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ABSTRACT
Deduplication is a widely used technique for reducing stor-
age space of cloud service providers. Yet, it is unclear how to
support deduplication of encrypted data securely until the
study of Bellare et al. on message-locked encryption (Euro-
crypt 2013). Since then, there are many improvements such
as strengthening its security, reducing client storage, etc.

While updating a (shared) file is common, there is little
attention on how to efficiently update large encrypted files
in a remote storage with deduplication. To modify even a
single bit, existing solutions require the trivial and expensive
way of downloading and decrypting the large ciphertext.

We initiate the study of updatable block-level message-
locked encryption. We propose a provably secure construc-
tion that is efficiently updatable with O(log |F |) computa-
tional cost, where |F | is the file size. It also supports proof-
of-ownership, a nice feature which protects storage providers
from being abused as a free content distribution network.

CCS Concepts
•Security and privacy → Symmetric cryptography
and hash functions; Key management; Management and
querying of encrypted data;

Keywords
incremental cryptography; message-locked encryption; Merkle-
hash tree; random oracle model

1. INTRODUCTION
Deduplication, which eliminates redundant copies in user-

provided data, has been widely used to improve storage uti-
lization and reduce communication cost. The saving is sig-
nificant for cloud storage service provider which stores data
from many customers. Typically, storage systems require
seeing the client data in plaintext to perform deduplication,
which incurs obvious privacy threat. On the other hand, if
every user encrypts their own file using a user-specific key,
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the effectiveness of deduplication is drastically reduced since
the probabilistic nature of a secure encryption intuitively
produces random-looking ciphertexts. As far as we know,
the first attempt to resolve the seemingly contradicting re-
quirements (of achieving file confidentiality and file dedupli-
cation simultaneously) was convergent encryption [22]. It
works by mapping each file into a key deterministically by
hashing the file and then encrypting each file using such file-
derived key. This ingenious solution guarantees that iden-
tical files are encrypted to identical ciphertexts, enabling
efficient deduplication. Convergent encryption (and its vari-
ants) has been used in numerous applications [2,3,6,20,38].

However, the precise security guarantee provided by con-
vergent encryption is unknown until the recent formulation
of message-locked encryption (MLE) by Bellare et al. [13].
MLE is a symmetric encryption scheme in which the mes-
sage is the lock, i.e., it uses the message to derive the key
for encryption and decryption. Their study provided several
definitions that capture different aspects of MLE security
and analyzed some prior schemes under their framework.

While earlier MLE [1, 12, 13] focus on file-level dedupli-
cation, a study of practical deduplication [32] has shown
that block-level deduplication can be more space-efficient.
Naturally, recent research extended file-level deduplication
on encrypted data to the block-level setting [19,29,34]. The
most straightforward solution is to apply file-level MLE on
each block independently. But this approach introduces a
large number (linear in the file size |F |) of block keys. Some
researchers [29, 34] thus introduced an additional key man-
agement server to handle those block keys. As another ap-
proach, Chen et al. [19] formalized the notion of block-level
message-locked encryption (BL-MLE) and proposed a rela-
tively efficient construction using the techniques in compact
proofs-of-retrievability [37]. Their solution only requires the
user to remember a single master key, but involves compu-
tationally expensive pairing operations.

Unfortunately, all existing works focus on static files. None
of them supports efficient file update (even with the help of
a key management server). To modify a single bit, the file
owner has to download the whole encrypted file, decrypt,
update, re-encrypt, and then upload the new ciphertext to
the cloud. The computation and communication costs of all
these operations are linear in the file size, i.e., O(|F |), which
are certainly too expensive for large files. Naturally, we thus
ask the following practically motivated question:

“Can the update cost of MLE be sublinear?”

If the file is unencrypted, or if it is block-wise encrypted
using standard randomized encryption scheme, efficient up-
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date is trivial because updating certain block is indepen-
dent of the rest of the file. Yet, update becomes nontrivial
in the MLE context. The difficulty arises because a typ-
ical MLE scheme derives the encryption key from the file
deterministically. A single bit flip will lead to a totally dif-
ferent encryption key, and thus the whole file needs to be
re-encrypted. One may try to remedy such inefficiency by
independently applying MLE on each block. Unfortunately,
this approach increases the number of keys for file F from
O(1) to O(|F |/B) for block size B, which is also unsatisfac-
tory. Bellare et al. proposed interactive MLE (iMLE) [12],
which extends the original notion of MLE by introducing in-
teraction. Their solution is the first secure deduplication sys-
tem supporting incremental updates. However, their scheme
only deduplicates at the file level. In a nutshell, updatable
block-level MLE remains an interesting open question.

1.1 Incremental Cloud Cryptography
Bellare et al. initiated the research of incremental cryp-

tography [10, 11, 14], which aims to update the result of a
cryptographically processed document faster than redoing
the whole computation from scratch. Early works focus
on signing and hashing [10, 14], while the follow-ups stud-
ied encryption [11, 17, 33, 36]. Recently, we witness growing
interest in cloud cryptography, such as searchable encryp-
tion, message-locked encryption, and proof of retrievabil-
ity. Previous research studied dynamic searchable encryp-
tion [27,28] such that searchable ciphertext can be updated
without building it from scratch. This paper furthers this re-
search line for cloud cryptography. Our paper initiates the
study of incremental cryptography for secure (block-level)
deduplication, which is of practical necessity due to the re-
cent wide application of cloud-enabled technologies.

1.2 Our Contribution
This paper makes the following contributions:

• We initiate the study of efficiently updatable block-
level message-locked encryption (UMLE)1. We formal-
ize the definition and security notion for UMLE.

• We propose an efficient UMLE construction in the ran-
dom oracle model. For a file of size |F |, the update cost
of our UMLE construction is only O(log |F |) where the
base of the logarithm is B/λ, B is the block size, and
λ is the key size. Typically, B/λ can be a relatively
large constant.

• Borrowing ideas from the database community, we pro-
pose an enhanced construction that additionally sup-
ports block insertion and deletion, which achieves an
amortized complexity of O(log |F |).

1.3 Paper Organization
The rest of this paper is organized as follows. Section 2

introduces necessary notions and technical preliminaries for
the rest of the paper. Section 3 defines the interfaces of
UMLE and its security definitions. Our proposed construc-
tion is described in Section 4 with detailed security analysis

1We did not name it incremental MLE following incremental
hash of Bellare et al. [10] to avoid clashing with the acronym
iMLE used by Bellare et al. [12] for interactive MLE.

in Section 5. Section 6 discusses how to extend our con-
struction to support insertion and deletion. We survey re-
lated works in Section 7 and conclude our paper with future
research direction in Section 8.

2. PRELIMINARY

2.1 Notations
We use ε to denote an empty string. For i ∈ N we let

[i] = {1, . . . , i}. If x is a vector then |x| denotes the di-
mension of x, x[i] denotes the i-th component, and x[i, j] =
x[i] . . .x[j] for 1 ≤ i ≤ j ≤ |x|. If S is a finite set, then

|S| denotes its size and s
$←− S denotes picking an element

uniformly in S and assigning it to s. By y
$←− A(x1, . . .),

we denote the operation of running algorithm A on inputs
x1, . . . with random coins. The guessing probability GP(X)
and min-entropy H∞(X) of a random variable X are de-

fined by maxxPr[X = x] = 2−H∞(X). The conditional
guessing probability GP(X|Y ) and conditional min-entropy
H∞(X|Y ) of a random variable X given a random variable
Y are defined by

∑
y Pr[Y = y] · maxxPr[X = x|Y = y] =

2−H∞(X|Y ). By ∆(X;Y ) we mean the statistical distance
between random variable X and Y .

2.2 Unpredictable Sources
A source is a polynomial-time algorithm M that on in-

put 1λ returns (M, Z) where M is a message vector in {0, 1}∗
and Z ∈ {0, 1}∗ denotes some auxiliary information. Let n(λ)
be the vector length. In our context, it is the number of
blocks. For all i ∈ [1, n(λ)], M[i] represents the i-th block
of the message M. In this paper, since we focus on block-
level deduplication with fixed block size, we restrict our at-
tention to sources that output message vector over {0, 1}B ,
where B is the block size. Therefore M[i] ∈ {0, 1}B for
all i. Similar to previous works [8, 13], we require that
M[i1] 6= M[i2] for all distinct i1, i2 ∈ [m(λ)] to bar against
trivial adversary. We say that the sourceM is unpredictable
if GPM = maxi{GP(M[i]|Z) is negligible.

2.3 Message-Locked Encryption
MLE consists of five algorithms [13]. The parameter gen-

eration algorithm Setup, given an input of a security param-
eter 1λ, returns a public parameter P . We assume that P
(implicitly includes 1λ) is the default input for the rest of the
algorithms, and thus will be ignored for notational simplic-
ity. On input a message M, the key-generation algorithm

KeyGen returns a message-derived key K
$←− KeyGen(M).

On inputs K,M, the encryption algorithm Enc returns a ci-

phertext C
$←− Enc(K,M). On inputs K,C, the decryption

algorithm returns Dec(K,C) ∈ {0, 1}∗ ∪ {⊥}, where ⊥ de-
notes invalid. On inputs C, the tag generation algorithm

returns a tag T
$←− TagGen(C). All algorithms except Dec

can be probabilistic. If both KeyGen and Enc are determin-
istic, we say that such MLE is deterministic.

The message M comes from a message space defined by
λ ∈ N. Additionally, we require that the length of a ci-
phertext only depends on the length of the message apart
from the security parameter. That is to say, for all λ ∈
N, all P ← Setup(1λ) and all M ∈ {0, 1}∗, the length of
Enc(KeyGen(M),M) is some function Len(P, λ, |M|).
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2.4 Proof of Ownership
Proof-of-ownership (PoW) [25] is an interactive protocol

between a prover (file owner) and a verifier (cloud storage
server). By executing the protocol, the prover convinces the
verifier that s/he is the owner of a file stored by the verifier.
The motivation is to protect both storage servers and cloud
users from various attacks. Consider a simple mechanism
which just uses the hash of the file for “deduplication” and
“ownership-proof”. A malicious user can then “claim owner-
ship” of a confidential file uploaded by another user to the
cloud if she only obtained its short hash value somehow. An-
other attack is to publicize a short hash value of a huge file
on the cloud (say a movie) so that everyone can easily claim
its ownership and hence download it, effectively making the
cloud as a cheap content distribution center.

Here, we briefly describe the core idea behind three ex-
isting PoW protocols [25] with different trade-offs between
security and performance. All three require both the user
and the server to build a Merkle hash tree [31] on a buffer
derived from a pre-processed file. The server only keeps the
root of the hash tree and challenges the client to present valid
sibling paths for a subset of leaves of the tree. Therefore,
the bandwidth cost would be a super-logarithmic number of
sibling paths of the Merkle tree.

2.5 Deterministic Symmetric-Key Encryption
A deterministic symmetric-key encryption scheme consists

of the following algorithms (SKE.KeyGen, SKE.Enc, SKE.Dec),
of which only SKE.KeyGen is randomized. We require it
to provide both key recovery (KR) security and one-time
real-or-random (ROR) security [9, 13, 35]. A blockcipher in
counter mode with fixed IV satisfies these requirements.

The key recovery game is defined as follows: on input 1λ,
the challenger chooses a randomly chosen key K. The adver-
sary can query at most once to an encryption oracle a mes-
sage M . The challenger replies with c = SKE.Enc(K,M).
The adversary wins the game if it can output K′ = K. We
say that a symmetric key encryption scheme is KR-secure
if the advantage AdvAKR(λ) of any adversary in winning the
above game is negligible.

The real-or-random game is defined as follows: on in-
put 1λ, the challenger chooses a random bit b. The ad-
versary can make multiple queries to an encryption oracle.
Each query is a messageM ∈ {0, 1}∗. If b = 1, the challenger
chooses a random key K and returns c = SKE.Enc(K,M). If

b = 0, the challenger chooses a random message R{0, 1}|M|
and returns c = SKE.Enc(K,R). Note that a random key is
selected for each query. The adversary wins the game if it
can output b′ = b. We say that a symmetric key encryption
scheme is ROR-secure if the advantage AdvAROR(λ) of any
adversary in winning the above game is negligible.

2.6 Hash Functions
In general, cryptographic hash functions are computation-

ally efficient functions that take arbitrary-length strings and
map them into fixed-length strings. A family of hash func-
tions is a pair of polynomial time algorithms: key generation
algorithm HashGen and hashing algorithm H. The key gen-
eration algorithm takes a security parameter 1λ as input and
outputs a key s. The hashing algorithm takes the key s and
a message m, and returns a string Hs(m).

For cryptographic use, we often require the hash func-
tions to have collision resistance. A collision in a hash func-

tion Hs is a pair of distinct inputs m and m′ such that
Hs(m) = Hs(m

′). Informally, it is infeasible for any compu-
tationally bounded adversary to find a collision in Hs where
s is generated using the key generation algorithm. For the
rest of the paper, we assume that s is part of the description
of the hash function, which is chosen by some trusted setup
algorithm. We will omit s when referring to hash functions.

Incremental hashing has been proposed [10, 14] to allow
efficient update of a hash value. Notably, Bellare et al. [14]
constructed collision-resistant incremental hash function in
the random oracle model. Looking ahead, we will use their
incremental hash in the file tag generation algorithm in our
basic construction. For completeness, we present their con-
struction (Mu.HASH,Mu.Update) below. Yet, we still need
a special way to build the ciphertext and the file tag for effi-
cient insertion and deletion in our updatable block-level MLE.

Let G be a multiplicative group such that discrete loga-
rithm problem is hard, and let H : {0, 1}∗ → G be a hash
function mapping an arbitrary bit string into a group ele-
ment. Let 〈i〉 be the binary representation of integer index i.
For an n-block input M = M[1]||M[2]|| · · · ||M[n], the incre-
mental hash function of Bellare et al. [14], which is provably
collision-resistant in the random oracle model is defined by

Mu.HASH(M[1]|| · · · ||M[n]) =
∏n
i=1 H(〈i〉||M [i]).

The product is taken in G over which we are working in.
The update algorithm takes as input a block index i, the

original block M[i], the updated version M′[i], and the orig-
inal hash value y for the whole message M. It works in the
straightforward way:

Mu.Update(i,M[i],M′[i], y) = y·H(〈i〉||M [i])−1·H(〈i〉||M ′[i]),

where (·)−1 denote the inverse operation of the group G.

2.7 The Random Oracle Model
Requiring hash functions to be collision-resistant is often

not enough to allow security proof for higher cryptographic
systems. Ideally, hash functions are expected to behave like
random functions. Such strong assumption is captured by
modeling them as a random oracle in the security proof. A
random oracle [15] is a game procedure H that maintains
a table H[·, ·], initially everywhere ⊥. Given a query (x, k)
with x ∈ {0, 1}∗ and k ∈ N, it executes: If H[x, k] = ⊥ then

H[x, k]
$←− {0, 1}k. It then returns H[x, k]. If output length

is clear, the second input is often omitted.
If a system is proven to be secure by replacing hash func-

tions with random oracles, the system is said to be secure
in the random oracle model. Such proof provides evidence
that the construction does not have “inherent security flaws”
and usually random oracle constructions are very efficient.

3. UPDATABLE BLOCK-LEVEL MLE
We define the notion of UMLE, for “Efficiently Updatable

Block-Level Message-Locked Encryption”. While block-level
MLE exists [19] and our definitions extend those for file-level
MLE [1,13], there are key differences to be explained shortly.

3.1 Syntax
A UMLE scheme is specified by the following algorithms.

• Setup: takes a security parameter 1λ and returns the
system parameter P . We assume that P implicitly
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contains 1λ, and it will be the default input for the
rest of the algorithms.

• KeyGen: takes a file message M = M[1]|| . . . ||M[n] as
input, returns block keys k1, . . . , kn and a master key
kmas respectively via the following two sub-algorithms:

– B-KeyGen: takes M[i] as input, returns the block
key ki;

– M-KeyGen: takes M as input, returns the master
key kmas.

• Enc: takes a file M (and block keys k1, . . . , kn which
can be generated from KeyGen(M)) as input, returns
the ciphertext C. It consists of the following two sub-
algorithms:

– B-Enc: takes a block message M[i] and the cor-
responding block key ki as input (1 ≤ i ≤ n),
returns the block ciphertext C[i];

– BK-Enc: takes the block keys k1, . . . kn as input
only, outputs the encrypted block keys as C[n +
1]|| . . . ||C[n′], where n′ ∈ O(n).

After completion of the two sub-algorithms B-Enc and
BK-Enc, Enc returns encrypted file as C where C =
C[1]|| . . . ||C[n]||C[n+ 1]|| . . . ||C[n′].

• Dec: takes the encrypted file C = C[1]|| . . . ||C[n]||
C[n+ 1]|| . . . ||C[n′] and the master key kmas as input,
returns M = M[1]|| . . . ||M[n]. Again it consists of two
sub-algorithms:

– BK-Dec: takes the master key kmas and the en-
crypted block keys C[n + 1]|| . . . ||C[n′] as input,
outputs the set of block keys k1, . . . , kn;

– B-Dec: takes the block key ki and the correspond-
ing block ciphertext C[i] as input (1 ≤ i ≤ n),
outputs the file block M[i].

• TagGen: takes an encrypted file C as input, returns
block tags T1, . . . , Tn′ and the file tag T0 generated
using the following two sub-algorithms respectively:

– B-TagGen: takes C[i] as input, returns the block
tag Ti (1 ≤ i ≤ n′);

– M-TagGen: takes C as input, returns the file tag T0.

• Update: this is an interactive protocol between the user
(file owner) and the server. The user takes as inputs
kmas, the to-be-updated block index i, a plaintext block
M[i]∗; while the server takes C as input. At the end of
the protocol, the user outputs an updated master key
k∗mas and the server outputs updated ciphertext C∗.
Using the notation of two-party computation, the syn-
tax of Update is (k∗mas,C

∗)← Update((kmas, i,M[i]∗),C).

• UpdateTag: takes the original file tag T0 and block tags
T1, . . . , Tn′ , the original ciphertext C, and the updated
version C′ as inputs, returns updated file tag T ′0 and
block tags T ′1, . . . , T

′
n′ .

Note that the above definition is general. One can
construct the UpdateTag algorithm which only touches
the tags corresponding to the modified ciphertext, and
the computational complexity can be only linear in the
difference between C and C∗, i.e., sublinear in |C|.

• PoWPrf: takes a challenge Q and a file M as inputs,
returns a response P.

• PoWVer: takes a challenge Q, the file tag T0, the block
tags T1, . . . , Tn′ , and the response P as inputs, returns
true or false.

Compared with the old definitions [1,13,19], we make the
following major changes:

1. We add a new interactive protocol Update between a
user and the server that updates the ciphertext, and a
UpdateTag algorithm. To exclude inefficient solutions
requiring the user to download the original ciphertext,
we require that (1) the user does not need to have C
as an input; (2) the overall communication and com-
putational complexities of Update and UpdateTag are
sublinear in the file size, i.e., o(|F |). (Also see effi-
ciency requirement below.)

2. The Enc algorithm takes M as input only without kmas.
Dropping kmas does not affect correctness, nor does it
conflict with existing notions, because in all existing
MLE schemes that we are aware of, kmas is derived
from M anyway. Furthermore, in our proposed so-
lution, the M-KeyGen and the B-Enc algorithms are
basically the same algorithm with different outputs.
(See Algorithm 1 for details.) Therefore, kmas is only
generated at the end of Enc algorithm (thus it is not
available at the time when Enc is just executed). Hence
it is important that we drop kmas from the interface.

3. We split the Enc, Dec algorithms into two phases (in
addition to KeyGen and TagGen [19]) for blocks and
block keys respectively. The B-Enc/B-Dec algorithm
encrypts/decrypts each block M[i]/C[i] using block
keys ki, while the BK-Enc/BK-Dec algorithm gener-
ates/decrypts encrypted block keys C[n+1]|| . . . ||C[n′].

4. In some literatures (say [19]), it is the user who exe-
cutes the TagGen algorithm which takes plaintext as
input. To detect maliciously generated tags by users,
Chen et al. [19] introduce a ConTest algorithm to
check the consistency of the tags. In contrast, we as-
sume that the tags (both file tag and block tags) are
derived directly from ciphertexts by the honest server.
So the ConTest algorithm [19] is not necessary.

5. Randomized tags are considered in some literature [1,
19], which mandate the need for a specialized EqTest
algorithm for equality test. For deterministic tags gen-
eration as in our definition, EqTest is just the normal
“=” operation, so we remove EqTest for simplicity2.

3.2 Correctness
For UMLE, in additional to the file space MsgSp(λ), we

also define the block space BlSp(λ) for any λ ∈ N. For all
λ ∈ N, P ← Setup(1λ) and all M ∈ MsgSp(λ), we require
the following notions of correctness.

• Decryption Correctness. For any block message
M[i] ∈ BlSp(λ), block key ki ← B-KeyGen(M[i]), and
block ciphertext C[i] ← B-Enc(ki,M[i]), decryption
correctness requires B-Dec(ki,C[i]) = M[i];

2Algorithms which are removed from our framework
(ConTest and EqTest) are in bold-face.
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• Block Key Retrieval Correctness. For all mes-
sages M ∈ MsgSp(λ), master key kmas ← M-KeyGen(M),
and encrypted block keys C[n+1]|| . . . ||C[n′], we have
BK-Dec(kmas,C[n+1]|| . . . ||C[n′]) = (B-KeyGen(M[1]),
. . ., B-KeyGen(M[n])).

• Tag Correctness. For any two block messages M[i],
M′[j] ∈ MsgSp(λ) s.t. M[i] = M′[j], then for block
tags Ti ← B-TagGen(B-Enc(B-KeyGen(M[i]),M[i])),
T ′j ← B-TagGen(B-Enc(B-KeyGen(M′[j]),M′[j])), we
have Ti = T ′j ; furthermore, if it holds that M = M′,
we require that the encrypted block keys (and thus
their tags) are equal. Namely Enc(M) = Enc(M′) and
Ti = T ′i holds ∀0 ≤ i ≤ n′.

• Update Correctness. For any M = M[1]|| . . . ||M[n]
∈ MsgSp(λ), and any file block M[i]∗ ∈ BlSp(λ), let
(k∗mas,C

∗) ← Update((kmas, i,M[i]∗),C) where kmas =
M-KeyGen(M), C = Enc(M), we have Dec(C∗) =
M[1]|| . . . ||M[i]∗ || . . . ||M[n].

• PoW Correctness. For all tags T ← TagGen(M),
any challenge Q,P ← PoWPrf(M, Q), we have the
probability Pr[PoWVer(T,P) = true] = 1.

3.3 Security Definition for UMLE
We formalize the security definitions for UMLE. We con-

sider two traditional notions for MLE: (strong) tag consis-
tency and privacy. Furthermore, we design a new notion
called“context hiding” for the Update protocol we introduce.

3.3.1 Strong Tag Consistency
We follow [13] to define a tag consistency notion for UMLE.

We say that a UMLE scheme achieves strong tag consistency
if no polynomial-time adversary A has a non-negligible ad-
vantage in the following strong tag consistency game:

• Setup: The challenger generates and sends A all the
system parameter P .

• Output: Eventually, A outputs (M, C′). Let T ′0 =
M-TagGen(C′), T0 = M-TagGen(Enc(M)), and M′ =
Dec(M-KeyGen(M), C′). If T0 = T ′0, and M 6= M′,
outputs 1. Outputs 0 otherwise.

We refer such an adversary A as an STC adversary and
define A’s advantage AdvASTC(λ) as the probability that the
above game outputs 1.

Definition 1 (Tag Consistency). A UMLE scheme is
STC-secure if, for any unpredictable block source M and
any polynomial-time STC adversary A, the advantage in the
strong tag consistency game, AdvA,MSTC , is negligible.

3.3.2 Privacy
No MLE scheme can achieve the de facto standard of in-

distinguishability against chosen-plaintext attack (semantic
security) [13], which the adversary has complete freedom in
choosing the plaintext messages. What we could achieve, is a
set of weakened privacy notions defined by Bellare et al. [13]
for unpredictable sources (described in Section 2.2). In par-
ticular, the PRV-CDA notion [13] guarantees that an en-
cryption of unpredictable message must be indistinguishable
from an encryption of a random string of the same length.

We follow the spirit in existing works [13, 19] to define
the privacy model for our UMLE, denoted by PRV-CDA-B∗.
Again, note that the syntax of our UMLE formulation is quite
different from Chen et al.’s [19], and so does the privacy no-
tion. (Details below.) We say that a BL-MLE scheme is se-
cure under chosen distribution attacks if no polynomial-time
adversary A has a non-negligible advantage in the following
chosen distribution attack game PRV-CDA-B∗:

• Setup: The adversaryA sends the description of an un-
predictable sourceM to the challenger. The challenger
then generates and sends A the system parameter P .

• Challenge: The challenger randomly picks b← {0, 1}.
If b = 0, it runs (M0, Z)←M(λ). Otherwise, if b = 1,

it chooses M1 uniformly at random from {0, 1}|M0|.
Set M = Mb.

Let n be the number of blocks. For each i ∈ [1, n], the
challenger computes

1. the block keys ki ← B-KeyGen(M[i]),

2. the ciphertext C[i] ← B-Enc(ki,M[i]), and

3. the encryption of ki’s: C[n + 1]|| . . . ||C[n′] ←
BK-Enc(k1, . . . kn).

Denote C = C[1]|| . . . ||C[n]||C[n+ 1]|| . . . ||C[n′]. The
challenger also computes the file tag T0 ← M-TagGen(C)
and block tags Ti ← B-TagGen(C[i]) for each i ∈ [1, n].
Set T = {T0, T1, . . . , Tn′}.
Finally, the challenger gives auxiliary information Z,
tags T, and the ciphertext C to the adversary.

• Output: After receiving (C,T, Z), the adversary out-
puts his guess b′ and wins the game if b′ = b.

We refer such an adversary A as a PRV-CDA-B∗ adversary
and define A’s advantage by

AdvA,M
PRV-CDA-B∗(λ) = |Pr[b = b′]− 1

2
|.

Definition 2 (Privacy). A UMLE scheme attains pri-
vacy or is PRV-CDA-B∗-secure if for any unpredictable block
sourceM and any polynomial-time PRV-CDA-B∗ adversary A,
AdvA,M

PRV-CDA-B∗ is negligible.

Our notion differs from that of Chen et al.’s [19] due to
the different algorithm interface. For example, our tag gen-
eration algorithms (M-TagGen,B-TagGen) takes C as input
instead of M, our Enc algorithm is split into two phases, etc.

3.3.3 Context Hiding
We define a new security notion called “Context hiding”,

which is specific to UMLE. Roughly speaking, context hid-
ing requires that the updated ciphertext is indistinguishable
from a ciphertext encrypted from scratch. It is to ensure
that the update process does not reduce the level of privacy.
Consider the following motivating scenario: Alice uploaded
a file F under UMLE to the storage server. She performed
some updates to sanitize some sensitive information of the
file before sharing it to Bob. Bob then uploads the received
sanitized version F ′ to the same storage server. By the
requirement of deduplication system, Bob will be able to
download Alice’s encryption version of F ′ from the storage
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server later on. If UMLE is not context hiding, it is possible
that Bob can infer some information of the original file F .

We say a UMLE scheme is context hiding if no adversary
A has a non-negligible advantage in the CXH game below:

• Setup: The challenger generates and sends A the sys-
tem parameter P .

• Challenge: The adversary A chooses two messages
M0 and M1 that differs in one arbitrary single block
(say the i-th block) of his choosing. Upon receiving
M0,M1, the challenger examines whether M0,M1 ∈
MsgSp(λ) and whether M0,M1 differs in one block.
If not, then the challenger aborts. Otherwise, it com-
putes C0 ← Enc(M0) and C1 ← Enc(M1). Then it
simulates an honest execution of the Update protocol.
The simulated client uses kmas ← M-KeyGen(M1), i,
and M0[i] as inputs while the simulated server uses
C1 as input. Denote the result by C′1. The simulator
chooses a random bit b, and sets the challenge cipher-
text C∗ = C0 if b = 0 or C∗ = C′1 otherwise.

• Output: Upon receiving C∗, the adversary outputs its
guess b′. The adversary wins the game if b′ = b.

We refer such an adversary A as a CXH adversary and
define A’s advantage by

AdvA,MCXH (λ) = |Pr[b = b′]− 1

2
|.

Definition 3 (Context Hiding). We say that a UMLE
scheme is CXH if, for any CXH adversary A, the advantage
in the context hiding game, AdvA,MCXH , is negligible.

Note that we do not aim to hide the update pattern against
the storage server since it is always revealed by the func-
tional requirement of deduplication.

Statistical Indistinguishability. Our definition does not
restrict the adversary to be polynomial time. This implies
that the updated ciphertext must be statistically indistin-
guishable from one generated using Enc directly. If UMLE is
deterministic (which is the case for our construction), this
further implies that these two ciphertexts are identical.

The above definition requires that the challenge messages
M0,M1 differ by only 1 block. This restriction is merely for
definitional simplicity. By transitivity of statistical indistin-
guishability, it is immediate to see that the ciphertext indis-
tinguishability remains after polynomially many updates.

3.3.4 PoW Security
As for the security of proof-of-ownership, similar to the

existing definition [23], we consider the probability that an
adversary can convince the server that it owns the entire
file f while it only knows some partial information of f .
Based on the bounded retrieval modal [21, 23] (cf. [41]), we
assume that the adversary only knows a bounded number of
blocks of f . We say that a UMLE scheme is secure against
an uncheatable chosen distribution attack if no polynomially
bounded adversary A has a non-negligible advantage in the
following UNC-CDA game:

• Setup: The challenger generates and sends A the sys-
tem parameter P .

• Challenge: A sends the challenger a valid source M.
The challenger runs (M, Z) ← M(λ) and sends the
proof queryQ = i and the auxiliary information Z toA.

• Finally, A outputs P∗ where PoWPrf(M-TagGen(C),
P∗, Q) → true, i.e., the proof P∗ passes the verifi-
cation. Let P be the expected honest response, i.e.,
PoWPrf(M, Q) → P. If P∗ 6= P, the challenger out-
puts 1; otherwise, outputs 0.

We refer such an adversary A as an UNC-CDA adversary
and define A’s advantage AdvA,MUNC-CDA(λ) as the probability
that the game outputs 1.

Definition 4. A UMLE scheme is UNC-CDA secure if,
for any unpredictable block-source M and any polynomial
time adversary A, the advantage AdvA,MUNC-CDA(λ) is negligible.

3.4 Efficiency Requirements
As mentioned in the introduction, we mandate the fol-

lowing efficiency requirements to exclude some degenerated
solutions of UMLE.

1. For decrypting and updating arbitrarily long cipher-
text, the local storage size (|kmas|) is O(1).

2. The ciphertext size only inflates by a multiplicative
constant: |Enc(M)| ∈ O(|M|).

3. The computational and communicational complexities
of the Update protocol and UpdateTag are sublinear,
i.e., o(|M|).

4. PROPOSED CONSTRUCTION

4.1 Intuition
We first describe the high-level idea of our construction.

As far as we know, all existing MLE constructions follow the
original paradigm of convergent encryption [13, 22]: derive
the encryption key kmas by hashing the whole file M. As
a consequence, a single bit-flip in M is likely to result in a
totally different master key k′mas, and hence completely dif-
ferent ciphertext. It seems that such paradigm inherently
forbids efficient update. We bypass this obstacle by recur-
sively deriving the master key kmas during encryption.

In more details, we firstly derive the block keys for each
block independently and encrypt each block. Then, we treat
the concatenation of these block keys as a new plaintext
message M′, and apply MLE to encrypt these new blocks
of messages. This process is repeated until one single block
can eventually accommodate the block keys generated in the
previous step. The MLE key for this last block becomes the
master key kmas, which is only used by the Dec algorithm
and the Update protocol. Also, as a result, the M-KeyGen
algorithm is almost the same as the BK-Enc algorithm ex-
cept that the outputs are different. We present the detailed
steps of M-KeyGen and BK-Enc together in Algorithm 1 with
differences highlighted in boxes.

Figure 1 shows an example illustrating how the ciphertext
looks like when encrypting an 8-block message with block
size B being twice as large as the key size λ. The dashed
lines indicate the implicit relation between ciphertext blocks.

With our specific design, to change one plaintext block,
the Update protocol in Figure 3 only needs to change log(n)
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ciphertext blocks. (Also see Figure 2 for a concrete exam-
ple.) Updating the block tags is straightforward: recompute
directly from updated ciphertext blocks. On the other hand,
updating file tag requires invoking Mu.Update of the incre-
mental hash by Bellare et al. [14] log(n) times.

4.2 Detailed Construction
Here we describe the details of our proposed construction

(Setup,KeyGen,Enc,Dec,TagGen). For the ease of presen-
tation, in the following, we assume that the block size B
is larger than, and divisible by the key length |kmas| = λ.
We further assume that the number of blocks n is a power
ofB/λ. These restrictions are not essential (see Section 4.2.2).

• Setup: on input 1λ, the algorithm chooses a hash func-
tion H : {0, 1}∗ → {0, 1}λ. The system parameter P
is the description of the hash function H.

• KeyGen: on input M = M[1]|| . . . ||M[n], run the fol-
lowing two sub-algorithms:

– B-KeyGen: on input M[i], output ki = H(M[i]).

– M-KeyGen: almost identical to BK-Enc (see Algo-
rithm 1) except a few differences shown boxed.

• Enc: on input M, run the following two sub-algorithms:

– B-Enc: on input block message M[i] and the block
key ki, 1 ≤ i ≤ n, return C[i] = SKE.Enc(ki,M[i]).

– BK-Enc: return C[n+1], . . . ,C[n′], see Algorithm 1.

• Dec: on input C and kmas, run the following two sub-
algorithms:

– BK-Dec: return k1, . . . , kn, see Algorithm 2.

– B-Dec: on input block ciphertext C[i] and block
key ki, 1 ≤ i ≤ n, return M[i] = SKE.Dec(ki,C[i]).

• TagGen: on input ciphertext C, run the following two
algorithms to return file tag T0 and block tags T1, . . . , Tn′ .

– B-TagGen: return Ti = H(C[i]) for 1 ≤ i ≤ n′.
– M-TagGen: return T0 = Mu.HASH(C).

The above describes the detailed algorithms which are
common in all MLE scheme. In addition to these, we also
provide PoW related algorithms as [19]. This protocol will
be executed when a user shows a file tag T0 that is already
stored in the server’s database. The server challenges this
user to make sure that s/he indeed owns this file.

• PoWPrf: Given a challenge query Q = {i}, compute
the encrypted block C[i] for i ∈ Q. Output the proof
Π = {C[i]}.

• PoWVer: Given Π = {C[i]}, check if they are the same
as the records in the database. If so, output 1; other-
wise output 0.

Finally, we present our constructions for the Update pro-
tocol that updates the ciphertext stored at the server as well
as the UpdateTag algorithm. Figure 3 describes the Update
protocol which is the core part of our UMLE.

• Update: The client takes as inputs kmas, the to-be-
updated block index i, a plaintext block M[i]∗; the
server takes C as input.

Algorithm 1 BK-Enc M-KeyGen

Input: k1, . . . , kn M

Output: C[n+ 1], . . . ,C[n′] kmas

1: procedure
2: Set len = n, ` = logB/λ n // namely, n = (B/λ)`

3: For M-KeyGen, run B-KeyGen to get k1, . . . , kn

4: Set M′ = k1|| . . . ||kn, idx = n+ 1
5: for i← {1, . . . , `} do
6: len = len · λ/B
7: Parse M′ as blocks M′[1]|| . . . ||M′[len]
8: for j ← {1, . . . , len} do
9: k′j = H(M′[j])

10: C[idx ] = SKE.Enc(k′j ,M
′[j])

11: idx = idx + 1
12: end for
13: M′ = k′1|| . . . ||k′len
14: kmas = H(M′)
15: end for
16: return C[n+ 1], . . . ,C[n′] kmas

17: end procedure

Algorithm 2 BK-Dec

Input: kmas,C[n+ 1], . . . ,C[n′]
Output: k1, . . . , kn
1: procedure
2: // Decrypt starting from the last block C[n′] by kmas

3: Set start = end = n′, ` = logB/λ n
4: Set len = 1, k1 = kmas

5: for i← {1, . . . , `} do
6: len = len ·B/λ, idx = 0
7: // Decrypt C[start , end ] to get k1, . . . , klen
8: for j ← {start , . . . , end} do
9: idx = idx + 1

10: M′[idx ] = SKE.Dec(kidx ,C[j])
11: end for
12: Parse M′[1]|| . . . ||M′[idx ] as k1, . . . , klen
13: end = start − 1, start = start − len
14: end for
15: return k1, . . . , kn
16: end procedure

The main idea of Update is to perform a partial decryption
on the ciphertext C. Note that the ciphertexts correspond-
ing to the actual plaintexts are placed at the leaf level of the
tree (Figure 2). Changing one leaf affects all the nodes along
the root-to-leaf path. The server returns all the ciphertext
blocks along the path to the client. With the master key
kmas, the client can decrypt the blocks one by one by first
decrypting the root ciphertext, retrieving the key k′ for the
next block, using k′ to decrypt the next block, and so on.
Then, the client generates a new key for the updated leaf,
replaces the old key at its parent node with the new key,
re-encrypts the parent node, and so on, until all the affected
blocks along the root-to-leaf path are re-encrypted.

Within this process, a new master key k′mas is also gener-
ated since our M-KeyGen and BK-Enc algorithms are almost
the same. The above process is possible because the cipher-
texts are generated in a hierarchical manner. Figure 2 shows
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C[15] = B-Enc(kmas, k13||k14)
kmas=B-KeyGen(M[15]) = H(k13||k14)
ki = B-KeyGen(M[i]) for all i

C[13] = B-Enc(k13, k9||k10)

C[9] = B-Enc(k9, k1||k2)

C[1] C[2]

C[10] = B-Enc(k10, k3||k4)

C[3] C[4]

C[14] = B-Enc(k14, k11||k12)

C[11] = B-Enc(k11, k5||k6)

C[5] C[6]

C[12] = B-Enc(k12, k7||k8)

C[7] C[8]

Figure 1: The ciphertext of an 8-block file M = M[1]|| · · · ||M[8] when block size B is double of key size λ,
M[9] = k1||k2, M[10] = k3||k4, M[11] = k5||k6, M[12] = k7||k8, M[13] = k9||k10, M[14] = k11||k12, M[15] = k13||k14

C′[15] = B-Enc(k′mas, k13||k′14) k′mas=B-KeyGen(M′[15]) = H(k13||k′14)

C[13] = B-Enc(k13, k9||k10)

C[9] = B-Enc(k9, k1||k2)

C[1] C[2]

C[10] = B-Enc(k10, k3||k4)

C[3] C[4]

C′[14] = B-Enc(k′14, k
′
11||k12)

C′[11] = B-Enc(k′11, k5||k′6)

C[5] C′[6]

C[12] = B-Enc(k12, k7||k8)

C[7] C[8]

Figure 2: Running Update to change M[6] to M′[6]: only blocks C[6],C[11],C[14], and C[15], and kmas are updated

a concrete example of how the Update protocol would change
the master key (to k′mas) and the ciphertext.

Finally, the following UpdateTag algorithm updates the
file tag and block tags.

• UpdateTag: given two versions of ciphertext C and
C′, let I be the set of indices i such that C[i] 6= C′[i],
run B-TagGen(C′[i]) for all i ∈ I to obtain new block
tags T ′i . Furthermore, set Ttemp = T0, run Ttemp ←
Mu.Update(i,C[i],C′[i], Ttemp) for all i ∈ I. Return
the final updated file tag T ′0 = Ttemp.

4.2.1 Saving time in B-Enc

The M-KeyGen and B-Enc are basically the same except
the output is different. Therefore, for the first time a file is
ever encrypted, or any other situation where M-KeyGen is
executed right before B-Enc, we only execute M-KeyGen for
once but also stores the output of C[n+ 1], . . . ,C[n′].

4.2.2 Flexible Number of Blocks
When the number of block n is not a power of B/λ, these

three algorithms work roughly in the same way. The only
difference appears when encrypting or decrypting the last
block within the second for-loop. This very last block may
not contain B/λ block keys. We can apply efficiently in-

vertible padding to fill the space, so that the encryption and
decryption algorithms can proceed normally.

4.3 Analysis
The correctness for decryption, block key retrieval, and

tag are all straightforward. The former two come from the
correctness of the symmetric key encryption while the last
one comes from the fact that all tags are deterministic.

Recall the three efficiency requirements we defined in Sec-
tion 3.4. The first one |kmas| ∈ O(1) is trivial. For the
second one |Enc(M)| ∈ O(|M|), note that the variable len is
initialized with n in the outer loop, and decreases by a fac-
tor of B/λ (assuming B > λ) for each iteration. Therefore,
the total number of additional ciphertexts is n · λ/B + n ·
(λ/B)2 + · · ·+1 = (n−1)λ

B−λ ∈ O(n). For the last requirement,
it is straightforward to verify that the Update protocol only
affects log(n) blocks due to the tree-like structure. (Also
see Figure 2 for a concrete example.) The UpdateTag algo-
rithm only involves recomputing block tag, and executing
Mu.Update(·) for each updated ciphertext block.

5. SECURITY ANALYSIS
We prove the security of our scheme under the definition

in Section 3. Some proofs hold in the random oracle model.
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User(kmas, i,M[i]∗) Server(C)

i

start = 1, end = n, len = n

tmp = i, idx = 1, ` = logB/λ n

for j ∈ {1, . . . , `}
Buf [idx ] = C[end + tmp]

tmp = dtmp · λ/Be
len = len · λ/B, idx = idx + 1

start = end + 1, end = start + len − 1

Buf [1], . . . ,Buf [`],C[i]

tmp = i

for j ∈ {1, . . . , `}
idx j = tmp mod B/λ

if(idx j == 0) then idx j = B/λ

tmp = dtmp · λ/Be
varK = kmas

for j ∈ {`, . . . , 1}
K[j]∗ = SKE.Dec(varK ,Buf [j])

Parse K[j]∗ as kj,1||kj,2|| . . . ||kj,B/λ
varK = kj,idxj

varK = H(M[i]∗), C[i]∗ = SKE.Enc(varK ,M[i]∗)

for j ∈ {1, . . . , `}
K[j]∗ = kj,1|| . . . ||kj,idxj−1||varK ||kj,idxj+1|| . . . ||kj,B

λ

varK = H(K[j]∗), Buf [j]∗ = SKE.Enc(varK ,K[j]∗)

Buf∗[1], . . . ,Buf∗[`],C[i]∗

Output k∗mas = varK Replace Buf [j] with Buf [j]∗ ∀ j
Replace C[i]∗ with C[i]∗

Figure 3: Update Protocol between User and Server

5.1 Privacy

Theorem 1. Suppose SKE.{KeyGen,Enc,Dec} is a sym-
metric encryption scheme with key length λ and H(·) is
modeled as a random oracle. For any source M with min-
entropy µ, with the number of blocks being n, and for any
adversary A making q queries to H(·), there exist adver-
saries B′,D′ such that

AdvA,M
PRV-CDA-B∗(λ)

≤ O(qn) ·AdvB
′

KR(λ) + AdvD
′

KR(λ) +
2n2

2B
+
qn

2µ

Proof. We prove that our construction satisfies privacy
by introducing a sequence of games transiting from the world
where the hidden bit is 0, to the world where the bit is 1. We
show that each transition is indistinguishable by the security
of the underlying primitive.
Game 0: This game has the hidden bit being 0.
Game 1: This game is identical to the previous one except
that the challenger keeps a table tracking the random oracle
queries when encrypting the file M.

If there exists a query X such that H(X) has been de-

fined due to an earlier query, the challenger aborts. The to-
tal number of random oracle queries within calls to BK-Enc
is bounded by the number of additional ciphertexts. From

Section 4.3 we know that this number is (n−1)λ
B−λ < n. (We

can safely assume that B > 2λ.) By the requirement that all
M[i] are distinct, there are exactly n slots which have been
defined before executing BK-Enc. By union bound, we con-

clude that collision happens with probability at most 2n2

2B
.

Game 2: Now the challenger aborts if, in the challenge
phase, the adversary makes “bad” query of H(X) that has
been defined in the encryption process. If the adversary does
not make such bad queries, this game is the same as the last
one. We argue that this happens with negligible probability
due to KR-security of the symmetric-key encryption scheme.

Recall that the hash values defined during encryption serve
as the (symmetric) encryption key, and the ciphertexts are
sent to the adversary. Suppose there exists an adversary B
who makes such bad queries with non-negligible probability,
we can build an adversary B′ which breaks the KR-security.
B′ just guesses hash query j∗ and the encryption index i∗.
B′ plants its own key-recovery challenge c∗ in the i∗-th en-
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cryption and outputs B’s j∗-th hash query. Let q be the
number of random oracle queries. By a hybrid argument, we
have that Pr[bad hash query in Game 2] ≤ qn′ ·AdvAKR(λ).

Game 3: We make a further transition where all encryp-
tions of message M[i] or M′[j] are replaced by encryptions
of random messages of the same length. This is possible due
to ROR-security of the symmetric-key encryption scheme.
Suppose there exists an adversary D who can differentiate
the current game from the previous one, we can then build
an adversary D′ which breaks the ROR-security as below.
D′ simply queries its own encryption oracle in the ROR

game and uses the response to compute the ciphertext for D.
D′ outputs whatever D outputs.

Game 4: The challenger aborts if the adversary queries
H(M [i]) for some i. Note that in Game 3, all the cipher-
texts that the adversary sees are independent of the true
ciphertext C. Thus we can apply the min-entropy of M to
bound the above probability. By a union bound, we have
Pr[bad hash query in Game 4] ≤ qn

2µ
. Moreover, this game

implements exactly the case where b = 1.

5.2 Tag Consistency
As observed [13], any deterministic scheme is STC secure

when the tags are collision-resistant hashes of the ciphertext.
It is not hard to verify that our scheme is deterministic. So
we only state the theorem below and omit the obvious proof.

Theorem 2. Suppose SE = SKE.{KeyGen,Enc,Dec} is a
one-time secure symmetric encryption scheme and H(·) is
a collision resistant hash function. Our proposed scheme in
Section 4 is STC-secure.

5.3 PoW Security
We follow the idea in [19] to show that our PoW protocol

is UNC-CDA secure.

Theorem 3. Suppose H(·) is a hash function modeled

as a random oracle. The advantage AdvA,MUNC-CDA(λ) of any
adversary A in the UNC-CDA game is bounded by

(
`(λ)

n(λ)
)q(λ) +

1

2µ(λ)
· (1− (

`(λ)− q(λ) + 1

n(λ)− q(λ) + 1
))q(λ)

where n(λ) is the total number of blocks in the challenge file,
`(λ) is the number of blocks known by the adversary given the
auxiliary information, q(λ) is the number of queried blocks,
and µ(λ) is the min-entropy of source M.

Proof. This proof can be done using a simple probability
argument [19][Theorem 7]. We thus omit the details.

5.4 Context Hiding
As discussed in Section 3, when UMLE is deterministic,

context hiding means the updated ciphertext must be iden-
tical to a ciphertext generated using Enc algorithm from
scratch. In such case, the adversary’s advantage AdvA,MCXH (λ)
in winning the CXH game is zero. The above observation
simplifies our analysis because the security will be a direct
consequence of deterministic nature and correctness of our
scheme. The former is trivial, and the latter comes from the
correctness of the one-time secure symmetric encryption.

Theorem 4. Suppose H(·) is a deterministic hash func-

tion. The adversary’s advantage AdvA,MCXH (λ) in the CXH
game against our scheme is 0.

6. SUPPORTING INSERTION/DELETION
In our basic scheme, the update operation is restricted

to replacing an existing block with a new one. Here, we
describe an extension that also allows insertion and deletion.

Towards this end, we replace Bellare et al.’s incremen-
tal hash with a tailor-made hashing algorithm. To be con-
crete, we leverage the tree-like ciphertext structure in the ba-
sic construction to build a variant of Merkle-hash-tree [31]
as the file tag. Some care must be taken because the ci-
phertext C is already implicitly organized as a tree. If we
näıvely apply Merkle-hash-tree directly on the ciphertext
C = C[1]|| · · · ||C[n′] ignoring the internal structure, updat-
ing a single ciphertext block will affect O(logn′) = O(logn)
nodes in the Merkle tree. Now that our Update protocol
changes O(logn) ciphertext blocks for each update opera-
tion, the overall complexity of UpdateTag will be O(log2 n).

To further reduce the cost, the Merkle-tree should fit with
the internal structure of the ciphertext blocks. The new
M-TagGen∗ algorithm is presented as Algorithm 3, which
outputs a complete B/λ-ary tree T = (T0, T1, . . . , Tn′) as
the file tag. Now, when we update one ciphertext block
C[i] for i ∈ [n], all the O(logn) ciphertext blocks along
the root-to-leaf path will be affected. The exact same root-
to-leaf path in the Merkle-hash tree needs to be updated.
Therefore, the overall complexity remains O(logn) only.

Algorithm 3 M-TagGen∗

Input: C = C[1]|| . . . ||C[n]||C[n+ 1]|| . . . ||C[n′]
Output: T = (T0, T1, . . . , Tn′)
1: procedure
2: for i← {1, n} do
3: Ti = H(M[i])
4: end for
5: Set len = n, ` = logB/λ n // namely, n = (B/λ)`

6: Set M′ = T1|| . . . ||Tn, idx = n+ 1
7: for i← {1, `} do
8: len = len · λ/B
9: Parse M′ as blocks M′[1]|| . . . ||M′[len]

10: for j ← {1, len} do
11: Tidx = H(C[idx ]||M′[j])
12: idx = idx + 1
13: end for
14: M′ = Tidx−len || . . . ||Tidx−1

15: end for
16: T0 = H(M′||n′)
17: return T = (T0, T1, . . . , Tn′)
18: end procedure

Now we describe how to support insertion and deletion
without degrading performance. We leverage the techniques
of weight balancing B-tree [4], an efficient data structure
that keeps data in order. Insertion and deletion of leaves in
such a B-tree can be done in time logarithmic in the size of
the tree. B-tree is parameterized by a branching parameter
p. Each internal node of a weight balancing B-tree has a
fan-out within the range [p/4, p]. If the fan-out of a node
becomes more (less) than p (p/4) due to insertion (deletion),
this node will be split into two (merged with a neighboring
node). Merge and split are called “re-balancing” operations.

Our basic construction is modified as follows: let p = B/λ,
instead of accommodating p keys in each block in encryption,
we place only p/2 keys within a block initially. We impose

458



the following restrictions after insertion/deletion of a certain
block: the number of keys in each block must be within the
range [p/4, p]. Violation will cause a block to split (> p) or
merge with a neighboring block (< p/4). In case a merge
causes an immediate overflow, we split this block evenly.
The exact split and merge operations can be found in [4].

The complexity of our modified scheme matches that of
weight balancing B-tree. We omit the repetitive details.

7. RELATED WORK
In this section, we will examine a few MLE related prim-

itives. They are closely related to MLE because of their
similarities in functionalities or security definition.

7.1 Secure Deduplication and MLE
To deal with a large number of block keys when block-level

deduplication is employed, Li et al. [29] and Puzio et al. [34]
introduce a set of key-management servers for storing the
secret shares of the block keys. Jiang et al. [26] reduce the
number of server-side comparison during deduplication.

Armknecht et al. [5] consider a new interesting research
direction: how to make the customers of cloud storage ser-
vice also economically benefit from deduplication technique.
Liu et al. [30] connects password-based authenticated key
exchange with secure deduplication.

After the first formulation of MLE [13], its security notion
of MLE has been strengthened [1,12]. Abadi et al. [1] addi-
tionally consider plaintext distributions which may depend
on the public parameter of the scheme. Unfortunately, their
construction is not known to be secure for correlated input
distribution. Bellare and Keelveedhi [12] achieve that in the
standard model by allowing interactive upload/download
protocols plus some heavy cryptographic machinery like fully
homomorphic encryption [24] and composable distributional
indistinguishable point-function obfuscation [16]. They fur-
ther propose the first efficient secure deduplication system
supporting incremental updates in the random oracle model,
but their scheme only deduplicates at the file level.

7.2 Plaintext-Check in Encryption/Encoding
Plaintext-checkable encryption [18]/encoding [40] allows

anyone to test if a ciphertext/encoding c corresponds to a
given plaintext m. The difference between encoding and en-
cryption is that encoding does not require decryption func-
tionality. Their security guarantees are both called unlink-
ability. Essentially an encryption/encoding scheme is un-
linkable if no polynomial-time adversary can distinguish be-
tween encryptions/encodings of two different messages and
two encryptions/encodings of a single message, where the
two messages are drawn from a high min-entropy space.
Such notion cannot be achieved by deterministic encryption,
but is strictly weaker than the standard semantic security.

All deterministic/randomized MLE is plaintext-checkable:
holding m and c, one could derive a tag from c, re-encrypt m
and generate a new tag to check if c is also derived from m.
But there is no unlinkable MLE as MLE requires the abil-
ity to detect duplicated ciphertexts. Compared with MLE,
plaintext-checkable encryption/encoding is slightly less ver-
satile, hence allows a slightly stronger security notion.

7.3 Equality Test in Public-key Encryption
Public-key encryption with equality test (PKET) [39] is

a (probabilistic) public-key encryption scheme which allows

anyone to test whether two ciphertexts contain the same
message. More formally, given two ciphertexts C1 and C2

generated under possibly different public-keys PK and PK′

respectively, one can test if C1 and C2 are encryptions of
the same message, without decryption. The security notion
considered is one-way adaptive chosen ciphertext attack [39].

PKET is similar to MLE except that MLE is symmetric-
key while PKET is public-key. As PKET allows plaintext
check across different public-keys, its functionality seems to
be slightly stronger than MLE (encryptions of the same mes-
sage using MLE with different public parameters cannot be
identified). Interestingly, the tag construction algorithm of
an existing MLE scheme supporting lock-dependent mes-
sage [1] is very similar to the test algorithm of the first PKET
scheme [39]. PKET only considers one-wayness for security.
It is interesting to formulate and achieve stronger notions.

7.4 Encryption with Weak/No Randomness
Hedged public-key encryption [8] achieves indistinguisha-

bility against chosen-plaintext attack (CPA) when the ran-
domness is of high quality. Even when the randomness is
bad, it can still achieve a weaker security notion called in-
distinguishability under a chosen distribution attack.

Deterministic public key encryption [7] is directly appli-
cable to deduplicate ciphertexts, but it seems impossible to
deduplicate encryption of the same message under different
public keys. With no randomization in encryption, the“best
possible” security notions under chosen plaintext attack or
chosen ciphertext attack are formulated [7].

8. CONCLUSION AND FUTURE WORK
We initiate the study of efficiently updatable block-level

message-locked encryption. We provide an efficient con-
struction in the random oracle model, with update cost
logarithmic in the file size. Notably, our construction is
pairing-free, in contrast to existing non-updatable block-
level MLE [19]. For a stronger foundation, a future direc-
tion is to propose new constructions in the standard model.
Moreover, it is important to further reduce the computation
and communication cost of the update.
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