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ABSTRACT 

Assurance of security protocols needs particular attention. Flaws 

in a protocol can devastate security of the applications that rely on 

it. Analysis of the protocols is difficult and it is recommended that 

formal methods are employed to provide for higher levels of 

assurance. However, the formal methods can cover only a part of 

the scope of the problem. It is important that the formal models 

are valid representations of the protocol and that the application 

context is adequately represented. In the paper we present an 

analytical framework that integrates the object-oriented and 

formal modeling approaches. Object models are used to capture 

the relevant aspects of the protocol and its security context and to 

communicate with the protocol designers. Formal models are 

applied to verify the protocol security properties. Applicability of 

the framework was demonstrated by several industrial case 

studies. 

Categories and Subject Descriptors 

C.2.2 [Computer-Communication Networks]: Network 

protocols - protocol verification; F.4.3 [Mathematical Logic and 

Formal Languages]: Formal Languages 

General Terms 

Documentation, Design, Security, Verification. 

Keywords 

analytical framework, object orientation 

1. INTRODUCTION 
Security protocols are subjected to subtle design errors that are 

difficult to analyze. Assuring such protocols requires application 

of advanced analytical methods and is commonly perceived as a 

niche where formal methods can be successfully applied. In recent 

years there were numerous attempts to apply formal methods to 

security protocols analysis [1]. 

Successful application of formal methods in the analysis of 

security protocols faces several limitations. Verification of 

protocol properties implies complex computations which can 

easily exceed the available resources. In many cases the 

practically significant protocols are too complex to be efficiently 

analyzed. This complexity can be sometimes managed by 

applying abstraction and decomposition principles. 

A formal model is always a simplification of the real protocol and 

is based on numerous assumptions [2]. To achieve the traceability 

of modeling decisions and assumptions and to be able to relate the 

results of formal analysis to original designs, the analysis should 

be carried out within a proper framework. Such a framework 

should support the informal-to-formal transformation of the 

protocol specification, identification and documentation of the 

underlying assumptions and clear and complete presentation of 

the results of the analyses. It should also facilitate considering the 

protocol in its operational environment and monitoring the 

validity of the underlying assumptions. The framework should be 

flexible enough to accommodate different formal techniques and 

benefit from their diversity. 

We propose an integrated framework for security protocol 

analysis which combines formal modeling techniques for 

cryptographic protocol verification with object-oriented analysis 

in a well-defined engineering process. The framework ‘forces’ its 

user to document the results of the analyses and to identify and 

document all the underlying assumptions. Semiformal object-

oriented modeling combined with formal modeling and analysis 

complement each other making use of their strengths: 

comprehensibility and versatility of object models and precision, 

unambiguity and rigor of the formalism. 

In the subsequent sections we first overview the related works, 

then briefly describe the proposed framework and demonstrate its 

applicability in the context of two case studies. In conclusions we 

summarize our contribution and present plans for future research. 

2. RELATED WORK 
To date, numerous formal approaches to security protocol analysis 

have been proposed [1, 3]. Main differences are in the general 

modeling approach taken by a method and in the ways of 

performing the analyses. The latter distinguishes between theorem 

proving and model checking. Theorem proving includes 

techniques based on specialized logics, such as BAN [4], but also 

methods like Paulson’s inductive approach [5] or those relying on 

abstract algebras and morphisms [3]. Model checking approaches 

include methods created specifically for the security domain, like 

AVISPA [6] or strand-spaces of Athena [7], but also approaches 

derived or adapted from already established formal frameworks, 

like CSP process algebra [8], FOCUS [9] or spi-calculus [10]. 

In our work we concentrate on model checking techniques use 

them a ‘building blocks’ of the proposed framework. Those 
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blocks are embedded in the UML based context which provides 

support to the modeling task before the actual formalization of the 

protocol. In practice, such modeling is performed most times very 

informally. It is supported by textual descriptions and some 

diagrams, or the so-called „standard notation” – with Alice and 

Bob exchanging messages [11]. Our contribution is by proposing 

UML as a main mechanism to support this ‘before formalization’ 

modeling task. 

UML models of a protocol have to be eventually transformed into 

formal models. In general, the problem of refinement of UML 

models into more precise notations and languages or even 

executable code is a complex [12, 13] and still a subject of active 

research in the field of software engineering. Some recent results 

are based on the concept of viewpoints and unification [14]. A 

viewpoint is a partial model of a system, prepared in an object-

oriented notation, such as UML. Unification is a process of 

combining partial models into a complete formal specification 

which may become further refined towards executable code. 

Modeling security-critical systems and protocols in UML is not a 

new idea. In [15] Jurjens proposes UMLsec – a UML dialect for 

modeling heterogonous systems and their security properties 

including communication activities. UMLsec has a wide scope 

and is a powerful modeling tool. Models are prepared with the 

purpose of formalization and analysis, including code generation. 

Our modeling approach is more focused than UMLsec. It uses 

simpler and fewer modeling constructs. Our approach is pattern-

oriented. By using patterns we make the UML modeling more 

streamlined by clearly defining the focus of analysis. UMLsec has 

a far larger scope and addresses many issues outside the security 

protocol analysis. By focusing our framework on security 

protocols we managed to obtain a tool which is simpler but at the 

same time covers some areas specific to protocols which were 

neglected in [15], such as modeling assumptions or constraints 

resulting from formalization. 

Integration of UML and formal methods for the purpose of 

cryptographic protocols specification, design and analysis was 

studied in the CASENET project [16]. CASENET delivered an 

integrated approach encompassing the entire lifecycle of a 

protocol – from gathering of functional requirements through 

protocol specification and design to implementation (or rather, 

construction from modular components), validation and testing. 

UML diagrams are used to capture requirements and model the 

dynamics of protocols, the notation is assisted by a SRL formal 

language. A suit of advanced applications support the CASENET 

methodology, including a powerful commercial validation tool 

SAFIRE. Our framework is more light weight than the CASENET 

approach. It focuses on protocol modeling and analysis and on 

traceability of the analysis process and communicating the results 

to the stakeholders. In particular, protocol design and 

implementation fall outside the scope of our framework. Protocol 

modeling and specification in CASENET are very tightly 

integrated with the supporting tools which can be considered an 

advantage in terms of automation and scalability. Our framework 

assumes a loose coupling with formal methods and supporting 

tools, which gives more flexibility and helps in exploiting an 

additional potential resulting from their diversity. In the sequel we 

report on our experience with using different formalisms: 

CSP/Casper, FOCUS and AVISPA. 

3. FRAMEWORK DESCRIPTION 

3.1 Framework architecture 
The framework integrates various methods and tools with the 

intention of supporting the user while carrying different phases of 

protocol analysis, starting from an informal, ‘technical’ 

formulation of the protocol and its environment, through 

modeling the protocol and its context using semiformal, graphical 

notations and tools and ending at a formal model and its precise, 

mathematically founded analyses.  

The main components of the framework are illustrated in Figure 1. 

 

Figure 1. Components of the integrated framework for 

protocol analysis 

The heart of the framework is the analytical procedure which 

defines a workflow to be followed while applying the framework. 

Here is an overview of the procedure steps: 

Analysis of input material – Elicitation of facts relevant to 

protocol modeling and analysis based on documentation such as 

protocol specifications, design documents, technical reports but 

also taking into account interviews with designers, meeting 

reports etc. 

Identification of assumptions and simplifications – 

Identification and documentation of assumptions related to the 

protocol and its environment. It also includes identification and 

documentation of all simplifications necessary for making the 

modeling and formal analysis feasible.  

Identification of security goals – Identification and specification 

of the security objectives of the protocol (and all its subprotocols) 

– verifying whether the protocol actually satisfies these goals is 

the purpose of formal analysis. 

Validation of analysis scope – Validation of the results of the 

previous steps (with the help of domain experts and protocol 

designers). 

Semiformal modeling and analysis – Developing UML object 

models that represent protocol participants and their interactions 

(protocol dynamics), the threat model, and documenting in the 

models all the security objectives and underlying assumptions. 

Formal modeling and analysis – Developing formal model of the 

protocol; verification of the formal model against the security 

objectives of the protocol. Formal modeling and analysis can be 

carried out using one of the following methods and tools: 

Casper/CSP, FOCUS and AVISPA. 

Documenting the results – The results of the analysis are 

documented using the predefined template. 
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3.2 UML modeling 
The object modeling component of the framework is based on 

UML [17]. The language was extended by stereotypes proposed 

for common elements of protocols models, for example 

<<protocol agent>>, <<session>> and <<secure message>> 

which were derived respectively from UML actor, object state and 

object interaction. The next step towards this direction is a 

complete domain-specific UML profile [18] which is in line with 

the OMG recommendation for those UML users who want 

unambiguity and support for tool automation [19]. UML 2.0 

offers a revised profiling mechanism. Stereotypes are introduced 

by means of inheritance from a standard UML metaclass, and 

domain-specific features of the new stereotypes are expressed 

formally using the Object Constraint Language (OCL). 

Figure 2. Security protocol modeling perspectives 

To help the users in using the proposed UML extension we 

provide a set of patterns. Each pattern defines a scheme for 

constructing a particular aspect of the protocol model from a 

specific perspective. While defining the patterns took into account 

the needs of formalization of the protocols. For instance, all three 

formal techniques we have experimented with: CSP/Casper, 

AVISPA and FOCUS required the following aspects to be 

included in the specification: 

protocol participants (agents) – agent behavior in response to 

received data, expectations towards security services offered by 

the protocol, properties of channels used to send and receive 

messages 

protocol dynamics - the way messages are constructed from 

variables and sent between agents 

threat model - capabilities and knowledge of the intruder 

protocol decomposition – partitioning a protocol into smaller 

subprotocols to limit the scope, size and structure of the network 

running the protocol, declaration of protocol sessions for agents to 

run in a given scenario 

We have identified a set of perspectives which forms a common 

modeling baseline for formal security protocol analysis. The 

perspectives are shown in Figure 2. The “Assumptions” aspect is 

put in the central place, as we recognize that identification and 

documentation of assumptions should be the central theme of 

protocol modeling regardless of the perspective. 

The modeling patterns serve a number of purposes. Firstly, they 

help to focus on one particular problem at a given stage. 

Secondly, they help the analyst to better understand the way each 

concept is used not by studying the OCL constraints but by 

observing how this concept behaves in relation to other concepts. 

The patterns are defined in accordance with the following 

template:  

Pattern name – a descriptive name of the pattern 

Intent – which modeling issues are addressed by the pattern 

Definition - UML diagram defining the pattern; description of the 

pattern and its elements 

How it works – explanation of how the pattern works in practice; 

supported by a real example from one of the Case Studies 

Reference to other patterns – as patterns are used together to 

model different aspects of the protocol, this section explains the 

relationships between this pattern and the others 

Variants - because of a few differences of how certain aspects of 

the protocol are modeled in AVISPA, CSP/Casper and FOCUS, 

several patterns have more then one variant tailored to suit 

specific requirements of a corresponding formalism 

The patterns impose some structure on the UML models which is 

then reflected in formal models. This has certain advantages, 

which will be explained in the following sections. 

Example pattern definitions are shown in Figure 3 and Figure 4. 

anAgent : Agent

[anAgent's state in scenario #n]

anAgent's state in scenario #n

doing RoleOne's 

run #1

doing RoleTwo's 

run #1

doing RoleTwo's 

run #2

doing RoleOne's 

run #1

doing RoleTwo's 

run #1

doing RoleTwo's 

run #2

 

Figure 3. An Agent’s sessions pattern definition – CSP variant 
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Agent 1 / Role R : Agent 1's type
Agent 2 / Role R : Agent 2's type

Agent 1 / Role S : Agent 1's typetheIntruder / Role S : Intruder

 

Figure 4. An Agent’s sessions pattern definition – AVISPA 

variant 

The pattern specifies possible behaviors of an agent. In CSP 

variant of the pattern (see Figure 3) each agent is characterized by 

a single compound state which contains sub-states representing 

individual sessions the agent can run. The agent can assume 

multiple roles and run the sessions concurrently or consecutively.  

Even though there are strong similarities and significant overlap 

between different formal approaches to protocol modeling and 

analysis, there are also a few important differences which must be 

taken into account. For example, the “Agent’s sessions” pattern 

represents a specific facet of CSP/Casper. In this approach the 

network running the protocol (also called a system) is described 

by specifying a number and sequence of sessions each agent can 

run and what roles he can take in each session. What is important 

is that the analyst does not specify what other agents will 

collaborate in each session. The model checker tries all 

possibilities by testing each possible combination of agent 

identities, provided that those other agents are allowed to run a 

session taking a complementary role. 

The AVISPA and FOCUS methods take a different approach. The 

analyst assigns sessions and roles to each agent in the system but 

he also explicitly says which agents are running each session. 

Different combinations require either a more complex model with 

more sessions (which may quickly become too large to process) or 

one can model a separate security scenario with its own script. To 

capture this property of AVISPA/FOCUS, we proposed more then 

one variant of the Agent’s sessions pattern. While Figure 3 shows 

the CSP variant of the pattern, Figure 4 presents the version 

intended for AVISPA/FOCUS users. In this case the model takes 

the form of a collaboration diagram depicting instances of 

different types of agents with object links representing the fact 

that given agents are involved in a protocol session and are taking 

roles specified in collaboration.  

Note that with this variant the intruder has to be explicitly 

mentioned in a model if he should participate in a protocol session 

posing as a legitimate agent. That is just another difference 

between AVISPA or FOCUS and CSP/Casper. The former 

method allows the intruder to run an arbitrary number of sessions 

without explicitly specifying this fact in the threat model. 

3.3 Assumptions 
Modeling inevitably involves making assumptions. Understanding 

those assumptions and their implications is crucial for the 

analyses and the interpretation of the results. The framework 

supports assumption management in two ways: the metamodel 

helps in identifying the areas that should be considered for 

possible assumptions and the analytical patterns provide means 

for documenting the assumptions. We distinguish different types 

of assumptions, including: scope of analysis, security of 

cryptographic mechanisms, scope of threats and protocol 

simplification. The assumption documentation template is given 

in Table 1. 

Table 1. Assumption documentation template 

ID Unique assumption identifier 

Type Assumption type 

Body Assumption expression 

Motivation Explanation why the assumption is needed 

Rationale Justification why this assumption is valid 

Impact How this assumption influences the analysis 

process and its results 

Comments Other relevant information 

 

In addition to the above textual documentation, assumptions are 

also documented in object diagrams using stereotyped nodes 

<<assumption>>, which point to the assumptions documentation 

by referring to their ID, as illustrated in Figure 3. 

Digital 

signatures
<<assumption>>

A_public_keys_valid

 

Figure 5. Documenting assumptions 

3.4 Formal analysis 
To provide for unambiguity of specifications and precision of the 

analyses the framework employs formal modeling. Formal models 

are derived from the object models during the formalization step 

of the analytical procedure. By integrating more that one formal 

method into our framework, we can benefit from added diversity 

at the same time reusing most of the work needed to prepare semi-

formal models and identify and document the necessary 

assumptions. At present, the framework supports three protocol 

analysis techniques based on model checking: CSP/FDR, 

AVISPA and FOCUS. 

Formal specifications are prepared manually by applying some 

formalization rules and guidelines. Formalization rules refer to 

entire patterns or their larger fragments. This approach was 

inspired by the techniques of model formalization based on 

viewpoints [14, 13]. Our formalization rules and guidelines 

follow the ideas of model unification (but in a less formal way). 

Unification recognizes viewpoint consistency as a fundamental 

issue (inconsistent models cannot be unified to a well-formed 

formal specification). In our approach this problem is somewhat 

lessened, if the analyst follows the modeling patterns accurately. 

The rules leave some room for interpretation and therefore we do 

not claim to have a rigorous method of semi-formal model 

refinement. Our formalization rules meet the requirements 

postulated in [12]: (1) their scope goes beyond basic model 

elements to entire patterns; (2) they are documented in a natural 

language, same as the patterns themselves; (3) the models link 

individual assumptions to specific model elements which provides 

for greater traceability. 

Figure 6 shows an example procedure of translating a model using 

the Agent Sessions pattern into Casper instructions. Casper scripts 

are then automatically compiled into machine readable dialect of 

CSP and verified using the FDR model checker. 
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Figure 6. How to formalize the Agent’s Sessions pattern 

4. Distributed digital signatures case study 
This case study was conducted within the R&D project sponsored 

by the Polish Scientific Council, Grant No. 6 T11 2003 C\0 6280 

and led by Unizeto Ltd, Poland [20, 21]. The objective of the 

project was to develop and deploy a system supporting strong 

digital signatures in a distributed, public environment. The 

distributed architecture of the system and the new approach it 

takes to creating digital signatures resulted with the need to design 

a suit of secure cryptographic protocols. It was decided to analyze 

the protocols using formal techniques. 

 

Figure 7. Protocols analyzed in the Unizeto Ltd. R&D project 

The architecture of the developed system went through a 

significant change during the project, which directly influenced 

the designs of security protocols. The evolution of protocols and 

the formal analyses performed are shown in Figure 7. 

The first suit of protocols consisted of five designs, the Trusted 

Signature Protocol (TSC) and four auxiliary ones [21]. TSC was 

responsible for establishing a secure channel between agents 

during the actual document signing. The protocol was modeled 

semi-formally and then analyzed formally using CSP/Casper and 

for additional verification with FOCUS. Later in the project, the 

signature creation transaction was divided into two smaller parts, 

the first one being an initial authentication of the pin-pad to the 

trusted computing module (PINpad-TRSM) and the second one 

authentication of the smartcard to the trusted module and 

producing a signature (ICC-TRSM). Both protocols have been 

analyzed using two formal methods: CSP/Casper and AVISPA. 

The way the combination of our framework and the CSP/Casper 

formal method were applied to the Trusted Signature Protocol has 

already been reported in [22]. In the following section we will 

focus on explaining how the protocol was analyzed with FOCUS. 

 

Model element Sessions performed by agents 

UML Casper formal specification 

Protocol sessions which an agent can run in a given security 

scenario are modeled using a state model. Each agent abject 

is assigned a compound state which consists of several 

atomic states, each representing one protocol run. Individual 

atomic states can be either consecutive or parallel. 

Individual runs an agent can run are represented as 

instances of CSP processes. Each type of process 

corresponds to a single role an agent can assume. Atomic 

UML states comprising agent’s compound state are 

mapped into process instances, which are parameterized 

using an appropriate agent identity variable. Parallelism of 

agent sessions can also expressed in Casper. 

Agent Sessions Description diagram: 

 

#FREE VARIABLES 

-- DEFINE AN AGENT VARIABLE 

AINITIATOR, ARESPONDER : AGENT 

 

#PROCESSES 

-- AGENT ROLES ARE MAPPED TO CSP PROCESSES 

-- PARAMETRISED WITH AGENT’S ID 

INITIATOR(AINITATOR, <DATA VARIABLES>) 

RESPONDER(AINITATOR, <DATA VARIABLES>) 

 

#ACTUAL VARIABLES 

-- CREATE AN INSTANCE FOR YOUR AGENT 

THETERMINAL : AGENT 

 

#SYSTEM 

-- DECLARE POSSIBLE RUNS BY CREATING 

-- INSTANCES OF CSP PROCESSES  

INITIATOR(THETERMINAL) 

RESPONDER(THETERMINAL) 

 

theTerminal : Agent

[theTerminal's state in scenario #n]

theTerminal's state in scenario #n

doing Initiator 

run #1

doing Responder 

run #1

doing Initiator 

run #1

doing Responder 

run #1
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4.1 Trusted Signature Creation Protocol 
The distributed system for digital signatures involves three types 

of agents: Application Provider, Service Provider and Signing 

Entity. The Application Provider (AP) represents a company or a 

government entity that is providing customers with an interactive 

web application which at some point requires submitting securely 

signed forms or documents. The Service Provider (SP) supplies 

the infrastructure and the service intended for creating digital 

signatures remotely. It is a trusted third party responsible for the 

overall security of the entire solution. The Signing Entity (SE) 

represents an independent party interested in using the application 

Figure 8. Trusted Signature Creation Protocol 

offered by the AP. The service provider supplies the SE with a 

personal smartcard and the PIN number for accessing the private 

signature key stored on the card. The system is designed to allow 

the SE to sign electronic documents remotely on the Internet, 

providing he has access to a terminal equipped with a smartcard 

reader and a PIN pad. The goal of the protocol is to establish a 

secure channel between the SE and SP, transmit the data to be 

signed to the smartcard held by SE and deliver the signed 

document first to SP and then to AP to finalize the transaction.  

The UML model of the TSC protocol is presented in Figure 8. For 

clarity, we have removed the Application Provider from the 

model, as his involvement in the protocol is limited to receiving 

the signed data in the last message of the protocol. For the same 

reason we have omitted any <<assumption>> notes present in the 

full model. The notation used in the model is briefly explained in 

Figure 9. 

4.2 Modeling the TSC protocol with FOCUS 
The FOCUS formal method [9] together with its supporting tool, 

AutoFocus [23], were applied in the formal modeling process. 

The AutoFocus tool was originally intended for developing 

reliable embedded systems. It was adapted to cryptographic  

 

SE : Signing Entity SP : Service 

Provider 

1. { SE, PK_AUT(SE) }{ SK_SIG(CA) }, TRANS_ID

2. RND(SP)

3. {{ PART_KEY(SE), RND(SP), SP }{ SK_AUT(SE) }}{ PK_AUT(SP) }, RND(SE)

4. {{ PART_KEY(SP), RND(SE), SE }{ SK_AUT(SP) }}{ PK_AUT(SE) }

5. { PIN }{ SK }, { SK }{ PK_AUT(SP) } 

6. { PIN }{ SM_KEY }, h(PIN, SM_KEY_MAC) 

7. { g(DTBS) }{ SM_KEY }, h(g(DTBS), SM_KEY_MAC)

8. {{g(DTBS)}{SK_SIG(SE)}}{SM_KEY},h({g(DTBS)}{SK_SIG(SE)}, SM_KEY_MAC)

<<generate>> 
RND(SP) 

<<check>>

SE, TRANS_ID

<<generate>> 
PART_KEY(SE), RND(SE) 

<<check>>

SP, RND(SP)

<<generate>> 
PART_KEY(SP) 

<<check>>

SE, RND(SE)

<<generate>> 
SK

<<generate>>

SM_KEY = f1(PART_KEY(SE), PART_KEY(SP))

SM_KEY_MAC = f2(PART_KEY(SE), PART_KEY(SP))

<<check>>

PIN 

<<generate>> 
SM_KEY = f1(PART_KEY(SE), PART_KEY(SP)) 
SM_KEY_MAC = f2(PART_KEY(SE), PART_KEY(SP))

<<Pre-conditions>> 
SE

knows {SE, PK_AUT(SE)}{SK_SIG(CA)}

knows PIN 
knows PK_AUT(*), PK_SIG(SE), 
knows SK_AUT(SE), SK_SIG(SE). 
knows SE, SP, TRANS_ID, g(DTBS) 

<<Pre-conditions>>

SP

 
knows PK_AUT(SP)

knows PK_SIG(CA), PK_SIG(SP)

knows SK_AUT(SP), SK_SIG(SP)

knows SP, SE, TRANS_ID

TSC 

Subprotocol A

TSC 

Subprotocol B 
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Figure 9. Notation used in the model of the TSC protocol 

protocol analysis because FOCUS allows modeling of all relevant 

cryptographic operations and functions [24]. However, the 

flexibility of the formal language and its universal nature result in 

a relatively high degree of model complexity. 

A security protocol specification in FOCUS can be documented 

using a number of diagrams. Agents and communication channels 

that connect them are modeled with System Structure Diagrams 

(SSD). Internal behavior of agents is represented using State 

Transition Diagrams (STD). Sequence diagrams, which are used 

to represent how a protocol session is run, are shown as extended 

Event Traces Diagrams (EET). Finally, types of messages and 

variables as well as functions are declared as Data Type Definition 

(DTD) specifications. 

The biggest challenge which we encountered in the process of the 

protocol analysis, was the complexity of the resulting protocol 

specification. Experiments with formalization and verification of 

the entire protocol model failed. This led to a decision that 

decomposition of the model is necessary. The TSC protocol was 

divided into two parts, as shown in Figure 8. 

The first part – TSC Subprotocol A - consists of the first four 

messages. The objective of Subprotocol A is to have the Signing 

Entity (SE) and Service Provider (SP) successfully establish 

values of secret keys SM_KEY and SM_KEY_MAC. The second 

part – TSC Subprotocol B - consists of the last five messages 

(four, if you do not count communication with the Application 

Provider at the very end of the session). The objective of 

Subprotocol B is to provide the Application Provider (AP) and 

the SP with a properly signed hash of the document to be signed: 

g(DTBS). This goal is achieved with the help of a secret pair of 

keys: SM_KEY and SM_KEY_MAC established as a result of 

Subprotocol A. Separate formal models were created for both 

subprotocols. Then it was proved in a classical, deductive way 

that if both subprotocols are secure then the whole scheme is 

secure as well. 

Specifications for both subprotocols included three active parties: 

two legitimate agents SE and SP and the intruder. AP was not 

explicitly included in the model. The role of AP was taken into 

account by redirecting the last message of the protocol originally 

intended for him to SE. This modification allowed us to limit the 

complexity of the resulting specification. At the same time it was 

proven that the transformation was secure, which means it did not 

influence the results of model verification. The specification of 

TSC agents is shown in Figure 10. 

 

Figure 10. Simplified formal model of the communication 

parties of the protocol 

For both subprotocols the intruder is modeled by two 

subcomponents: Fake-Store and Overhear as shown in Figure 11. 

The first component is responsible for storing messages, 

performing analyses, and creating faked messages based on the 

acquired knowledge. The second component models the control 

intruder has over the network, his ability to capture messages or 

introduce messages from Fake-Store into the network. Such a 

model is consistent with the mathematical definition of the Dolev-

Yao intruder. 

 

Figure 11. Formal model of the intruder 

The next step was to create a state diagram for each FOCUS 

component (agents and the intruder). Our model permitted only a 

single protocol session between SE and SP and one session 

Symbol Definition  Symbol Definition 

Mi (for Ni ∈

) 

atomic data or a data 

structure 

 K key used for encryption 

or signatures 

M1,M2,M3… concatenation of fields 

M1, M2, M3 … 

 A agent or a Certification 

Authority  

{M}{K} message M encrypted or 

signed using K 

 SK, SM_KEY a shared session key 

PK_AUT(A), 

SK_AUT(A) 

A’s public and private 

key for encryption 

 PIN SE’s private 

identification number 

PK_SIG(A), 

SK_SIG(A) 

A’s public and private 

key for signatures 

 M = 

f(M1,M2,M3…) 

M is generated using 

values M1, M2, M3 … 

<<checked>>  

M1, M2, M3 ... 

an agent checks values 

of M1, M2, M3 … after 

receipt 

 h(M1,M2,M3…), 

g(M1,M2,M3…) 

one-way hash functions 

<<generated>> 

 M1, M2, M3 

... 

an agent generates fresh 

values of M1, M2, M3 

…  

 DTBS data to be signed by SE 

TRANS_ID a transaction (session) 

identification number 

 RND(A),  

PART_KEY(A) 

random numbers 

generated by A 
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between SP and the intruder acting as a dishonest user. However 

it was proved that this assumption would not influence the results 

of model verification. 

4.3 Verification and results 
Properties of our formal models of the TSC protocol were 

analyzed using a model checker. For Subprotocol A, formal 

showed that both halves of the two secret keys: SM_KEY and 

SM_KEY_MAC generated by the SE and SP are exchanged and 

authenticated correctly and their secrecy is not compromised.  

The objective of formal verification of Subprotocol B was to show 

that secret values of SE’s PIN and the session key SK are not 

intercepted and that every message accepted by the AP agent 

contains a legitimate signed document hash issued by SE. 

However, a potential flaw was discovered in the protocol. The 

protocol has an anomaly which arguably allows the intruder to 

intercept user’s PIN number. 

The attack can be performed in the following way: 

• The intruder intercepts and stores message five from the 

session between SE and SP – 

{PIN}{SK},{SK}{PK_AUT(SP)}. 

• He repeats the captured message during his own session 

as a legitimate user. 

• As a reply, the intruder receives a message 

{PIN}{SM_KEY_A}, where SM_KEY_A is a secret 

key known only by SP and the intruder. 

• From this message PIN is retrieved as the intruder 

knows SM_KEY_A. 

The protocol has an anomaly because one of rules of robust 

protocol design was broken i.e. every message should be 

cryptographically linked with one or more other messages in the 

same session. Message 5 is open to a simple replay attack. An 

example solution to this problem could be to include TRANS_ID 

in the fifth message encrypting it with the session key SK 

alongside the PIN. 

It is worth mentioning that analysis of the same protocol 

conducted using CSP/Casper and reported in [22] discovered the 

same anomaly. The issue was corrected by the protocol designers. 

No further anomalies were discovered in any of the other 

protocols designed for the distributed digital signatures system. 

5. PBK Case Study 
The subject of this case study was analysis of the Purpose-Built 

Keys (PBK) protocol. Our objective was to take a protocol that 

we know has at least one vulnerability, analyze it using our 

framework and at least two different formal methods and compare 

the results. An additional requirement was that original design 

documentation must be available for the protocol, and not just an 

abstract model. Only in such a scenario we would be able to test 

all the features of our integrated framework. 

The have selected the PBK protocol, since there is a standard 

Internet Draft specification document available for it [25] and one 

of the past versions (revision 6) of the protocol had been found 

defective by the AVISPA project team [26]. 

5.1 Analysis 
For this case study we used CSP/Casper and AVISPA. Of course, 

in case of the latter method our formal model was created 

completely independently from the one prepared by the AVISPA 

project team in their experiments. Specifications for both 

AVISPA and CSP/Casper were created based on a shared UML 

model in accordance to the analytical procedure and formalization 

rules included in the framework. One of the UML diagrams 

modeling the protocol, in this case showing the protocol dynamics 

is presented in Figure 12. 

The purpose of Purpose-Build Keys protocol is to guarantee 

authentication of origin of the Request sent from the Initiator to 

the Responder. For each protocol session, the Initiator generates a 

fresh public/secret key pair and uses the secret key to sign the 

Request sent in message two. The public part of the key pair is 

transmitted to the Responder in the first message. It is crucial 

however that this first transmission reached the responder reliably 

(message integrity and authentication of origin must be ensured), 

there is no other way to bind the key to the Initiator’s identity. 

This requirement is explicitly stated in protocol specification and 

resulted in an assumption A_secure_initialization shown on our 

model as well as a special stereotype <<secure channel>> for the 

first protocol message. After the Request is sent there is an 

additional Challenge-Response exchange to confirm that the 

originating agent is indeed the holder of the private key sent 

during the initialization. 

5.2 Results 
This protocol has an anomaly which arguably may become a 

vulnerability. The problem comes from messages three and four. 

The Responder is expected to sign the Challenge which is chosen 

arbitrarily by the Initiator. This is a violation of the “don’t sign 

random strings of bits” rule of protocol design. In fact the intruder 

can use an unsuspecting honest agent as an oracle by providing 

him a faked Request to sign as a seemingly “random” challenge. 

Then he can use the signed faked Request during another session 

thus violating authentication of origin. 

We attempted to rediscover this attack using CSP/Caper and 

AVISPA. The first result was that this protocol can not be 

successfully analyzed using CSP/Casper. This fact became 

apparent during formalization phase, when it became clear that 

authentication of origin requirement can not be expressed in the 

language of Casper – it only supports entity authentication. Entity 

authentication is too restrictive for this protocol and would result 

in finding “dummy” attacks. 

AVISPA has somewhat greater flexibility in terms of what 

security goals can be verified and we managed to rediscover the 

attack using this formal method. However, the only reason this 

attack is successful is the type flaw between messages two and 

four (specifically between {Request}{PrivKey} and 

{Challenge}{PrivKey}). The original Internet Draft specification 

states that “If replay protection is necessary, a nonce value (...) or 

timestamp may be included with the operation request.” [25]. That 

means the attack can be successful only if we assume that the 

Request is sent without the nonce and model the protocol 

accordingly. We have included the 

A_request_is_signed_without_nonce assumption in the analysis 

report and also put it in the model shown in Figure 12. This 

additional information allows to trace back the reason for the  
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Figure 12. Protocol dynamics of the PBK 

attack to a modeling decision that was made earlier in the process, 

even before formalization. This assumption was not given 

explicitly by the team at AVISPA project that analyzed this 

protocol. 

To summarize: we managed to rediscover the attack through 

independent modeling and analysis. The problems we came across 

with CSP/Casper show that diversity of formal methods available 

at hand in any given project may become indispensable. A simple 

example of an important assumption present in the PBK protocol 

model demonstrates the added value offered by assumption 

traceability. 

6. Conclusions  
The paper introduced a framework that integrates object and 

formal modeling in order to support the process of analysis of 

security protocols. The framework uses extended (by means of 

stereotyping and profiling) UML for object modeling and several 

formal model checking methods. The transition between UML 

models and formal specifications is facilitated by using a set of 

UML modeling patterns and formalization rules. The process of 

modeling and analysis is well supported by existing tools, such as 

UML CASE tools and others depending on the formal methods 

applied: AVISPA, Casper compiler and FDR model checker or 

AutoFocus. 

The framework encompasses a formalized analytical procedure 

which guides a user through a sequence of well defined steps. The 

process is supported by a set of documentation templates and 

patterns with a particular attention on identifying and 

documenting the security objectives and all the assumptions that 

condition the results of the analyses. We have found that such 

explicit and comprehensive documentation of all identified 

assumptions (including their motivation, rationale and possible 

consequences) together with easy to understand UML models was 

very effective in two areas. The first was establishing 

communication between the analysts and the protocol designers, 

and the second was tracing back all the analytical decisions made 

throughout the procedure. 

The biggest challenge in applying the framework is still the size 

and complexity of formal models for industry security protocols, 

such as the one analyzed within the distributed digital signatures 

case study. Our experience in analyzing the protocol with FOCUS 

and CSP/Casper (results reported in [22]) is that it involves 

specialized techniques for managing complexity, such as proving 

smaller properties first and applying the outcomes to simplify the 

main model. This requires extensive experience with protocol 

analysis as well as expert knowledge of the tools. Our framework 

is not a “push-button” technology. However, the more complex 

the analysis process becomes, the greater value there is to be 

gained by having a system for controlling the focus and scope of 

formal modeling and for documenting and communicating the 

results. 

In the nearest future we plan for further development of the 

framework and for running more case studies, perhaps with 

additional formal techniques. We are also developing a software 

tool which will support the workflow of our analytical procedure 

theInitiator / Initiator 

: Node 
theResponder / 

Responder : Node

<<generate>>

PubKey, PrivKey

<<secure channel>> 1. h(PubKey), PubKey

<<check>>

PubKey = h(PubKey)

2. Request, h(PubKey), {Request}{PrivKey} 

3. Challenge

4. {Challenge}{PrivKey}

<<generate>> 
Request

<<generate>> 
Challenge 

<<check>>

Challenge

<<Pre-conditions>> 

theInitiator: 
knows theResponder

knows theInitiator 
knows h()

theResponder: 
knows theInitiator 
knows theResponder

knows h()

<<Security goals:>>

OriginAuthentication( theInitiator, [Request] )

<<assumption>>

A_secure_initialization

<<assumption>>

A_request_signed_without_nonce 
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and assist with managing all the artifacts created during the 

analysis. 
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