

two legitimate agents SE and SP and the intruder. AP was not

explicitly included in the model. The role of AP was taken into

account by redirecting the last message of the protocol originally

intended for him to SE. This modification allowed us to limit the

complexity of the resulting specification. At the same time it was

proven that the transformation was secure, which means it did not

influence the results of model verification. The specification of

TSC agents is shown in Figure 10.

Figure 10. Simplified formal model of the communication

parties of the protocol

For both subprotocols the intruder is modeled by two

subcomponents: Fake-Store and Overhear as shown in Figure 11.

The first component is responsible for storing messages,

performing analyses, and creating faked messages based on the

acquired knowledge. The second component models the control

intruder has over the network, his ability to capture messages or

introduce messages from Fake-Store into the network. Such a

model is consistent with the mathematical definition of the Dolev-

Yao intruder.

Figure 11. Formal model of the intruder

The next step was to create a state diagram for each FOCUS

component (agents and the intruder). Our model permitted only a

single protocol session between SE and SP and one session

Symbol Definition Symbol Definition

Mi (for Ni ∈

)

atomic data or a data

structure

 K key used for encryption

or signatures

M1,M2,M3… concatenation of fields

M1, M2, M3 …

 A agent or a Certification

Authority

{M}{K} message M encrypted or

signed using K

 SK, SM_KEY a shared session key

PK_AUT(A),

SK_AUT(A)

A’s public and private

key for encryption

 PIN SE’s private

identification number

PK_SIG(A),

SK_SIG(A)

A’s public and private

key for signatures

 M =

f(M1,M2,M3…)

M is generated using

values M1, M2, M3 …

<<checked>>

M1, M2, M3 ...

an agent checks values

of M1, M2, M3 … after

receipt

 h(M1,M2,M3…),

g(M1,M2,M3…)

one-way hash functions

<<generated>>

 M1, M2, M3

...

an agent generates fresh

values of M1, M2, M3

…

 DTBS data to be signed by SE

TRANS_ID a transaction (session)

identification number

 RND(A),

PART_KEY(A)

random numbers

generated by A

83

between SP and the intruder acting as a dishonest user. However

it was proved that this assumption would not influence the results

of model verification.

4.3 Verification and results
Properties of our formal models of the TSC protocol were

analyzed using a model checker. For Subprotocol A, formal

showed that both halves of the two secret keys: SM_KEY and

SM_KEY_MAC generated by the SE and SP are exchanged and

authenticated correctly and their secrecy is not compromised.

The objective of formal verification of Subprotocol B was to show

that secret values of SE’s PIN and the session key SK are not

intercepted and that every message accepted by the AP agent

contains a legitimate signed document hash issued by SE.

However, a potential flaw was discovered in the protocol. The

protocol has an anomaly which arguably allows the intruder to

intercept user’s PIN number.

The attack can be performed in the following way:

• The intruder intercepts and stores message five from the

session between SE and SP –

{PIN}{SK},{SK}{PK_AUT(SP)}.

• He repeats the captured message during his own session

as a legitimate user.

• As a reply, the intruder receives a message

{PIN}{SM_KEY_A}, where SM_KEY_A is a secret

key known only by SP and the intruder.

• From this message PIN is retrieved as the intruder

knows SM_KEY_A.

The protocol has an anomaly because one of rules of robust

protocol design was broken i.e. every message should be

cryptographically linked with one or more other messages in the

same session. Message 5 is open to a simple replay attack. An

example solution to this problem could be to include TRANS_ID

in the fifth message encrypting it with the session key SK

alongside the PIN.

It is worth mentioning that analysis of the same protocol

conducted using CSP/Casper and reported in [22] discovered the

same anomaly. The issue was corrected by the protocol designers.

No further anomalies were discovered in any of the other

protocols designed for the distributed digital signatures system.

5. PBK Case Study
The subject of this case study was analysis of the Purpose-Built

Keys (PBK) protocol. Our objective was to take a protocol that

we know has at least one vulnerability, analyze it using our

framework and at least two different formal methods and compare

the results. An additional requirement was that original design

documentation must be available for the protocol, and not just an

abstract model. Only in such a scenario we would be able to test

all the features of our integrated framework.

The have selected the PBK protocol, since there is a standard

Internet Draft specification document available for it [25] and one

of the past versions (revision 6) of the protocol had been found

defective by the AVISPA project team [26].

5.1 Analysis
For this case study we used CSP/Casper and AVISPA. Of course,

in case of the latter method our formal model was created

completely independently from the one prepared by the AVISPA

project team in their experiments. Specifications for both

AVISPA and CSP/Casper were created based on a shared UML

model in accordance to the analytical procedure and formalization

rules included in the framework. One of the UML diagrams

modeling the protocol, in this case showing the protocol dynamics

is presented in Figure 12.

The purpose of Purpose-Build Keys protocol is to guarantee

authentication of origin of the Request sent from the Initiator to

the Responder. For each protocol session, the Initiator generates a

fresh public/secret key pair and uses the secret key to sign the

Request sent in message two. The public part of the key pair is

transmitted to the Responder in the first message. It is crucial

however that this first transmission reached the responder reliably

(message integrity and authentication of origin must be ensured),

there is no other way to bind the key to the Initiator’s identity.

This requirement is explicitly stated in protocol specification and

resulted in an assumption A_secure_initialization shown on our

model as well as a special stereotype <<secure channel>> for the

first protocol message. After the Request is sent there is an

additional Challenge-Response exchange to confirm that the

originating agent is indeed the holder of the private key sent

during the initialization.

5.2 Results
This protocol has an anomaly which arguably may become a

vulnerability. The problem comes from messages three and four.

The Responder is expected to sign the Challenge which is chosen

arbitrarily by the Initiator. This is a violation of the “don’t sign

random strings of bits” rule of protocol design. In fact the intruder

can use an unsuspecting honest agent as an oracle by providing

him a faked Request to sign as a seemingly “random” challenge.

Then he can use the signed faked Request during another session

thus violating authentication of origin.

We attempted to rediscover this attack using CSP/Caper and

AVISPA. The first result was that this protocol can not be

successfully analyzed using CSP/Casper. This fact became

apparent during formalization phase, when it became clear that

authentication of origin requirement can not be expressed in the

language of Casper – it only supports entity authentication. Entity

authentication is too restrictive for this protocol and would result

in finding “dummy” attacks.

AVISPA has somewhat greater flexibility in terms of what

security goals can be verified and we managed to rediscover the

attack using this formal method. However, the only reason this

attack is successful is the type flaw between messages two and

four (specifically between {Request}{PrivKey} and

{Challenge}{PrivKey}). The original Internet Draft specification

states that “If replay protection is necessary, a nonce value (...) or

timestamp may be included with the operation request.” [25]. That

means the attack can be successful only if we assume that the

Request is sent without the nonce and model the protocol

accordingly. We have included the

A_request_is_signed_without_nonce assumption in the analysis

report and also put it in the model shown in Figure 12. This

additional information allows to trace back the reason for the

84

Figure 12. Protocol dynamics of the PBK

attack to a modeling decision that was made earlier in the process,

even before formalization. This assumption was not given

explicitly by the team at AVISPA project that analyzed this

protocol.

To summarize: we managed to rediscover the attack through

independent modeling and analysis. The problems we came across

with CSP/Casper show that diversity of formal methods available

at hand in any given project may become indispensable. A simple

example of an important assumption present in the PBK protocol

model demonstrates the added value offered by assumption

traceability.

6. Conclusions
The paper introduced a framework that integrates object and

formal modeling in order to support the process of analysis of

security protocols. The framework uses extended (by means of

stereotyping and profiling) UML for object modeling and several

formal model checking methods. The transition between UML

models and formal specifications is facilitated by using a set of

UML modeling patterns and formalization rules. The process of

modeling and analysis is well supported by existing tools, such as

UML CASE tools and others depending on the formal methods

applied: AVISPA, Casper compiler and FDR model checker or

AutoFocus.

The framework encompasses a formalized analytical procedure

which guides a user through a sequence of well defined steps. The

process is supported by a set of documentation templates and

patterns with a particular attention on identifying and

documenting the security objectives and all the assumptions that

condition the results of the analyses. We have found that such

explicit and comprehensive documentation of all identified

assumptions (including their motivation, rationale and possible

consequences) together with easy to understand UML models was

very effective in two areas. The first was establishing

communication between the analysts and the protocol designers,

and the second was tracing back all the analytical decisions made

throughout the procedure.

The biggest challenge in applying the framework is still the size

and complexity of formal models for industry security protocols,

such as the one analyzed within the distributed digital signatures

case study. Our experience in analyzing the protocol with FOCUS

and CSP/Casper (results reported in [22]) is that it involves

specialized techniques for managing complexity, such as proving

smaller properties first and applying the outcomes to simplify the

main model. This requires extensive experience with protocol

analysis as well as expert knowledge of the tools. Our framework

is not a “push-button” technology. However, the more complex

the analysis process becomes, the greater value there is to be

gained by having a system for controlling the focus and scope of

formal modeling and for documenting and communicating the

results.

In the nearest future we plan for further development of the

framework and for running more case studies, perhaps with

additional formal techniques. We are also developing a software

tool which will support the workflow of our analytical procedure

theInitiator / Initiator

: Node
theResponder /

Responder : Node

<<generate>>

PubKey, PrivKey

<<secure channel>> 1. h(PubKey), PubKey

<<check>>

PubKey = h(PubKey)

2. Request, h(PubKey), {Request}{PrivKey}

3. Challenge

4. {Challenge}{PrivKey}

<<generate>>
Request

<<generate>>
Challenge

<<check>>

Challenge

<<Pre-conditions>>

theInitiator:
knows theResponder

knows theInitiator
knows h()

theResponder:
knows theInitiator
knows theResponder

knows h()

<<Security goals:>>

OriginAuthentication(theInitiator, [Request])

<<assumption>>

A_secure_initialization

<<assumption>>

A_request_signed_without_nonce

85

and assist with managing all the artifacts created during the

analysis.

7. REFERENCES
[1] C. Fidge, “A Survey of Verification Techniques for Security

Protocols Technical Report 01-22”, Software Verification

Research Centre, School of Information Technology, The

University of Queensland, 2001.

[2] R. Anderson, “Security Engineering”, Wiley, ISBN: 0-471-

38922-6, 2001.

[3] C. A. Meadows, “Formal Verification of Cryptographic

Protocols: A Survey”, ASIACRYPT: Advances in

Cryptology,1995.

[4] M. Burrows, M. Abadi, R. Needham, “A logic of

authentication. Technical Report TR 39”, Digital Equipment

Corporation, February 1989.

[5] L. Paulson, “The inductive approach to verifying

cryptographic protocols”, University of Cambridge

Computer Laboratory, December 1998.

[6] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L.

Compagna, J. Cuellar, P. Hankes Drielsma, P.C. Heám, O.

Kouchnarenko, J. Mantovani, S. Mödersheim, D. von

Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L.

Viganò, L. Vigneron, “The Avispa Tool for the automated

validation of internet security protocols and applications”,

Computer Aided Verification, LNCS 3576, 2005.

[7] F. J. Thayer, J.C. Herzog, J.D. Guttman, “Strand spaces:

Why is a security protocol correct?”, Proceedings of 1998

IEEE Symposium on Security and Privacy, 1998.

[8] A.W. Roscoe, “The Theory and Practice of Concurrency”,

Prentice-Hall, International Series in Computer Science,

ISBN 0-13-674409-5, 1998.

[9] B. Broy, F. Dederichs, M. Fuchs, T.F. Gritzner, R. Weber,

“The Design of Distributed Systems – An Introduction to

FOCUS”, SFB-Report 342/2-2/92 A, Technical University of

Munich, 1993.

[10] M. Abadi, A. D. Gordon, “A calculus for cryptographic

protocols: The Spi Calculus”, In Proceedings of the 4th

ACM Conference on Computer and Communications

Security, ACM Press, 1997.

[11] L. Vigneron, “Specification Languages for Internet Security

Protocols”, Workshop on Automated Validation of Internet

Security Protocols and Applications, 2004.

[12] J. M. Bruel, “Integrating Formal and Informal Specification

Techniques. Why? How?”, Second IEEE Workshop on

Industrial Strength Formal Specification Techniques, 1998.

[13] J. M. Bruel, R. B. France, “Transforming UML models to

Formal Specifications”, International Conference on the

Unified Modelling Language (UML): Beyond the Notation,

1998.

[14] E. Boiten, M. Bujorianu, “Exploring UML Refinement

through Unification”, Critical Systems Development with

UML - Proceedings of the UML'03 workshop, number

TUM-I0323, pages 47-62, Technische Universitat Munchen,

September 2003.

[15] J. Jurjens, “Secure Systems Development with UML”,

Springer, ISBN: 3-540-00701-6, 2004.

[16] CASENET, European Union 5th Framework Program

project, IST-2001-32446

[17] J. Rumbaugh, I. Jacobson, G. Booch, “TheUnified Modelling

Language Reference Manual (2nd Edition)”, Addison-

Wesley, 2005.

[18] S. Johnston, “Rational UML Profile for business modeling”,

IBM Corp. whitepaper, 2004.

[19] B. Selic, “Unified Modeling Language version 2.0”, IBM

Corp. whitepaper, 2005.

[20] W. Chocianowicz, J. Pejas, A. Rucinski, “The Proposal of

Protocol for Electronic Signature Creation in Public

Environment”, in Enhanced Methods in Computer Security,

Biometric and Artificial Intelligence Systems, Kluwer

Academic Publishers, ISBN 1-4020-7776-9, 2005.

[21] W. Chocianowicz, W. Mackow, A. Skrobek, P. Sukiennik, J.

Pejas, Project No. 6 T11 2003 C/0 6280 – Technical Report

7: “Design and implementation of an universal module for

reliable presentation of a document to be signed or verified”,

Szczecin University of Technology, 2004.

[22] M. Olszewski, “A Model-based Aproach to Analysis of

Security Protocols – A Case Study”, Proceedings of the

Technologies for Homeland Security and Safety Conference,

Poland, 2005.

[23] J. Jurjens, G. Wimmel, “Formally Testing Fail-Safety of

Electronic Purse Protocols”, 2001.

[24] J. Grunbauer, H. Hollmann, J. Jurjens, G. Wimmel,

“Modelling and Verification of Layered Security Protocols:

A Bank Application”, Computer Safety, Reliability, and

Security, 22nd International Conference SAFECOMP, 2003.

[25] S. Bradner, A. Mankin, J. Schiller, "A Framework for

Purpose-Built Keys (PBK)", IETF Internet-Draft: draft-

bradner-pbk-frame-06.txt, 2003.

[26] The AVISPA Library of protocols, http://www.avispa-

project.org/, AVISPA project: IST-2001-39252

86

