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ABSTRACT
In practice, the greatest threat against the security of a digi-
tal signature scheme is the exposure of signing key, since the
forward security of past signatures and the backward secu-
rity of future signatures could be compromised. There are
some attempts in the literature, addressing forward-secure
signature for preventing forgeries of signatures in the past
time; however, few studies addressed the backward-security
of signatures, which prevents forgeries in the future time. In
this paper, we introduce the concept of key-evolving signa-
ture with bilateral security, i.e., both forward security and
backward security. We first define the bilateral security for-
mally for preventing the adversaries from forging a valid
signature of the past and the future time periods in the case
of key exposure. We then provide a novel construction based
on hub-and-spoke updating structure and the random ora-
cle model, and show that the construction achieves bilateral
security and unbounded number of time periods. Finally,
we compare our scheme with the existing work by rigorous
analysis and experimental evaluation, and demonstrate that
our construction is more secure and efficient for practical
applications.
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1. INTRODUCTION
Digital signature is one of the most fundamental and use-

ful components in modern cryptography. It proves the au-
thenticity of a message by providing a way for users to sign
the message so that the signature can be verified. Key ex-
posure is a major threat in practice for a digital signature
scheme because the exposure of signing key typically implies
that all security guarantees are lost [5]. It not only compro-
mises the security and validity of any signature issued after
the exposure, but also compromises all past signatures [21,
6], namely the attacker can always construct a valid signa-
ture once the key exposure happens.

Many security properties are proposed or considered in
the design of signature schemes to solve the key exposure
problem, including proactive security [11, 17], key-insulated
security [12, 13], intrusion-resilient[19], and forward securi-
ty [4, 5, 21]. However, many of these solutions are costly in
various ways and are unsuitable for practical deployment. A
simpler and more practical approach to solve the problem
was suggested by Anderson [4] who suggested to update the
key periodically such that attackers could not forge a signa-
ture for past time periods. Such a signature scheme against
key exposure is referred to as forward-secure signature.

Forward-secure signature, as the most practical way to
solve the key exposure problem, divides the lifetime of a
signature scheme into discrete periods (e.g. days, weeks,
years) and updates the key at each new time period. The
recipient of the signature can verify two aspects: the cor-
rectness and the correspondence to a particular period time
[21]. By this way, the attacker cannot forge a valid signature
of previous time periods after key exposure. The forward-
secure signature was firstly formalized in [5], in which t-
wo constructions were proposed. The first one is a generic
method with logarithmic complexity in the number of time
periods; the second scheme is based on Fiat-Shamir signa-
ture and has constant-size signatures, but it has a linear
cost in signature generation and verification. In [18], the
authors proposed a scheme with highly efficient signing and
verification based on the work in [15], however their basic
technique requires an expensive update. In [26], the au-
thors constructed generic forward-secure signatures with an
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unbounded number of time periods. In [21], an extremely
simple construction of forward-secure signatures based on
any regular signature scheme was presented.
Backward security is another important security property.

It would be desirable for a digital signature scheme to cap-
ture this property, as it can prevent attackers from forging
a valid signature of future time periods after the key ex-
posure. However, backward security has only been scarce-
ly studied; for example, none of the previously-mentioned
forward-secure signature schemes is backward-secure. In
[8], the notion of forward-secure signature with untrusted
update was proposed, which meets the backward security in
some extent. However, the lifetime of their signature system
is bounded by a predefined parameter. Similar work can be
found in [22] and [14], but they either suffer from attacks or
need substantial improvement on performance.

In this paper, we introduce bilateral security, a new se-
curity property that satisfies forward security and backward
security at the same time, to address the key-exposure prob-
lem of digital signatures. Based on the CDH assumption, we
propose a novel bilateral-secure signature scheme using bi-
linear map. In our construction, we employ a hub-and-spoke
structure to evolve the key. Specifically, the signer generates
a root key at the beginning of the key generation. Then he
chooses two secrets that satisfy a specified relation with the
root key, and stores the two secrets separately. After updat-
ing the key at each time period, the specified relation always
holds. In the verify phase, the verifier not only checks the
correctness of the signature but also validate whether the
specified relation holds.

1.1 Contributions
Our contributions are summarized as follows:

• We introduce the concept of key-evolving signature
with bilateral security (i.e. forward security and back-
ward security) that allows to update the secret keys
after each time period. We also define the bilater-
al security of a key-evolving signature scheme, which
prevents attackers from forging a valid signature of the
past and future time periods when the key is exposed.

• We propose a novel forward secure and backward se-
cure signature scheme (FBSS), the scheme dismisses
the threat of key expose problem. Furthermore, to the
best of our knowledge, our work is the first to achieve
unbounded number of time periods by a specific con-
struction with hub-and-spoke updating structure for
prolonging the lifetime of signature system.

• Finally, we prove that our scheme achieves the bilateral-
security under the random oracle model and the CDH
assumption. We compare our work with existing for-
ward-secure schemes with untrusted update (FSSUU).
Experimental results of key generation, key update,
message signing and verifying show that our scheme is
more efficient than existing FSSUU schemes.

1.2 Organization
The organization of this paper is as follows. We begin by

discussing related work in Section 2. Next, we give the pre-
liminaries and define the secure model of our work in Section
3. Then we present a novel construction in Section 4 and
show the correctness analysis and security proof in Section

5. Section 6 describes our experimental results. Finally we
conclude this paper in Section 7.

2. RELATED WORK
We briefly review forward security and backward security

schemes in this section.

2.1 Forward Security
Forward secure protocol design is an important approach

to the key exposure problem. Originally, forward security
was introduced for key exchange protocols [16]. The notion
forward secure signature was first formalized by Bellare and
Minner [5], building on the earlier ideas of Anderson [4].
Bellare and Miner in [5] further proposed practical schemes
and formalized the definitions of forward-secure signature.
Subsequently, a large number of papers about forward secu-
rity have been published. The existing work can be roughly
classified into two categories.

One category is generic constructions that do not neces-
sarily require random oracles [4, 5, 21, 26, 10]. The first
example is the tree construction in [5], which builds a bina-
ry tree from chains of certificates where leaves correspond
to time periods. In [26], the authors constructed gener-
ic forward-secure signatures with an unbounded number of
time periods. In [21], an extremely simple construction
of forward-secure signature based on any regular signature
scheme is presented. In [10], an evaluation of the practical
performance of these schemes is provided and the authors
also build an open-source forward-secure signature library.

The other category is the specific schemes based on ran-
dom oracle [5, 3, 18, 20]. In [5], for the first time, the au-
thors achieve short signatures with fast key update based
on the Ong-Schnorr scheme [27]; however, the complexity
of verification is linear with the period time T . In [18], the
authors proposed a scheme with highly efficient signing and
verification based on [15]. Although their basic technique
requires an expensive update, they show how to apply cer-
tain pebbling techniques to achieve constant update time.
Furthermore, forward security has been introduced to other
cryptographic primitives, such as forward secure encryption
[9], forward secure aggregate signatures [25], and forward
secure group signatures [23].

However, all the above schemes cannot prevent attackers
from forging a fake signature of some message in future time
periods.

2.2 Backward Security
For solving the key exposure problem exhaustively, we also

expect a forward-secure signature scheme to be backward-
secure, which prevents the adversaries from forging fakes in
future time periods. There are several preliminary attempts
on backward security, but the study in this field is scarce
and a formal security definition about backward security is
still absent.

In [8], the notion of forward-secure signature with untrust-
ed update was proposed, which meets the backward security
to a certain extent. Their scheme split the secret informa-
tion into two parts: one (encrypted key, storing at machines)
is for evolving keys in the binary tree and the other (pass-
word, remembering in the user) is for encrypting the for-
mer. They assume that password is secure and cannot be
comprised. The signer has to use the password to sign a
message at each signing stage, which ensures that the ad-
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versaries cannot forge a signature after key exposure. In
[22], a generic forward-secure signature with untrusted up-
date was proposed from any traditional signature scheme by
applying the similar approach in [26]. However the efficien-
cy of generic construction is low. In [14] and [24], one-way
hash chain was employed to the forward-secure signature for
achieving the backward detection, but it was vulnerable to
attacks [28].

Compared with the previous work, our scheme not only
achieves bilateral security, but also has a better performance
and achieves unbounded number of time periods, as shown
in the following sections.

3. PRELIMINARIES AND DEFINITIONS

3.1 Preliminaries
Bilinear map [7] is a cryptographic tool, which has been

used for a number of cryptographic constructions. Let G1

and G2 be two multiplicative cyclic groups of prime order q
and g1 and g2 be two generators of G1. A bilinear map e is
a map e : G1 ×G1 7→ G2 with the following properties:

• Computability : There exists a polynomial time algo-
rithm for computing map e efficiently.

• Bilinearity : For all u, v ∈ G1 and a, b ∈ Zq, e(ua, vb)
= e(u, v)ab.

• Non-degeneracy : e(g1, g2) ̸= 1.

A bilinear pairing parameter generator is defined as a
polynomial-time algorithm IG, which takes as input a secu-
rity parameter κ and outputs a representation (e,G1,G2, q)
of the bilinear map parameters that satisfy the above prop-
erties, where q is a κ-bit prime.

Assumption 1. (CDH assumption). Given a finite cyclic
group G = ⟨g⟩ of prime order q with a generator g, for a
given triple (g, ga, h) where a ∈ Zq, the CDH problem is to
compute a group element w ∈ G such that w = ha. An
algorithm A is said to have ϵ-advantage in solving the CDH
problem if

Pr[A(G, q, g, ga, h) = ha] > ϵ (1)

The CDH assumption holds in G if no probabilistic polyno-
mial time algorithm has at least ϵ-advantage in solving the
CDH problem in G.

3.2 Definitions

Definition 1. A key-evolving signature scheme with bi-
lateral security (i.e. forward-security and backward-security)
has five polynomial algorithms, FBSS = (KeyGen, CheckKey,
Update, Sign, Verify), where

• FBSS.KeyGen: The key generation algorithm takes as
input a security parameter 1κ, κ ∈ N and the total
number of periods T , returns the initial secret key SK0

and the public key PK.

• FBSS.CheckKey: The check key algorithm takes as in-
put the time period j, the corresponding secret key SKj

and the public key PK, returns ⊥ if the SKj is not a
valid key.

• FBSS.Update: The secret key update algorithm takes
as input the time period j and the corresponding secret
key SKj, returns the new secret key SKj+1 of the time
period j + 1.

• FBSS.Sign: The signing algorithm takes as input the
secret key SKj for the current time period j and the
message M to be signed, returns a pair ⟨j, σ⟩, where σ
is the signature of M at period j.

• FBSS.Verify: The verification algorithm takes as in-
put the public key PK, a message M and a candidate
signature ⟨j, σ⟩, returns 1 if ⟨j, σ⟩ is a valid signature
of M or 0, otherwise.

It is required that VerifyPK(M , SignSKj (M)) = 1 for every
message M and time period j.

We aim to have an in-depth understanding of the securi-
ty of the key-evolving signature scheme against existential
forgery under adaptive chosen-message attacks at each time
period in this work. We now define the bilateral security in
terms of a game between an adversary A and a challenger
C. The game proceeds in three phases.

• Setup phase. The challenger C runs the KeyGen algo-
rithm and gives the adversary A the public key PK.
The current time period is set to 0.

• Query phase. In this phase A can issue three types
of requests in an adaptive, interactive manner (A can
repeatedly make Sign and Update queries):

– Sign: The adversary can request the challenger to
sign a message M on the current time period j;
the challenger then returns a signature ⟨j, σ⟩ of
M .

– Update: The adversary A can request the chal-
lenger to execute the Update algorithm, in which
case the time period is updated to the next peri-
od.

– Break-in: The adversary A can request the chal-
lenger to hand out all the key at the current time
period. (Unlike the definition in [5], which re-
quires the game to move to the next phase once
A makes a Break-in query. In our definition, we
allow A continuously to issue Sign query and Up-
date query, but the Break-in query is allowed only
once.)

• Forge phase. Let j be the time period at which the
adversary breaks in. The adversary produces a forgery,
consisting of a time, message, signature tuple (j∗, M∗,
σ∗). The adversary wins if the forged signature passes
the Verify algorithm and the adversary has not queried
for signature on M∗ at the exact time j∗.

When the forge phase stops and the adversary issues a
valid signature at time period j∗, one of the following three
cases may occur. Case i): If j∗ < j, the adversary gener-
ates a valid signature of past time periods, which breaks the
forward-secure. Case ii): If j∗ > j, the adversary generates
a valid signature of future time periods, which breaks the
backward-secure. Case iii): If j∗ = j, the adversary always
can generate a valid signature of time period j, because at
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the break-in phase, the adversary gets the responsive secret
key at the time period j. Thus, in the definition of bilateral
security, we only take case i) and ii) into consideration and
ignore the last situation.

Formally, we give the following definitions:

Definition 2. The key-evolving signature scheme FBSS
is (t, qs, qu, ε) forward-secure if no probabilistic polynomial
time adversary has ε-advantage to forge a valid signature at
past time period j∗ (j∗ < j) within running in time t after
qs signing queries and qu update queries.

Definition 3. The key-evolving signature scheme FBSS
is (t, qs, qu, ε) backward-secure if no probabilistic polynomial
time adversary has ε-advantage to forge a valid signature at
future time period j∗ (j∗ > j) within running in time t after
qs signing queries and qu update queries.

A key evolving signature scheme is called bilateral-secure
if it is both forward-secure and backward-secure. Formally,

Definition 4. Let AdvFBA denote the advantage of an
algorithm A. We say that a key evolving signature scheme
FBSS is (t, qs, qu, ε) bilateral-secure if no probabilistic
polynomial time adversary has advantage ε to forge a valid
signature at any time period j∗ except the time period of
breaking in within running in time t after qs signing queries
and qu update queries.

4. CONSTRUCTION

4.1 Basic Idea
It is instructive to first understand the intuition behind

our construction of forward secure and backward secure sig-
nature scheme (FBSS). To achieve forward security, we e-
volve the secret keys in a probabilistic manner. When the
current key is exposed, the attacker cannot obtain any useful
information of the past secret keys and forge a fake signature
of the past time. To achieve backward security, we split the
secret parameter into two secret keys and keep them in dif-
ferent ways. As long as the attacker cannot comprise these
two secret keys at the same time, then he cannot update the
two secret keys to that of the next time period and forge a
fake signature of the future time, which ensure the backward
security.

Furthermore, to achieve unbounded time periods, we use
a novel key-evolving structure to support unbounded key
updating. Existing forward-secure signature schemes usu-
ally use linear structure [5] or binary tree structure [9] to
evolve the key, and the number of time periods is thus con-
trolled by the predefined parameter T (the number of time
periods) or l (the hight of the tree). In our construction, we
employ a hub-and-spoke structure to evolve the key. Specif-
ically, the signer generates a root key at the beginning of
the key generation. And then chooses two secrets that sat-
isfy a specified relation between the root key and stores the
two secrets separately. After updating the key at each time
period, the specified relation always holds and in the veri-
fy phase, the verifier not only check the correctness of the
signature but also validate the specified relation is or is not
holds. In this manner, the number of time periods in our
construction is not limited by a predefined parameters and
it can be unbounded large.

4.2 Detailed Scheme
We identify three roles in our construction: Alice for sign-

ing message, Bob for verifying the validity of signatures, and
the k + 1 players Pi, i = 1, 2, · · · , k + 1, for maintaining one
part of the secret key in a distributed manner and updat-
ing the signing key at each time period. The notations used
in the following construction are given in Table 1 and the
flow chart of our design is illustrated in Figure 1. Rough-
ly speaking, the proposed signature scheme splits the secret
parameters into two parts: one xj

1 for signing message at
time period j stored on the signer’s side and the other one
xj
2 is distributed to k+1 players using a secret sharing mech-

anism for updating the key xj
1 periodically after each time

period. We assume that all shares of k + 1 players will not
be comprised at the same time. Anytime for signing a mes-
sage, the signer first runs CheckKey to verify the validity of
the key and then signs the message using a bilinear map. In
the verification stage, the verifier validates the signature is
signed by the effective signing key xj

1 at time period j by
the public key.

Table 1: Notations used in our scheme.
Notations Definitions

G1, G2, q two groups for bilinear map of prime order q.
g the generator of group G1.

H1(·)
a map-to-point hash function, which maps a
message from message space to a element in
group G1.

H2(·) a map-to-point hash function, which maps a
integer to a element in G1.

xj
1

the first part secret information serving as
the signing key.

xj
2

the second part secret information serving as
the updating key and stored in a distributed
manner.

gj
defined as gj = H2(j) at each time period j,
for j = 0, 1, · · · .

Yj

defined as Yj = g
x
j
2

j at each time period j
for j = 0, 1, · · · , and it will not reveal

information about xj
2.

SKj
the secret key at time period j and stored
at local.

PKj
the public key at time period j and stored
at verifier’s side.

fj(i)
the share of the i-th player pi at time
period j.

We now describe the detailed construction of our bilateral-
secure signature scheme FBSS. Specifically, it works as fol-
lows:

• FBSS.KeyGen(1κ):

1. Generate groups G1, G2 of some prime order q
and an admissible pairing e : G1 × G1 → G2 by
running IG(1κ). Let g be the generator of G1.

2. Chooses two cryptographic hash functions H1 :
{0, 1}∗ → G1 and H2 : Zq → G1.

3. Select x, x0
1 ← Z∗

q \ {1} randomly and set x0
2 =

x · (x0
1)−1, g0 = H2(0).
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Time period 0

Time period j

Alice Players Bob

KeyGen Shares of x2
0

Public parameters

PK0
SK0

Update Share a secret s

Update shares
Auxiliary 

information of x2
j

Compute SK0 and PK0

PKj
SKj

Compute SKj and PKj

CheckKey

Check key locally

Sign

M

Calculate the signature M and signature

Verify

M and signature

Check the validity 

of the signature

Time period j+1

Figure 1: The flow chart of our scheme FBSS.

4. Construct a degree-k polynomial

f0(t) = akt
k + · · ·+ a1t + x0

2

and then send f0(i) to i-th player Pi, for i =
1, 2, · · · , k + 1.

5. Compute Y0 =
k+1∏
i=1

Y0,i
1, where

Y0,i = (g
f0(i)
0 )(−1)i−1

(
k+1
i

)
for i = 1, 2, · · · , k + 1.

6. Set public key as PK0 = ⟨gx, gx0 ⟩ and SK0 =
⟨x0

1, Y0⟩. Finally, delete x and x0
2 immediately.

• FBSS.CheckKey(j, SKj , PKj):

1. Parse SKj as (xj
1, Yj) and compute the hash value

gj = H2(j).

2. Check whether e(gx
j
1 , Yj) = e(g, gxj ) holds. Re-

turn true if the equation holds, otherwise return
false.

• FBSS.Update(j, SKj):

1. Parse SKj as (xj
1, Yj).

2. Share a secret s ∈ Z∗
q \ {1} with all k + 1 players.

3. Compute xj+1
1 = xj

1 · s. Each player Pi updates
the share with fj+1(i) = fj(i) · s−1 and send-

s the new Yj+1,i = (g
fj+1(i)

j+1 )(−1)i−1
(
k+1
i

)
, where

gj+1 = H2(j + 1).

4. Calculate Yj+1 =
k+1∏
i=1

Yj+1,i and sets SKj+1 =

⟨xj+1
1 , Yj+1⟩, PKj+1 = ⟨gx, Y x

j+1
1

j+1 ⟩. Finally, delete
s immediately.

In fact, by the correctness analysis in Theorem 1 we

have that PKj+1 = g
x
j+1
1 ·xj+1

2
j+1 = gxj+1, where

xj+1
2 =

k+1∑
i=1

(−1)i−1(k+1
i

)
fj+1(i).

• FBSS.Sign(j, SKj ,M):

1. Check whether the secret key SKj is the valid key
for time period j. If this test fails, output ⊥ and
halt. Otherwise continue.

2. Calculate the hash m← H1(M), m ∈ G1.

3. The signature of M at time period j is ⟨j, σ⟩,
where σ = ⟨mx

j
1 , Yj⟩.

• FBSS.Verify(PKj ,M, ⟨j, σ⟩):.
1From Lagrange interpolating formula, we have that

x0
2 = f0(0) =

k+1∑
i=1

(−1)i−1(k+1
i

)
f0(i)

and thus we obtain that Y0 = g
x0
2

0 .
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1. Parse σ as ⟨mx
j
1 , Yj⟩, calculate the hash m ←

H1(M), and ensure that the following two equa-
tions holds, where gxj is calculated from public key
PKj .

e(mx
j
1 , Yj)

?
= e(m, gxj ) (2)

and

e(g, gxj )
?
= e(gx, gj) (3)

2. Return 1 if Equation (2) and Equation (3) both
hold, otherwise return 0.

5. CORRECTNESS AND SECURITY ANAL-
YSIS

5.1 Correctness
The correctness of the above scheme is justified by the

following theorem.

Theorem 1. The proposed FBSS signature scheme is cor-
rect.

Proof. Our proof proceeds in two steps: the first step
shows that at each time period j, equation

xj
1 · x

j
2 = x (4)

always holds, where xj
2 is defined as following

xj
2 =

k+1∑
i=1

(−1)i−1(k+1
i

)
fj(i)

and fj(i) denotes the share of the i-th player at time pe-
riod j; the second argues that the verification procedure is
correct.
Step-1: We show the Equation (4) holds at each time

period j for j = 0, 1, · · · by mathematical induction.
When j = 0, the following two equation hold clearly from

the key generation algorithm.

x0
1 · x0

2 = x

and

x0
2 =

k+1∑
i=1

(−1)i−1(k+1
i

)
f0(i)

Suppose the Equation (4) holds at time period j, then after
running the key update algorithm, we have that

xj+1
1 · xj+1

2 = xj+1
1 · (

k+1∑
i=1

(−1)i−1(k+1
i

)
fj+1(i))

= (xj
1 · s) · (

k+1∑
i=1

(−1)i−1(k+1
i

)
fj(i)) · s−1

= xj
1 · (

k+1∑
i=1

(−1)i−1(k+1
i

)
fj(i))

= xj
1 · x

j
2

= x

where the second ’=’ holds since that fj+1(i) = fj(i) · s−1

from the update procedure. Consequently, the equation xj
1 ·

xj
2 = x always holds at any time period.

Step-2: We now show the correctness of the verification
procedure.

e(mx
j
1 , Yj) = e(mx

j
1 , g

x
j
2

j )

= e(m, g
x
j
1·x

j
2

j )

= e(m, gxj )

Combining steps 1 and 2, our proposed FBSS signature
scheme is correct.

5.2 Security
The following theorem shows that the signature scheme

is bilateral-secure. Security of the scheme follows from the
hardness of the CDH problem.

Theorem 2. The proposed key-evolving signature scheme
is bilateral-secure under the random oracle model for any
probabilistic polynomial time adversary if the CDH assump-
tion holds.

Proof. We prove it by contradiction. Suppose there is a
probabilistic polynomial time adversary A (t, qs, qu, ε) that
breaks the signature scheme, namely breaks the forward-
security or backward-security with ε-advantage. Then we
build a t′-time algorithm B that solves the CDH problem
with advantage at least ϵ′, where

t′ ≤ t + cq(qH1 + 2qs + 2qu) (5)

cq denotes the maximum time of one time query, qH1 denotes
the number of queries to the hash function H1 and

ϵ′ ≥ ϵ

2e(1 + qs)
. (6)

which yields a algorithm that solves the CDH problem in
group G1 with at least ϵ

2e(1+qs)
-advantage.

Let (g, u = ga, h) be B’s challenge in group G1. Recall
that B’s goal is to break the CDH assumption which asks B
to find v ∈ G1 such that v = ha. B interacts with A in the
following three phases:

• Setup phase: Algorithm B starts by selecting two ran-
dom integers y1, y2 ∈ Zq, then B calculates uy2gy1y2 =
gy2(a+y1) as the public key at time periods 0, which
implies that x = y2(a+ y1), x1 = a+ y1 and Y0 = gy2 .
B’s goal is to compute ha. In the process of attack,
our algorithm B records all information (previous pub-
lic keys or signatures) of different time period into a
table, which provide facilities for B to query the infor-
mation of previous time periods while calculating ha in
the future. The current time period is set to 0. Algo-
rithm B maintains a list of tuples (j, sj , x

j
1, πj , Yj) for

key updating and this list is initially empty. We call
this list as the updated-list. Finally, B adds the tuple
(0, 1,⊥, 0, Y0) to the updated-list, where ⊥ denotes the
default values.

• Query phase: In the query phase A can issue several
types of requests in an adaptive, interactive manner.
(A can also repeatedly make random oracle queries to
H1 and H2 just as the Sign and Update queries).

– H2 queries: At any time period j, B allows A
to query the random oracle H2. In order to re-
spond to these queries, B maintains a list of tuples
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(j, gj , cj) as explained below. We refer to this list
as the H2-list. This list is initially empty. When
A queries the oracle H2 at time period j, algo-
rithm B responds as follows:

1. If the query at time period j already has been
issued on the H2-list in a tuple (j, gj , cj), then
the algorithm B responds with H2(j) = gj ∈
G1.

2. Otherwise, B chooses a random cj ∈ Zq and
computes gj = gcj ∈ G1.

3. Algorithm B adds the tuple (j, gj , cj) to the
H2-list and responds to A by H2(j) = gj .

In fact, at each time period j, we allow algorithm
A to query H2 many times. However, no matter
how many times A queries, the query results are
the same. Thus, A queries to H2 only once in the
description of algorithm B.

– H1 queries: At any time period j, B allows A
to query the random oracle H1. For respond-
ing to these queries, B maintains a list of tuples
(Mi, wi, bi, τi) as explained below. We refer to
this list as the H1-list. This list is initially emp-
ty. When A queries the oracle H2 at a point
Mi ∈ {0, 1}∗, algorithm B responds as follows:

1. If the query of Mi already has been issued
on the H1-list in a tuple (Mi, wi, bi, τi), then
algorithm B responds with H1(Mi) = wi ∈
G1.

2. Otherwise, B generates a random coin τi ∈
{0, 1} such that Pr[τi = 0] = 1/(qs + 1).

3. Algorithm B also runs the above algorithm
for responding to H2-list and obtains a gj ∈
G1 such that H2(j) = gj .

4. Algorithm B picks a random bi ∈ Zq and com-

putes wi = h1−τigbij ∈ G1.

5. Algorithm B adds the tuple (Mi, wi, bi, τi) to
the H1-list and responds to A by H1(Mi) =
wi.

Note that either way wi is uniform in G1 and is
independent of A’ current view as required.

– Update: At any time period j − 1, algorithm is
allowed to issue the key update queries. Firstly, B
picks a random coin πj ∈ {0, 1} such that Pr[πj =
0] = 1/2. If πj = 0, then B updates the key to
the next time period j as follows:

1. Algorithm B runs the above algorithm for re-
sponding H2-list to obtain a gj ∈ G1 such
that H2(j) = gj .

2. Algorithm B selects a random sj ∈ Zq and

computes Yj = gy2s
−1
j and PKj = (ugy1)cjy2 ,

where u = ga.

3. Algorithm B adds the tuple (j, sj ,⊥, πj , Yj)
to the updated-list, here πj = 0.

If πj = 1, then B updates the key to the next time
period j as follows:

1. Algorithm B runs the above algorithm for re-
sponding H2-list to obtain a gj ∈ G1 such
that H2(j) = gj .

2. Algorithm B selects a random xj
1 ∈ Zq and

computes Yj = (gj)
y2(a+y1)(x

j
1)

−1

and PKj =

(gj)
y2(a+y1). One may worry that a is un-

known and in fact we can calculate the PKj

by

PKj = (gj)
y2(a+y1)

= (gcj )y2(a+y1)

= (ugy1)y2cj

and thus Yj .

3. Algorithm B adds the tuple (j,⊥, xj
1, πj , Yj)

to the updated-list, here πj = 1.

– Sign: Let Mi be a signature query at time period
j issued by A. If πj = 0, then we obtain the tuple
(j, sj ,⊥, 0, Yj) from the updated-list. Algorithm
B responds to this query as follows:

1. Algorithm B runs the above algorithm for re-
sponding H1-list to obtain a wi ∈ G1 such
that H1(Mi) = wi. Let (Mi, wi, bi, τi) be the
corresponding tuple in the H1-list. If τi = 0,
then B reports failure and terminates.

2. Otherwise, we know τi = 1 and hence wi =
(gj)

bi where gj = gcj . Then B responds to A
with ⟨j, σi = ⟨σij , Yj⟩⟩, where

σij = (ugy1)cjbisj

and Yj is obtained from the updated-list. Ob-

serve that σij = w
(a+y1)sj
i and the underly-

ing xj
1 · x

j
2 = (a + y1)sj · y2s−1

j = y2(a + y1),
therefore σi is a valid signature on Mi at time
period j.

If πj = 1, then we obtain the tuple (j,⊥, xj
1, 1, Yj)

from the updated-list. Algorithm B responds to
this query as follows:

1. Algorithm B runs the above algorithm for re-
sponding H1-list to obtain a wi ∈ G1 such
that H1(Mi) = wi.

2. Then B responds to A with ⟨j, σi = ⟨σij , Yj⟩⟩,
where σij = w

x
j
1

i and Yj is obtained from
the updated-list. Observe that the underly-
ing xj

1 ·x
j
2 = xj

1 ·y2(a+y1)(xj
1)−1 = y2(a+y1),

therefore σi is a valid signature on Mi at time
period j.

– Break-in: The algorithm A is allowed to request
the sign key at some time periods. For responding
the query at time period j, algorithm B does the
following:

1. Algorithm B gets the πj from the updated-
list. If πj = 0, then B reports failure and
terminates.

2. Otherwise, B obtains the xj
1 and Yj from the

updated-list and sends ⟨xj
1, Yj⟩ as the signing

key to A.

• Forge phase: Eventually algorithmA produces a message-
signature pair (j∗,Mf , σf ) of time period j∗ such that
no signature query was issued for Mf and j∗ is not
the break-in time period. If there is no tuple on the
H1-list containing Mf , then B issues a query itself for
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H1(Mf ) to ensure that such a tuple exists. We as-
sume σf is a valid signature on Mf at time period j∗,
where σf = ⟨σfj , Yj∗⟩. If it is not, B reports failure
and terminates. Then we computes ha as follows:

1. Algorithm B gets the πj∗ from the updated-list.
If πj∗ = 1, then B reports failure and terminates.

2. Otherwise, B finds the tuple (Mf , w, b, τ) on the
H1-list. If τ = 1, B reports failure and terminates.
Otherwise, τ = 0 and therefore H1(Mf ) = w =
h · gbcj∗ . Hence we have

σfj = h(a+y1)sj∗ · (gbcj∗ )(a+y1)sj∗

= (ha · hy1 · (ugy1)bcj )sj∗

and thus we compute ha by

ha =
(σfj)

s−1
j∗

hy1 · (ugy1)bcj∗

This completes the description of algorithm B. It remains
to show that B solves the CDH problem in G1 with proba-
bility at least ϵ′. To do so, we analyze four events needed
for B to succeed:

• E1: B does not abort as a result any of A’s signature
queries.

• E2: B does not abort at the break-in phase.

• E3: A generates a valid message-signature pair Mf , σf .

• E4: πj∗ = 0 for the tuple on the updated-list and τ = 0
for the tuple on the tuple containing Mf on the H1-list.

From the descrition of algorithm B, the parameters πj∗

and τ in event E4 are chosen randomly and thus E4 is inde-
pendent of E3, and the probability of succeeding is

Pr[B succeeds] = Pr[E3] Pr[E4]

= Pr[E3|E1 ∧ E2] Pr[E1 ∧ E2] Pr[E4]

Since that E1 and E2 are independent of each other, we
have that Pr[E1 ∧ E2] = Pr[E1] Pr[E2]. Consequently, we ob-
tain that

Pr[B succeeds] = Pr[E3|E1 ∧ E2] Pr[E1] Pr[E2] Pr[E4] (7)

First, the sign queries were issued at most qs times and
the the probability that algorithm B does not abort because
of sign queries is at least

Pr[E1] = (1− 1

1 + qs
)qs ≥ 1

e
(8)

where e is the base of the natural logarithm.
Second, the break-in queries and forge phase both happen

at most only once and the coin π in the updated-list and
the coin τ in the H1-list are both independent, thus the
probability of E2 and E4 is

Pr[E2] =
1

2
(9)

and

Pr[E4] =
1

2
· 1

1 + qs
(10)

Third, if algorithm B does not abort in the signature
queries and break-in query, then algorithm A’s view is i-
dentical to its view in the real attack. Thus the probability
of A generating a valid message-signature pair Mf , σf is

Pr[E3|E1 ∧ E2] = ϵ (11)

Consequently, substituting Equations (8), (9), (11) and
(10) into Equation (7), we obtain the probability of B suc-
ceeding is

ϵ′ = Pr[B succeeds] = Pr[E3] Pr[E4] ≥ ϵ

2e(1 + qs)

Algorithm B’s running time is the same as A’s running
time plus the time it takes for qH1 + qs H1 queries, qu H2

queries, qs signature queries, qu key update queries, and one
break-in query. Suppose each of these queries takes at most
cq time. Hence the total running time is at most

t′ ≤ t + cq(qH1 + 2qs + 2qu)

This completes the proof of Theorem 2.

6. PERFORMANCE EVALUATION
In this section, we show the theoretical and experimental

performance of our scheme respectively. We also compare
our scheme FBSS with the scheme FSSUU in [8], which is
the most related state-of-the-art work. First, we compare
FBSS and FSSUU from the perspectives of time complexity
and space complexity theoretically. Second, we implement
FBSS and FSSUU in C++ programming language to eval-
uate their experimental performance. Experimental results
demonstrate that FBSS is more efficient than FSSUU, ex-
cept for the key update algorithm; FBSS is also more space-
saving than FSSUU because of the trade off between the
time complexity and space complexity.

6.1 Theoretical Evaluation
We first compare our signature scheme FBSS and the

scheme FSSUU theoretically, which illustrates that our F-
BSS outperforms FSSUU in terms of effectiveness and effi-
ciency.

Let Tp be the time of one pairing operation, Te be the
time of one exponentiation operation, Tm be the time of one
multiplication operation, and G1 be the length of the ele-
ments in the group G1 (such as 128, 256, 512 bits). Usually,
we have that Tp > Te > Tm, where Tp is about 8 ms, Te is
about 1.8 ms and Tm is about 0.013 ms. Table 2 presents
the comparison between our FBSS and the FSSUU, where l
is a parameter capturing the total time periods in FSSUU,
m is the binary representation length of message in FSSUU,
and k is the parameter relevant to the number of players in
FBSS.

In the key generation algorithm, our FBSS requires k + 1
exponentiation operations and k(k + 1) multiplication oper-

ations; the costs in the FSSUU mainly center on the l(l+1)
2

exponentiation operations. In reality, to maintain a signa-
ture system to be used for a longer time, l usually is larger
than the parameter k, for example l = 10, 20, 30, · · · and
k = 3, 4, 5, · · · . Thus FSSUU requires more times to gener-

ate their keys. l(l−1)
2

pairing operations are required to check
whether a key is valid at some period in FSSUU, which is
increasing with the parameter l. Clearly, the cost is much
lager than the two pairing operations in FBSS. To compare
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Table 2: Theoretical comparison of FBSS and FSSUU

Algorithms FSSUU FBSS

KeyGen 2Tp + l(l+1)
2

Te (k + 1)Te + k(k + 1)Tm

CheckKey l(l−1)
2

Tp + ( l
2

+ 4)Tm 2Tp + Te

Update Te + l2

4
Tm (k + 1)Te + k2Tm

Sign ( l+m
2

+ 10)Te 2Tp + 2Te

Verify 3Tp + ( l+m
2

+ 5)Tm 2Tp

Secret storage size l(l+3)
4
|G1| 2|G1|

Forward secure Yes Yes

Bilateral secure At some extent Yes

Existence Forgery Yes Yes

Time periods T = 2l Unbounded

the costs for signing a message, our FBSS only needs two
paring operations and two exponentiation operations; how-
ever FSSUU requires l+m

2
+ 10 exponentiation operations,

which is also much lager than the costs in FBSS because
the message in FSSUU is denoted as a binary representa-
tion, which is about hundreds of bits. In the verification
phase, the costs in FBSS have one time pairing operation
advantage than FSSUU, which demonstrates that our FBSS
is more efficient than FSSUU. For updating the secret keys
from one time period to the next time period, our FBSS
requires (k + 1) exponentiation operations; the FSSUU on-
ly needs one time exponentiation operation, which is more
cost-effective. However, this (time complexity) advantage
for FSSUU is achieved by sacrificing more space complexity,
namely secret storage size. The secret storage size in FS-

SUU is about l(l+3)
4

elements in group G1, which depends
on the parameter l; our FBSS only needs two elements in
the group. This formulates the trade off between the time
efficiency for updating the secret parameters and the space
size of storing secret parameters.

From the security perspective, both schemes are forward
secure, but the work FSUU does not achieve the bilateral
security. This is because the key update algorithm of FSSUU
only depends on the inputs secret key of the current time
period, the ID of new time period, and the public key. Once
the secret key was comprised, the attacker can update the
key to any time periods in the future. However, in our FBSS,
we utilize the distributed key to update the current secret
key. Although the attacker may compromise the current
time period, the attacker cannot produce a secret key of
future time periods.

Both scheme are based on the idea of splitting the secret
information into two parts. In the construction of FSSUU,
one piece secret information is stored in the signer’s machine
and the other piece secret, password, is memorized by the
signer. To ensure against the existence forgery, the signer
signs a message using the password, which is assumed not to
be compromised. In the case when signing messages is more
frequent than updating key, the scheme FSSUU does not
work because the signer has to input the password for each
signing. In our construction of FBSS, we also split the secret
information, the one for updating secret key is distributed
to other parties and the other one for signing message is
stored locally. To protect against the existence forgery, we
only use the signing key to sign a message, which is very

suitable for the case when signing messages is more frequent
than updating keys.

Furthermore, our work achieves the unbounded number
of time periods, which allows the signer to update the se-
cret key arbitrarily with unbound times. However, in the
construction of FSSUU, the signer has to prolong the life-
time of the signature system by increasing the parameter l,
which leads to much more time costs of algorithms KeyGen,
CheckKey, Sign and verify and more space costs for stor-
ing secret parameters. Oppositely, for reducing these costs
from both time and space, the signer has to sacrifice the life-
time of the signature system as a cost. Thus, our proposed
scheme is more practical for real-world applications.

6.2 Experimental Evaluation
We now evaluate the performance of the proposed FBSS

and FSSUU experimentally. We first introduce the method-
ology of our experiments when implementing both schemes,
then we present the experimental results and the analysis.

6.2.1 Methodology and Configuration
All the following experiments are based on C++ (Visual

Studio 2013) and are conducted on an Intel-based i5-2320
personal computer with 3GHz processor and 4GB RAM.
In our experiments, we utilize the GNU Multiple Precision
Arithmetic (GMP) library [1] and Pairing Based Cryptog-
raphy (PBC) library version 0.5.14 [2] to implement both
signature schemes, where type A parameter (a.param) is
used to do the paring operations. All experimental results
represent the mean of 10 trials.

We implements both schemes by building two classes for
every signature scheme. Each class contains five public in-
terfaces (KeyGen, CheckKey, Update, Sign and verify) and
the data parameters (system parameters, public parameters
and secret parameters). For both implementations, we gen-
erate the system parameters by invoking an auxiliary pro-
tected method Initialize, which allows us to get a more pre-
cise time cost evaluation of the key generation procedure. In
the implementation of FBSS, the parameter k is set to k = 5
and in the implementation of FSSUU the parameter l is set
to l = 10, 15, · · · . For the hash functions in both scheme,
we use the ready-made method element from hash in the P-
BC library for convenience. In FSSUU, the messages to be
signed must be fixed-length binary strings of m-bits, which
is set to m = 160 in our implementation and all messages
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Table 3: Experimental results of FBSS and FSSUU

Algorithms
FSSUU

FBSS
l = 10 l = 15 l = 20 l = 25 l = 30 l = 35 l = 40

KeyGen(ms) 973.707 1159.69 1522.45 1986.74 2527.84 3157.06 3856.21 35.0392
CheckKey(ms) 397.753 895.707 1592.14 2486.87 3585.52 4853.7 6329.3 11.299

Update(ms) 10.899 11.0372 11.2081 11.3047 11.5657 11.7709 12.3309 29.8116
Sign(ms) 399.61 918.902 1629.51 2507.68 3588.05 4875.89 6352.02 22.7591

Verify(ms) 11.6304 11.7059 12.9753 11.4605 11.8231 11.9514 11.6626 8.13898

are generated from {0, 1}m randomly. To compare fairly,
the same configuration is used in the implementation of F-
BSS. Besides above, we use the method sizeof to compute
the storage size of secret parameters.

6.2.2 Experimental Results
The experimental results include two aspects: the time

cost in milliseconds of every operation and the space cost in
kilobytes of secret parameters. The results and their analysis
are detailed in the following paragraphs.

First, we estimate the time cost of every operation, which
has been presented in Table 3. For algorithm KeyGen, the
time cost of FSSUU requires 970+ ms when l = 10; with
the parameter l increasing, the time cost also grows fast.
However, our FBSS only consumes 35.0352 ms, which im-
proves by more than 27 times. For algorithm CheckKey,
the time cost of FSSUU needs 397+ ms when l = 10; with
the parameter l increasing, the time cost also grows much
faster than algorithm KeyGen. However, our FBSS only
consumes 11.299ms and when l = 40; our FBSS improves
about 600 times. The cost of signing message is close to the
cost for checking key in FSSUU, but our FBSS’s time cost
for signing is only 22.7591ms, which is more efficient than
that of FSSUU. To verify whether a message-signature pair
is valid, 11 ∼ 12 ms is required in FSSUU while our FBSS
only needs 8.13898ms, which has slight improvement. The
FSSUU has its superiority over FBSS in updating the secret
key to a next time period, but this has little impact on the
performance of FBSS in practice because the key update is
not very frequent in reality. For example, the signer may
update the secret key once a day, a week or a month, the
time cost of updating secret parameter in FBSS is negligible
since it only takes less than one second.

Second, we compare the space cost of secret parameter-
s, which has been presented in Fig. 2. While our FBSS
signature scheme only needs 0.25 KB for storing the secret
key, the FSSUU requires 1.625 KB if we set l = 5. If the
signer updates the key once a day using the FSSUU signa-
ture scheme, the signer has to restart the signature system
after a month later, because T = 25. For prolonging the life-
time of the signature system, the signer has to increase the
parameter l. However, with the increasing of l, the storage
size also grows in a quadratic speed. When l increases to 40,
106.625 KB is required to store the secret parameters, which
is indeed costly than ours. Consequently, the experimental
results validate our theoretical analysis, and our signature
scheme is more suitable for practical application.

7. CONCLUSIONS
In this paper, we introduced the concept of key-evolving

signature with bilateral security (i.e. forward-security and
backward-security) to deal with the key exposure problem
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Figure 2: The relation between the parameter l and
secret storage size in FSSUU. The secret storage size
is 0.25KB when k = 5 in the FBSS.

in digital signature. This new concept advances the current
research on forward-secure digital signature by considering
the signature forgeries of future time period once the key of
current time period is leaked. First, we defined the bilater-
al security of key-evolving signature scheme, which prevents
the attacker from forging a valid signature of the past and
future time periods when the key is exposed. Next, we pre-
sented a novel and specific construction satisfying the above
requirements. Our construction splits secret parameters in-
to two parts: the first part is used to update the keys and
stored in a distributed way; the second part is employed for
signing message and maintained by the singer. We employed
a hub-and-spoke structure to evolve the key for supporting
unbounded number of key updating. Then, we proved that
our construction is correct and bilateral-secure under the
random oracle model and the CDH assumption. Finally, we
demonstrated that our construction outperforms pervious
work by theoretical and experimental evaluation.
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