
Cap Unification: Application to Protocol Security modulo
Homomorphic Encryption ∗

Siva Anantharaman
LIFO, Université d’Orléans

Orléans, France
siva@univ-orleans.fr

Hai Lin
Clarkson University
Potsdam, NY, USA
linh@clarkson.edu

Christopher Lynch
Clarkson University
Potsdam, NY, USA
clynch@clarkson.edu

Paliath Narendran
University at Albany-SUNY

Albany, NY, USA
dran@cs.albany.edu

Michael Rusinowitch
Loria-INRIA Grand Est

Nancy, France
rusi@loria.fr

ABSTRACT
We address the insecurity problem for cryptographic proto-

cols, for an active intruder and a bounded number of ses-

sions. The protocol steps are modeled as rigid Horn clauses,

and the intruder abilities as an equational theory. The prob-

lem of active intrusion – such as whether a secret term can

be derived, possibly via interaction with the honest partic-

ipants of the protocol – is then formulated as a Cap Uni-

fication problem. Cap Unification is an extension of Equa-

tional Unification: look for a cap to be placed on a given

set of terms, so as to unify it with a given term modulo the

equational theory. We give a decision procedure for Cap

Unification, when the intruder capabilities are modeled as

homomorphic encryption theory. Our procedure can be em-

ployed in a simple manner to detect attacks exploiting some

properties of block ciphers.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expres-

sions and Their Representation; I.2.3 [Artificial Intelli-

gence]: Deduction and Theorem Proving—Deduction

General Terms
Security, Theory, Verification

Keywords
Rewriting, Unification, Protocol, Secrecy Analysis

∗
Work Supported by NSF Grants CNS-0831305, CNS-0831209,

and by AVANTSSAR FP7-ICT-2007-1 Project 216471

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7 ...$10.00.

1. INTRODUCTION
Many automated reasoning systems have been designed

for representing cryptographic protocols and verifying that

they satisfy security properties such as secrecy and authen-

ticity, or to discover bugs. Such systems are often based

on model-checking, modal logics, equational reasoning, and

resolution theorem-proving (e.g., [20, 3, 13]). Reducing the

security problem to a constraint solving problem in a term

algebra, modulo an equational theory, is among the most

successful approaches: this reduction has proved to be quite

effective on standard benchmarks and has also permitted the

discovery of new flaws in several protocols (see, e.g., [4]).

In particular, it is possible to model encryption and de-

cryption operations by convergent rewrite systems that are

collapsing (right-hand sides are variables), expressing sim-

ply that decryption cancels encryption when provided with

the right key. Then, extensions of narrowing techniques for

semantic unification [15] can be applied to solve the con-

straints derived from the cryptographic protocol and the se-

crecy property that one wants to check. Several protocol

decision procedures have been designed for handling more

equational properties of the cryptographic primitives [17, 8,

7] Some works have tried to derive generic decidability re-

sults for some specific class of intruder theories [11, 5, 6].

These results address theories presented by rewrite systems

where the rhs (right hand side) of every rule is a ground

term, a variable or a subterm of the lhs. Concerning theories

with a homomorphism operator, the only work for active in-

truders is [12], which presents decidability results for a class

of monoidal theories containing exclusive OR, in combina-

tion with the homomorphism axiom. Their approach follows

a classical schema for cryptographic protocol analysis, which

proves first a locality result (see, e.g. [8]). The insecurity

problem is then reduced to solving some linear Diophantine

equations in a suitable algebra. It must be noted that none

of these approaches handle homomorphic encryption over

the pair operator.

In this paper, we present a novel approach that is simple,

in the sense that it is closer to standard unification proce-

dures. Standard equational unification actually turns out to

192

be a particular case of Cap Unification, which is the basis

for our inference system for active deduction.

The paper is structured as follows: Section 2 presents the

preliminary notions, and in particular the basic Dolev-Yao

rewrite system DY , and a system HE for homomorphic en-

cryption (non-convergent, as it is). The notions of Cap Con-

straints and Cap Unification are introduced in Section 3.

In Section 4, we present an inference procedure to decide

unification modulo a (homomorphic) theory induced by a

convergent, single rule, subsystem Eh of HE; the procedure

is essentially syntactic, and is simpler than that given in

[19] for Unification modulo One-sided Distributivity. The

inference system for active deduction modulo HE is given

in Section 5; the idea is to reduce the problem of solving cap

constraints over HE, via narrowing, to one of solving cap

constraints over the single rule theory Eh, and eventually to

solving an Eh-unification problem. The technique employed

is simpler than those used in [5, 6], and we come up with

a procedure for solving cap constraints which is shown to

be sound, terminating and complete for our homomorphic

encryption theory HE. The cap constraints modeling the

protocols are assumed to satisfy some minor restrictive as-

sumptions satisfied by all usual protocols.

2. SETTING THE STAGE
As usual, Σ will stand for a ranked signature, and X a

countably infinite set of variables. T = T (Σ,X) is the alge-

bra of terms over this signature; terms in T will be denoted

as s, t, . . . , and variables as u, v, x, y, z, . . . , all with possible

suffixes. If f is a member of Σ with at least one argument,

then f is a function symbol; and if f has no arguments, it is

a constant. We assume the signature to have finitely many

constants. A rewrite rule is a pair of terms (l, r) such that

l ≻ r, for some given reduction ordering 1 ≻ on terms; it

will be represented as usual, as l → r. A rewrite system R

is a finite set of rewrite rules. The notions of reduction and

normalization of a term by R are assumed known, as well

as those of termination and of confluence of the reduction

relation defined by R on terms. R is said to be convergent

iff the reduction relation it defines on the set of terms is

terminating and confluent.

In this paper, we are concerned with the insecurity prob-

lem of protocols, for instance, the problem where a message

intended as secret is captured or deduced by an intruder.

We model the homomorphic encryption theory as a conver-

gent rewrite system R, that is a constructor system. By

that we mean: the signature Σ is a disjoint union ΣD ⊔ΣC ,

the symbols in ΣC are called constructors, those in ΣD are

called defined symbols; the top symbols of all left hand sides

(lhs) of the rules of R are defined symbols, all the other

symbols are constructors. The protocol itself is modeled as

a set of Horn clauses, referred to as protocol rules or protocol

clauses, that we shall formally define farther down. Proto-

col insecurity is modeled in two different ways: passive, or

active, deduction. Passive deduction models the intruder

1A reduction ordering is a well-founded ordering, stable un-
der contexts and substitutions.

knowledge evolution without interaction with the protocol

sessions, e.g. via eavesdropping. An inference system, called

saturation of the cap closure, was given in [1] for passive

deduction, and was shown to be complete for Dolev-Yao

theories and a convergent theory of Homomorphic Encryp-

tion (“Encryption distributes over pairs”). Our concern in

this paper is Dolev-Yao plus Homomorphic Encryption in

the case of active intruders. The following Dolev-Yao the-

ory DY , with signature Σ = {π1, π2, p, e, d}, underlies all

known formalisms for passive or active deduction:

π1(p(x, y))→ x

π2(p(x, y))→ y

d(e(x, y), y)→ x

The homomorphic encryption theory that we consider – de-

noted as HE in the sequel – extends DY with the following

rule:

e(p(x, y), z)→ p(e(x, z), e(y, z))

In these theories, ‘p’ means pair, ‘e’ is encryption, ‘d’ is

decryption, ‘π1’ (resp. ‘π2’) is the projection onto the left

(resp. right) component of a pair. It is important to note

that our HE differs from the system considered in [1] and

in [2]: the following two rules

e(d(x, y), y)→ x, d(p(x, y), z)→ p(d(x, z), d(y, z))

are not included in ours. And as it is, our HE is not con-

vergent; but, as we shall be seeing farther down, it suffices

to add one ‘meta’-reduction rule to get a convergent system

that is equivalent. In our approach developed below, the

convergent subsystem of HE consisting of the single rule

e(p(x, y), z) → p(e(x, z), e(y, z)) will be playing a crucial

role; it will be denoted as Eh. Intruder knowledge evolu-

tion is modeled as forming the cap closure, in the sense of

the following definition – by instantiating SYM as a suitable

subset of the symbols in Σ – of a finite set of terms S that

models the ‘current’ intruder knowledge; and adding further

terms to this knowledge, via certain R-narrowing steps on

the terms of this closure:

Definition 1. Let S be a given set of terms, and SYM

a set of function symbols. Then Cap(S,SYM) is the set of

terms defined as follows:

• S ⊆ Cap(S,SYM)

• If ti ∈ Cap(S, SYM), for all 1 ≤ i ≤ n, and f ∈ SYM

is of arity n, then f(t1, t2, . . . , tn) ∈ Cap(S,SYM).

(It is assumed in the definition above, that if f is π1 or

π2, then its argument t must be a pair.) For modeling ac-

tive intruder deduction, we need to account for the intruder

interactions with the protocol steps. With that purpose, we

first model the protocol as a set of protocol rules or protocol

clauses (also called deduction rules in the literature); these

are defined as follows:

Definition 2. A protocol rule is a pair ({t1, . . . , tn}, t)

where the ti’s and t are all terms; it will be denoted as

{t1, . . . , tn} ◮ t.

Semantics: if σ is a substitution such that the terms tiσ, 1 ≤

i ≤ n, are already part of the intruder knowledge, then (s)he

can deduce the term tσ.

193

If R is a given convergent constructor system, and E the

associated equational theory, a protocol rule {t1, . . . , tn} ◮

t is said to be an R- or E-constructed protocol rule if no

function symbol in the rule is a defined symbol of E .

Protocol rules are used to simulate a protocol step in a

protocol session. We only consider the analysis of one proto-

col session, since the case of several sessions can be reduced

to that of a single session, via standard techniques ([11]).

Thus, every protocol rule is used only once; and when the

variables of a rule are instantiated, their values are propa-

gated to all the other rules; the variables of a protocol rule

are often said to be ‘rigid’ variables.

Our next step will be to model every step of a protocol

session as a Cap Constraint, and propose a technique called

Cap Unification, to solve the set of all such constraints.

(Note: Cap constraints have also been called “Deducibility

constraints” in many related works; cf. e.g. [8, 18].)

3. CAP CONSTRAINTS
In this section, R is any given, convergent, rewrite system

over some signature Σ, E the equational theory of R, and

SYM is any given set of symbols from Σ.

Definition 3. A cap constraint is a constraint written

in the form S ⊲(SYM,E) t, where S is a set of terms, and t is

a term. It is solvable iff there exists s ∈ Cap(S,SYM), and

a substitution σ s.t. sσ = tσ mod E . We call σ a solution

of S ⊲(SYM,E) t.

An E-equation (or just ‘equation’) is, as usual, an E-

equality constraint of the form s =E t, where s and t are

terms; if the theory E is obvious from the context, we simply

write s = t; for ease and uniformity of presentation, we agree

to identify it with the ‘special’ cap constraint s ⊲(SYM,E) t,

whose lhs is now the term s (not a set of terms); if we also

agree to set Cap(s, SYM) = {s}, then obviously solving the

special cap constraint reduces to E-unifying s and t.

Definition 4. Let Γ = {Si ⊲(SYM,E) ti, 1 ≤ i ≤ n}, be

any set of cap constraints (some of which may be special).

A substitution σ is a solution for Γ iff σ is a solution for

every cap constraint in Γ.

From Protocol to Cap Constraints.

We show here how to generate a set of cap constraints from

a strand space that ‘describes’ a protocol session. The idea

is similar to that given in [18]. We begin with a definition,

essentially as in [14]:

Definition 5. (i) Let A be a set, the elements of which

are the possible messages that can be exchanged between prin-

cipals in some given protocol session P . A signed term is a

pair 〈σ, a〉 with a ∈ A, and σ ∈ {+,−}. As usual, (±A)∗ is

the set of all finite sequences of signed terms, an element of

which will be typically denoted as 〈〈σ1, a1〉, . . . , 〈σn, an〉〉. A

signed term 〈σ, t〉 is generally written as +t or −t.

(ii) A strand space for the protocol session P is then de-

fined as a finite set S of signed terms (over some given sig-

nature), together with a trace mapping tr : S → (±A)∗.

Given a strand space S for P , we define a node n as a

pair 〈s, i〉, with s ∈ S and i an integer satisfying 1 ≤ i ≤

length(tr(s)); for any such node n, we set index(n) = i, and

sterm(n) = s. The set of all nodes will be denoted by N .

If n1, n2 ∈ N , then n1 → n2 means sterm(n1) = +a and

sterm(n2) = −a for some a ∈ A. Semantically this is to

be seen as: node n1 sends the message a, which is received

by n2, thus creating a causal link between their strands. If

n1, n2 ∈ N , then n1 ⇒ n2 means n1, n2 occur on the same

strand with index(n1) = index(n2) − 1. In other words, n1

is an immediate causal predecessor of n2 on the strand.

A strand space describing a protocol session P can be seen

as a directed graph G with two types of edges: n1 → n2

and n1 ⇒ n2. For our purposes here, we shall treat both

types of edges alike. It should be clear that the graph is

acyclic and has a unique linear ordering (corresponding to

the sequential ordering of the messages exchanged, during

the given protocol session). We denote by Pos(G) (resp.

Neg(G)) the total number of positive (resp. negative) nodes

in G; and by posi(G) (resp. negi(G)) the i-th positive (resp.

negative) node on G under the linear ordering. In intuitive

terms: posi(G) (resp. negi(G)) corresponds to the message

sent (resp. received) at the i-th step of the protocol session.

Let S be a strand space for a protocol session P , and

let G be the corresponding directed graph. Then, to any

given deduction problem on P , and any given set of random

natural numbers rand = {i1, i2, . . . , in | ik < Pos(G), 1 ≤
k ≤ n}, we can associate, in a natural manner, a set of cap

constraints. (Intuitively rand is a nondeterministic guess

on which message exchanges are useful to the intruder; the

idea is similar to that given in [18].) For instance, let the

random sequence rand be given, and suppose the deduction

problem is whether an intruder gets to know a message m

intended secret for him/her. Let Kinit be the set of (ground)

terms forming the intruder’s initial knowledge. We then

generate the following cap constraints (where, by Σ we mean

a superset of the set of symbols in the intruder theory E):

λk = Kinit ∪ {term(posi(G)) | i ∈ rand, i < ik}

⊲(Σ,E)term(negk(G)),

for every 1 ≤ k ≤ n; and

λn+1 = Kinit ∪ {term(posi(G)) | i ∈ rand} ⊲(Σ,E) m

where term(posi(G)) (resp. term(negk(G))) denotes the un-

signed (usual) term at the i-th (resp. k-th) node on the

graph G.

Illustrative Example: As a concrete example, we con-

sider the following “NEEDHAM-SCHROEDER SYMMET-

RIC KEY PROTOCOL” ([9]), which aims to establish a

fresh shared symmetric key Kab, for mutual authentication

of the participants: in any session, the value of Kab is to be

known only to the participants playing the roles of A, B and

S in that session.

A, B,S: principals

Na, Nb: fresh nonces

Kas, Kbs: symmetric keys

succ: number → number

1. A→ S : A,B, Na

194

2. S → A : {Na, B, Kab, {Kab, A}Kbs}Kas

3. A→ B : {Kab, A}Kbs

4. B → A : {Nb}Kab

5. A→ B : {succ(Nb)}Kab

The strand trace for A is:

〈+p(p(A,B), Na),−T, +y,−{Nb}z, {succ(Nb)}z〉,

where T = e(p(p(Na, B), p(Kab, e(p(kab, A),Kbs))), Kas).

The strand trace for B is: 〈−y,+{Nb}z,−{succ(Nb)}z〉.

The strand trace for S is: 〈+p(p(A,B), Na), +T 〉.
When encryption is based on the ECB block chaining tech-

nique (i.e., performed sequentially on a block decomposition

of the plaintext, and under the assumption that messages

are assigned a round number of blocks), it can be seen as an

homomorphism on ‘pair’.

The following is an attack based on homomorphism, where

A can be fooled into accepting the publicly known nonce Na

as a secret key shared with B.

i.1. A→ S : A,B, Na

i.2. S → A : {Na, B, Kab, {Kab, A}Kbs
}Kas

ii.3. I(B)→ A : {Na, B}Kas

ii.4. A→ I(B) : {N ′
a}Na

ii.5. I(B)→ A : {succ(N ′
a)}Na

The point of the above attack – a priori on authentication,

but susceptible to lead to one on secrecy – is that we can

answer “yes” to the following two questions.

i) Can the intruder know the concatenation of A, B and

Na based on the initial knowledge {A, B, Na}?

ii) Can the intruder get to know both a message of the

form e(p(x,B), Kas) and x itself? (If yes, then the intruder

can convince A to accept x – that (s)he already knows – as

a secret key to be shared with B.)

As discussed above, we set p(e(p(x,B), Kas), x) as the se-

cret message (the goal). If we set rand = {1}, we then

generate the following constraints, corresponding to the two

questions above.

i. {A, B, Na} ⊲({p,π1,π2,e,d},HE) p(p(A,B), Na)

ii. {A, B, Na, e(p(p(p(Na, B), Kab), e(p(Kab, A), Kbs)), Kas)}

⊲({p,π1,π2,e,d},HE) p(e(p(x,B),Kas), x)

In Section 5.3, we shall show our cap unification procedure

can be applied to solve these cap constraints.

4. UNIFICATION MODULO EH

Our ultimate objective is an algorithm for solving cap con-

straints over HE, which in particular will also solve unifi-

cation problems modulo HE. For that, we first need an

algorithm for unification modulo the theory Eh defined by

the single rule e(p(x, y), z)→ p(e(x, z), e(y, z)); we give here

an inference procedure that is simpler than that given in [19]

for Unification modulo One-sided Distributivity. Referred to

as Eh-Unifn in the sequel, it is a generalization of the stan-

dard algorithm for syntactic unification. To the rest of this

section, Γ represents a set of equations modulo Eh; and =

will denote equality modulo Eh. (Syntactic equality will be

denoted as =id, when necessary.)

We first formulate some ‘standard’ syntactic inference rules

dealing with usual unification. Here we don’t consider ‘=’

as oriented; in other words, x = t and t = x are considered

the same.

• (Trivial) Γ ⊔ {t = t} ⇒ Γ

• (Std Decomposition)

Γ ⊔ {f(s1, s2, . . . , sm) = f(t1, t2, . . . , tm)} ⇒

Γ ∪ {s1 = t1} ∪ {s2 = t2} ∪ · · · ∪ {sm = tm}

• (Variable Substitution) Γ⊔{x = t} ⇒ Γσ∪{x = t}

if x 6∈ V ars(t), x occurs in Γ, and σ = [x 7→ t].

• (Clash) Γ ⊔ {f(s1, . . . , sm) = g(t1, . . . , tn)} ⇒ fail

if f 6= g; and if one of f and g is ‘e’(resp. ‘p’),

then the other is not ‘p’(resp. ‘e’).

• (Occur Check) Γ ⊔ {x = t} ⇒ fail,

if t 6= x and x ∈ V ars(t).

Note: The Std Decomposition rule covers, in particular, the

so-called Perfect Encryption assumption:

e(x, k) = e(y, k)⇒ x = y; e(x, k) = e(x, k′)⇒ k = k′.

Over the empty theory, two terms with different function

symbols on top do not unify; but, modulo Eh, a term with

p on top may unify with a term with e on top. To handle

this, we shall introduce below some additional rules, referred

to as Homomorphic Pattern rules. We shall be needing a

few new notions, and some notational convention, for their

formulation.

Preliminaries for Homomorphic Pattern rules.

We begin with the following definition.

Definition 6. The positions of a single variable term x

is pos(x) = {ǫ}; and the positions of a term f(t1, · · · , tn)

are: pos(f(t1, · · · , tn)) = {ǫ} ∪ {i · p|p ∈ pos(ti), 1 ≤ i ≤ n}

So a position is a sequence of integers indicating a path

in the tree representation of a term. For each position q

in a term t, we define new functions ppos and epos which

represent the subsequence of q representing p symbols and

e symbols respectively.

We define ppos(q, t) inductively as follows. The base case

is ppos(ǫ, t) = ǫ. The inductive step is ppos(i · q, t) = i ·

ppos(q, t|i) if the symbol at the top of t is ‘p’, and ppos(i ·

q, t) = ppos(q, t|i) if the symbol at the top of t is ‘e’.

Similarly we define epos(q, t) such that epos(ǫ, t) = ǫ;

and, epos(i · q, t) = i ·epos(q, t|i) if the symbol at the top of

t is ‘e’, and epos(i · q, t) = epos(q, t|i) if the top symbol of t

is ‘p’.

For example, consider the term t = p(e(p(x, y), k), z); the

variable y is at position 112 on t. We have:

ppos(112, t) = 1.ppos(12, e(p(x, y), k))

= 1.ppos(2, p(x, y)) = 1.2;

epos(112, t) = epos(12, e(p(x, y), k)

= 1.epos(2, p(x, y)) = 1.

Let t1, t2 be any two terms, q1 a position in t1, and q2 a

position in t2. The position-terms (q1, t1) and (q2, t2) are

said to be incompatible if at least one of the following holds:

195

1. ppos(q1, t1) is a proper prefix of ppos(q2, t2); or

2. ppos(q1, t1) = ppos(q2, t2), epos(q1, t1) 6= epos(q2, t2)

and epos(q1, t1) and epos(q2, t2) contain only 1’s in

their sequences.

Two position-term pairs are said to be compatible if they

are not incompatible.

A pair of terms t1, t2 are said to be in phase iff for all posi-

tions q1 in t1 and q2 in t2 such that t1|q1 = t2|q2 , the position-

term pairs (q1, t1), (q2, t2) are compatible. The terms t1 and

t2 are said to be out of phase iff they are not in phase;

they are out of phase on variable x iff there exist positions

q1 in t1 and q2 in t2 such that t1|q1 = t2|q2 = x and the

position-term pairs (q1, t1), (q2, t2) are incompatible. (Note:

This actually is a generalized occur-check condition on the

variable x.) Note that every term is in phase with itself.

A position q in a term t is said to be a non-key position

iff epos(q, t) contains only 1’s. For any two terms that are

equivalent to each other modulo Eh, we have the following

result:

Lemma 1. Let s and t be terms such that Eh |= s = t.

Then s and t are in phase on variables at non-key positions.

Proof. Let s and t be terms such that Eh |= s = t, then

there is an equational proof of s = t using the equation Eh.

Suppose that this proof has n steps. We will prove that s

and t are in phase, by induction on n. In the base case,

suppose that n = 0, then s is syntactically equal to t, so

s and t are in phase. For the induction step, note that Eh

preserves the property of being in phase.

If two terms s, t are out of phase on some variable, then

for any substitution σ, the terms sσ, tσ are out of phase.

The Homomorphic Pattern inferences will contain a ‘Failure’

rule, such that the unification problem will ‘Fail’ if applied

to an equation s = t where s and t are out of phase on a

variable at a non-key position. (Note however, that this is

an “if”, and not an “iff”: indeed any two different constants

a, b are in phase.)

Next we show, that the non-key positions of t1 and t2 have

a certain relationship if t1 is equivalent to t2 modulo Eh.

Lemma 2. Let t1 and t2 be terms such that Eh |= t1 =

t2. Let q1 be a non-key position in t1. Then there exists a

position q2 in t2 such that ppos(q1, t1) = ppos(q2, t2) and

epos(q1, t1) = epos(q2, t2).

Proof. Since Eh |= t1 = t2, there is an equational proof

of t1 = t2 using the single equation Eh. Suppose that this

proof has n steps. We prove by induction on n that the above

properties hold. If n = 0, then t1 is syntactically equal to

t2, so we can set q2 = q1. For the induction step, suffices to

note that Eh preserves the properties to be proved.

The Homomorphic Pattern rules will also incorporate the

following principle: if e(x, k) is a pair, then the argument

encrypted – namely x – must itself split as a pair. But with

a view to not increase the number of unsolved variables of

the problem, these rules will be formulated as macro (or

hyper) rules, which group several such inferences into one

single inference.

The macro rules will be formulated by using a suitable

representation of terms, using two new symbols: E and Pv,

where v is some sequence of finite strings over the alpha-

bet {1, 2}; we agree to refer to such sequences simply as

bit string sequences. Informally, a term with Pv on top is

a certain representation for a term with p as top-symbol;

similarly, a term with E on top represents a term with e

as top-symbol. For instance, the P -representation of the

‘usual’ term p(p(e(a, k), e(b, k′)), e(c, k′′)) is:

P11,12,2(e(a, k), e(b, k′), e(c, k′′)).

And the E-representation of the usual term e(e(a, k1), k2)

is E(a, k1, k2). But only ‘legal’ bit string sequences v can

lead to meaningful terms with p on top. Such sequences are

defined, inductively, as follows2 :

· The empty string ǫ is a legal bit string sequence (it is of

length 0).

· If v = a1, ..., an and w = b1, ..., bm are legal sequences of re-

spective lengths n, m, then 1.v, 2.w = 1a1, ..., 1an, 2b1, ..., 2bm

is a legal sequence, of length n + m.

We now define formally the P - and E-representations of

a term:

(P): Define a position q in a term t to be a pure p-position

in t iff epos(q, t) = ǫ. We say that q is a maximal pure p-

position in t iff q is a pure p-position in t, and q is not a

proper prefix of any pure p position in t.

For instance, let t = p(p(a, b), e(p(c, d), k)), then the pure

p-positions in t are the positions where the subterms t, p(a, b),

a, b and e(p(c, d), k) occur. And the maximal pure p-positions

in t are the positions of the subterms a, b and e(p(c, d), k).

The P -representation of a term t is then Pq1,··· ,qn
(t1, · · · , tn)

where {q1, · · · , qn} is the lexicographically ordered set of

maximal pure p-positions in t, and for all i, t|qi
= ti.

(E): Define a position q in term t to be a pure e-position in

t if ppos(q, t) = ǫ. If q is a pure e-position in t, and q either

contains no 2 at all or contains 2 only as the last element

of the sequence, then q is said to be a penuk-position in t.

(penuk abbreviates ‘pure e-position not under a key’.) We

say that q is a maximal penuk-position in t if q is a penuk-

position in t, and q is not a proper prefix of any penuk-

position in t.

For instance, if t = e(e(a, b), e(c, d)), then every position

in t is a pure e-position in t. Every position in t is a penuk-

position except for 21 and 22 where c and d occur. The

maximal penuk positions are the positions where a, b and

e(c, d) occur. (The reader can now see why the name penuk:

the terms c and d are inside the key e(c, d) that encrypts the

message e(a, b).)

The E-representation of a term t is then E(t1, · · · , tn)

where {q1, · · · , qn} is the set of all maximal penuk-positions

in t written in lexicographic order, and for all i, t|qi
= ti.

Remark: The P -representation (resp. E-representation) of

a usual term t normalizes to its usual representation, under

2These bit strings correspond to leaf positions on binary
trees

196

the rewrite rules P (resp. E) below :

(P): Pǫ(t)→ t

P1.v,2.w(t1, . . . , tn+m)

→ p(Pv(t1, . . . , tn), Pw(tn+1, . . . , tn+m))

if v (resp. w) is a legal bit string sequence of length n

(resp. m).

(E): E(t)→ t

E(t, k1, . . . , kn−1, kn)→ e(E(t, k1, . . . , kn−1), kn)

We may now formulate the Homomorphic Pattern rules.

• (Shaping)

Γ ⊔ {Pv(t1, . . . , E(x, km, . . . , kn), . . . , tl)

= E(s, k′
1, . . . , k

′
n)}

⇒

Γ ∪ {Pv(t1, . . . , E(x′, k′
1, . . . , k

′
m−1, km, . . . , kn), . . . , tl)

= E(s, k′
1, . . . , k

′
n)} ∪ {x = E(x′, k′

1, . . . , k
′
m−1)}

where x′ is a fresh variable, v is a (legal) bit string

sequence, and n ≥ m > 1.

• (Failure)

(i) Γ ⊔ {s = t} ⇒ Fail

if s, t are out of phase on some variable at a non-key

position (i.e., with epos containing only 1’s). 3

(ii) Γ ⊔ {Pv(t1, . . . , E(ti, k1, . . . , km), . . . , tl)

= E(s, k′
1, . . . , k

′
n)} ⇒ Fail

where v is a (legal) bit string sequence, ti not a vari-

able, and m < n.

• (Parsing)

Γ ⊔ {Pv(E(t1, k11, . . . , k1m1
), . . . , E(tl, kl1, . . . , klml

))

= E(s, k1, . . . , km)}

⇒

Γ⊔{Pv(E(t1, k11, . . . , k1m1−1), . . . , E(tl, kl1, . . . , klml−1))

= E(s, k1, . . . , km−1)}

∪ {k1m1
= k2m2

= · · · = klml
= km}

where v is a (legal) bit string sequence.

The Homomorphic Pattern rules are to be performed en

bloc together with the Variable Substitution rule given above,

by which we mean: whenever one of these ‘Homomorphic

Pattern’ rules or the ‘Variable Substitution’ rule applies,

none among the remaining rules shall be applied. The ‘Shap-

ing’ rule helps make the terms being unified to be ‘well-

structured’. The ‘Parsing’ rule takes a pair of ‘well-structured’

terms, and solves for them with a macro inference, based

on the above mentioned principle of ‘encryption distributes

over pairs’. The ‘Failure’ rule tries to detect failure as early

as possible, and is always applied the most eagerly among

all rules. Failure rule (i) is sound by Lemma 1, while Fail-

ure rule (ii) corresponds to the case where the two terms

considered have different numbers of keys, but Shaping is

inapplicable.

3As we will see in the Completeness proof, we only need to
check if s is of the form Pv(. . . , E(x, ki1, . . . , kimi

), . . .), t is
of the form E(x, k1, . . . , km) and mi < m. That is the only
‘out of phase’ condition that is necessary for completeness.

A simple example of Failure (i) rule is for p(x, y) = e(x, k).

The x in p(x, y) is considered as an encryption with zero

keys. The x in e(x, k) is in an encryption with 1 key. By

the footnote of Failure (i) we fail because 0 < 1. Note also

that p(x, y) and e(x, k) are out of phase on x.

The Eh-Unifn procedure is defined by all the above rules

and the rules for syntactic unification. We explicitly make

the following assumption: the equations of our problems

are given in Eh-normal form, and any new equation derived

under the inferences is kept in Eh-normal form.

A solved form for Eh-Unifn is a set of Eh-equalities {x1 =

t1, · · · , xn = tn}, where each xi is a solved variable, each

ti is a usual term. (Note: a variable x, in a set of equality

constraints, is said to be solved iff x appears only once, and

as the lhs of an equation of the form x = t with t a term.)

A solved form for s = t is denoted as nf(s = t). We shall be

showing below that two terms s and t are unifiable modulo

Eh if and only if there exists a solved form for s = t.

For any given set of Eh-unification problems Γ, let uvars(Γ)

be the number of distinct unsolved variables in Γ. For any

equality S appearing in Γ, let Terms(S) be the multiset

{s | s appears in S}; and let Unifns(Terms(Γ)) be the mul-

tiset {Terms(S) |S ∈ Γ}. We then define a measure M(Γ)

for the cap unification problem Γ as the lexicographic pair

(uvars(Γ), Unifns(Terms(Γ))).

Lemma 3. Let Γ be any set of Eh-unification problems.

All the above inference rules for Unification modulo Eh re-

duce M(Γ).

Proof. We show that the Homomorphic Pattern rules

reduce M(Γ); it is straightforward that all the other rules

reduce the measure.

No rule in Homomorphic Pattern increases the number

of unsolved variables. We show that, if any of the above

rules increases Unifns(Terms(Γ)), then it must decrease

uvars(Γ).

Among the inference rules, Shaping is the only one that

can increase Unifns(Terms(Γ)), since a variable x gets then

replaced by E(x′, k1, . . . , km), where x′ a new variable.

To show this, we first observe that the Shaping rule cannot

be applied if s = x, where s and x are as in the Shaping Rule:

indeed, in that case, let q1 be the position of x in the entire

term on the LHS, say T1, and q2 the position of s in the term

on the RHS, say T2. Then ppos(q2, T2) = ǫ, so ppos(q2, T2)

is a prefix of ppos(q1, T1). Also, epos(q1, T1) < epos(q2, T2).

Therefore, T1 and T2 are out of phase on x, so we would

have failed.

Therefore, we will assume that s 6= x when the Shaping

rule is applied. This means that the Shaping rule can be

applied only finitely many times before some Parsing rule

is triggered. This is because any application of the Shaping

rule gives rise to at least one of the t′is having at least n

encryption keys (n as in the formulation of the Shaping rule),

so the Parsing rule will eventually become applicable.

Consider then the application of the Parsing Rule, where

s is now as in the formulation of the Parsing Rule. By

definition of E, we require that the top symbol of s is not

197

e. Since the terms are in normal form, the top symbol of s

cannot be p. Therefore s must be a variable or a constant.

If s is a variable, then Variable Substitution is immediately

applied, reducing the number of unsolved variables. If s is

a constant c, then suppose that Shaping has added a new

variable x′. So the result of shaping will either be of the

form p(r1, r2) = c, in which case we will fail, or it will be of

the form x′ = c, in which case Variable Substitution will be

applied, and the number of unsolved variables will decrease.

(Note that Shaping will have to be applied en bloc with

Parsing, by assumption.)

The next two lemmas show that Eh-Unifn is sound and

complete. As usual, we write Γ ⇒ Γ′ if the problem Γ′ is

derived from the problem Γ by applying one of the infer-

ences.

Lemma 4. Let σ be any term substitution. If Γ1 ⇒ Γ2

and σ is a solution for Γ2, then σ is also a solution for Γ1.

Proof. We show the soundness of Homomorphic Pattern

rules, the soundness of all the other rules being straightfor-

ward. Specifically we show that the Parsing rule of Homo-

morphic Pattern is sound.

Now, according to the homomorphic encryption theory,

p(e(t1, k1), e(t2, k2)) = e(s, k) if and only if s = p(t1, t2),

and k1 = k, k2 = k. This can be generalized without dif-

ficulty to Pv(E(t1, k11, . . . , k1m), . . . , E(tn, kn1, . . . , knm)) =

E(s, k1, . . . , km) if and only if s = Pv(t1, . . . , tn), k11 = · · · =

kn1 = k1, . . . , k1m = · · · = knm = km, where v is any legal

bit string sequence.

Lemma 5. Let Γ1 be a set of unification problems that

is not in solved form, and σ a term substitution. If σ is a

solution of Γ1, then there exists a Γ2 such that Γ1 ⇒ Γ2 and

σ can be extended to a solution of Γ2.

Proof. Consider any unsolved unification problem c in

Γ1, of the form s = t. If s or t is a variable, Variable Substi-

tution applies. If neither of them is a variable and they have

the same function symbols on top, then Std Decomposition

applies.

So we assume they have different function symbols on top;

then Homomorphic Pattern rules apply. Suppose then the

equation s = t is of the form:

Pv(E(t1, k11, . . . , k1m1
), . . . , E(tl, kl1, . . . , klml

))

= E(s′, k1, . . . , km).

Case 1): Suppose there is an i, 1 ≤ i ≤ l, with mi < m.

Case 1.a) Case where ti is a variable:

Case 1.a.i): Suppose ti = s′. Then s and t are out of

phase on the variable ti. So, the Failure Rule (i) applies.

Case 1.a.ii): Suppose ti 6= s′. Then Shaping applies.

Clearly, any solution to Γ2 can be extended to a solution

of Γ1.

Case 1.b) Case where ti is not a variable: Then Failure

Rule (ii) applies. The term ti cannot be a p-term, because

s is in normal form modulo Eh. So ti must be a constant.

Let q2 be the position of s′ in t. No instance of s can have

a term at position q2 by Lemma 2, thus the equation s = t

has no solution.

Case 2): For all i, mi ≥ m. In this case, Parsing applies,

and the solution to Γ2 is a solution of Γ1, because the equa-

tion Eh implies that E(Pv(x1, . . . , xn), z1, . . . , zm)

= Pv(E(x1, z1, . . . , zm), · · · , E(xn, z1, . . . , zm)).

Lemma 6. Let Γ be a set of unification problems, σ any

substitution solution for Γ modulo Eh. Then there is a solved

form σ′ for Γ, produced by Eh-Unifn, that generalizes σ, and

σ′ only contains variables in Γ.

Proof. By Lemma 5, the inference steps of Eh-Unifn pre-

serve solutions. Lemma 3 shows that Eh-Unifn terminates.

Only the Shaping rule introduces new variables. By the

argumentation of Lemma 3, the Shaping rule always trig-

gers the Parsing rule, which gets rid of the introduced vari-

ables.

We close this section with an example, which shows why

we need to keep the equations of our problems in Eh-normal

form:

Example: Consider the following Eh-unification problem:

e(p(x, y), k) = e(e(w, k), k).

Its term to the right (with 2 keys) is in normal form; and the

term to the left, with one key, is not in normal form. Shaping

appears inapplicable, but Failure rule (ii) is. However, the

equation in Eh-normal form actually reads:

p(e(x,k), e(y, k)) = e(e(w,k), k),

to which neither of the Failure rules applies, but Shaping

does apply. After some Shaping inferences, followed by Vari-

able Substitution, the problem becomes:

x = e(x′, k), y = e(y′, k),

p(e(e(x′, k), k), e(e(y′, k), k)) = e(e(w, k), k).

Parsing then solves the problem as:

w = p(x′, y′), x = e(x′, k), y = e(y′, k)

5. ACTIVE DEDUCTION MODULO HE

We turn our attention now to active deduction modulo our

theory HE, and present an inference system to solve a set

of cap constraints modulo HE. The idea is to formulate its

rules as ‘calling’ the Eh-Unifn rule of the previous section.

Such an inference system will be shown to be sound and

complete for HE.

For the rest of the section, SYM will stand for either

sig(HE) or {p, π1, π2}. The inference system for active de-

duction modulo HE, denoted as ID, consists of the rules

given below, where Γ stands for any set of cap constraints.

The inferences will be applied starting with an initial set of

cap constraints modeling the protocol clauses, so containing

no equality constraints. Equality constraints that may have

to be considered during the inferences will all be over Eh, so

‘=’ will stand for equality modulo Eh. A SYM that appears

in the premise and the conclusion of any rule, stands for the

same given symbol set.

Projection:

Γ ⊔ {S ⊔ p(t1, t2)} ⊲(SYM,HE) t}

Γ ∪ {S ∪ {t1, t2} ⊲(SYM,HE) t}

198

Decryption:

Γ ⊔ {S ⊔ {e(t, k)} ⊲(SYM,HE) t′}

Γ ∪ {S ∪ {t} ⊲(SYM,HE) t′} ∪ {S ⊲(SYM,HE) k}

if d ∈ SYM.

Degeneracy:

Γ ⊔ {S ⊲(SYM,HE) t}

Γτ

if S = {s1, · · · , sn}, and τ = nf(si = t) 6= ⊥

for some i in {1, . . . , n}.

Homomorphic Deduction:

Γ ⊔ {S ⊔ {e(s1, t1), e(s2, t2), . . . , e(sn, tn)} ⊲(SY M,HE) e(s, t)}

Γ ∪ {S ∪ {s1, s2, . . . , sn} ⊲({p,π1,π2},HE) s}τ

where τ is some nf({t1 = t}∪{t2 = t}∪ · · · ∪ {tn = t}).

Cap Decomposition:

Γ ⊔ {S ⊲(SY M,HE) f(t1, . . . , tm)}

Γ ∪ {S ⊲(SY M,HE) t1} ∪ · · · ∪ {S ⊲(SY M,HE) tm}

if f ∈ SY M .

Variable Substitution:

Γ

Γσ

where (i) x ∈ V ars(Γ), σ : x 7→ Pv(t1, . . . , tn) for a

legal bit string sequence v of length n;

(ii) and the ti’s are distinct, non-variable terms

in the LHS of the constraints in Γ, such that

x 6∈ V ars(ti), 1 ≤ i ≤ n.

The Degeneracy rule corresponds to the case where one of

the terms to the left of a cap constraint in Γ is Eh-unifiable

with the term to the right of that constraint; this rule is to

be applied eagerly. The inference rules of ID are don’t-know

nondeterministic: i.e., for completeness, they may all have

to be tried, in turn. As usual, we write an inference as a

transformation Γ ⇒ID
Γ′ on sets of cap constraints. We

shall show below that ID-derivations – which are, by defini-

tion, sequences of such transformations – terminate and are

sound; and also that ID is complete for satisfiability; i.e., if

Γ is solvable, then there is an ID-derivation from Γ to an

empty set of cap constraints Γ′.

5.1 Termination
For termination and for completeness, there are certain

typical protocol properties that will be required. The prop-

erties that we formulate now, are true for all usual protocols;

they will be shown to be preserved under the inferences ID.

Definition 7. A set of cap constraints Γ = {S1 ⊲(SYM,HE)

t1, . . . , Sm ⊲(SYM,HE) tm} is said to satisfy the Standard Pro-

tocol Property, iff the following two conditions are satisfied:

1. The Variable Introduction property: Let 1 ≤ j ≤ m,

and x any variable that appears in Sj; then there exists

i, 1 ≤ i ≤ n, i 6= j, such that ti = x.

2. The Constructor property: None of the symbols d, π1, π2

appears in Γ.

We shall assume that the initial set of cap constraints

modeling the protocol rules have the Standard Protocol Prop-

erty: Variable introduction means that a principal’s actions

are determined by the messages (s)he receives or deduces.

The constructor property says that the protocol clauses do

not contain functions that destruct data.

Our purpose in this subsection is to show the termina-

tion of any ID-derivation. For that, we first need to show

that ID-derivation sequences preserve the Standard Proto-

col Property.

Lemma 7. Let Γ0, Γ1, . . . , Γn be an ID-derivation, where

Γ0 has the Variable Introduction property. Then Γn also has

the Variable Introduction property.

Proof. We will show that if Γ ⇒ID
Γ′, and Γ has the

Variable Introduction property, then so does Γ′. By inspec-

tion of all the inference rules, if some occurrence of a vari-

able disappears, then that variable has to be instantiated.

We consider two cases:

Case 1: If no variable in Γ is instantiated, then all occur-

rences of all variables in Γ still remain in Γ′. The statement

is trivially true.

Case 2: If some variable is instantiated, that variable will

be instantiated everywhere, according to our inference rules.

So there will be no occurrence of that variable in Γ′. The

statement is also true in this case.

Lemma 8. Suppose Γ has the Constructor property, and

Γ⇒ID
Γ′. Then Γ′ also has the Constructor property.

Proof. By inspection of the inference rules, any symbol

appearing in the conclusion of an inference has to appear

already in its premise.

Proving Termination.

For any set Γ of cap constraints, we define: nvars(Γ) =

|{x | x appears in Γ}|. For any cap constraint S appearing

in Γ, let Terms(S) be the multiset {s | s appears S}, and

Constraints(Γ) be the multiset {Terms(S) |S ∈ Γ}. We

then define the measure of Γ as the lexicographically ordered

pair: M(Γ) = (nvars(Γ), Constraints(Γ)). This measure is

well-founded. We show now that it is reduced by every ID-

inference.

Lemma 9. If Γ has the Standard Protocol property, and

if Γ⇒ID
Γ′, then M(Γ′) < M(Γ).

Proof. Projection and Decryption do not increase the

first component, but reduces the second component. By

Lemma 6, Homomorphic Deduction, Degeneracy and Cap

Decomposition do not increase the first component. Actu-

ally, Homomorphic Deduction either reduces the first com-

ponent, or does not increase the first component, but reduce

the second component. Degeneracy and Cap Decomposition

do not increase the first component, but reduce the second

component. The Variable Substitution rule reduces the first

component: indeed, it replaces any variable x by a term not

containing x, and also not containing any fresh variables.

199

Theorem 1. Suppose Γ is a constraint set satisfying the

Standard Protocol property. Then every ID-derivation from

Γ is finite.

Proof. The well-founded measure M(Γ) decreases at each

inference.

5.2 ID is Sound and Complete

ID is Sound: We only prove the soundness of the Homo-

morphic Deduction rule. The soundness of the other rules

of ID should be straightforward.

Lemma 10. Let Γ be a constraint set, and Γ′ the con-

straint set derived from Γ by Homomorphic Deduction. If a

substitution σ satisfies Γ′, it also satisfies Γ.

Proof. We consider all the ground instances of the Ho-

momorphic Deduction rule. We show that if there exists u

such that

u ∈ Cap({s1, s2, . . . , sn}, {p, π1, π2}), then

e(u, t) ∈ Cap({e(s1, t), e(s2, t), . . . , e(sn, t)}, SYM).

The proof is by induction on the structure of u. Base case:

suppose u is si, for some 1 ≤ i ≤ n, then the above statement

is trivially true. In the general case, u can be made up from

elements in {s1, s2, . . . , sn} by using some caps in {p, π1, π2},

so we consider three cases for the inductive argument:

Case i): Suppose u is p(u1, u2), where:

e(u1, t) ∈ Cap({e(s1, t), e(s2, t), . . . , e(sn, t)}, SYM), and

e(u2, t) ∈ Cap({e(s1, t), e(s2, t), . . . , e(sn, t)}, SYM).

We have to show that

e(p(u1, u2), t) ∈ Cap({e(s1, t), e(s2, t), . . . , e(sn, t)}, SYM).

Because e(u1, t) and e(u2, t) are both in the cap closure, we

get that p(e(u1, t), e(u2, t)) is in the cap closure. Because of

HE, e(p(u1, u2), t) is also in the cap closure.

Case ii): Suppose u is π1(u1), where u1 = p(w, w′) for some

ground terms w, w′, and suppose

e(u1, t) ∈ Cap({e(s1, t), e(s2, t), . . . , e(sn, t)}, SYM).

We want to show that:

e(π1(u1), t) ∈ Cap({e(s1, t), e(s2, t), . . . , e(sn, t)}, SYM).

In other words, we want to show that e(w, t) is in the cap

closure; this follows because e(u1, t) = e(p(w,w′), t) is in the

cap closure, and because of HE.

Case iii): Suppose u is π2(u1), where u1 = p(w, w′) for some

ground terms w, w′, and suppose

e(u1, t) ∈ Cap({e(s1, t), e(s2, t), . . . , e(sn, t)}, SYM). We

conclude here exactly as in Case ii).

Proposition 1. Let Γ0 be a set of cap constraints satis-

fying the Standard Protocol property. Suppose Γ0, Γ1, . . . , Γn

is an ID-derivation, and σ a substitution that satisfies Γn;

then σ satisfies also Γ0.

Proof. Suppose σ satisfies Γi+1; observe then that no

inference rule, from step i to step i + 1, adds any constraint

that can be inconsistent with Γi; it follows that σ also sat-

isfies Γi.

ID is Complete.

We turn our attention now to showing that ID is ‘satisfia-

bility-complete’ for active deduction modulo HE; and for

that, we need our theory to be convergent. So we extend HE

by adding a single ‘meta’-reduction rule, to get the following

theory, that we denote as HE+:

π1(p(x, y))→ x

π2(p(x, y))→ y

d(e(x, y), y)→ x

e(p(x, y), z)→ p(e(x, z), e(y, z))

d(Pv(e(x1, z), · · · , e(xn, z)), z)→ Pv(x1, · · · , xn)

where v is any legal bit string sequence of length n.

The following lemma is immediate:

Lemma 11. HE+ is convergent, and is equivalent to HE.

We observe next that the Eh-Unifn algorithm of Section 4

is complete for solving cap constraints modulo HE+ (or,

equivalently: modulo HE):

Lemma 12. Let Γ be a set of cap constraints, s and t any

two terms appearing in Γ, and let σ be a HE+-normalized

substitution. Then σ is a unifier of s and t modulo HE+ if

and only if σ is a unifier of s and t modulo Eh.

Proof. HE+ being convergent, we can solve s = t mod-

ulo HE+ by using narrowing. By Lemma 8, d, π1, π2 do not

occur in s or t, so the narrowing process will only use the

single rule of Eh.

In the sequel, we shall be needing the following notion of

a minimal solution for a set of cap constraints Γ:

Definition 8. Given two solutions σ, τ for a set of cap

constraints Γ, σ is said to be smaller than τ iff |xσ| ≤ |xτ |

for every variable x appearing in Γ. (For any term t, its size

is denoted |t|.) A solution σ is minimal iff no solution is

strictly smaller than σ.

Lemma 13. Let S ⊲(SYM,HE) t be a cap constraint with

the constructor property, that admits as minimal solution a

ground substitution σ in HE+-normal form. Then for any

variable x, xσ cannot contain the symbols d, π1, π2.

Proof. By assumption, there is a term u ∈ Cap(S,SYM)

such that uσ ↔HE+ tσ. Since HE+ is convergent, there

exists then a ground term w, and a HE+-rewrite proof:

uσ −→∗
HE+ w ←−∗

HE+ tσ. Now, by the constructor prop-

erty, the only function symbols that can appear in t, and in

the terms of S, are ‘p’ and ‘e’. Suppose some of these terms

contained a variable x such that xσ contains one of the sym-

bols d, π1, π2. Since σ is assumed to be in HE+-normal form,

it follows that none of the innermost subterms of uσ or tσ

with d, π1, or π2 as top symbols can be reducible. So, such

terms will remain as they are all along the rewrite proof;

they can then be replaced by arbitrarily chosen constants,

and we will get a solution for the constraint that is strictly

smaller than σ – contradicting the minimality assumption

on σ (cf. Definition 8).

200

A similar reasoning works also when the rewrite proof

between uσ and tσ is trivial, i.e., uσ and tσ are identi-

cal: suppose, for instance, that a term with root symbol

in {d, π1, π2} appears at certain positions in the term uσ;

then all these positions will have to be in the substitution σ;

one can then construct (as above) a σ′ strictly smaller than

σ, such that uσ′ and tσ′ are identical.

Theorem 2. Let Γ be a satisfiable set of cap constraints

over HE, with the Standard Protocol Property. Then there

is an ID-derivation Γ0, Γ1, . . . , Γn, such that: (i) Γ0 is Γ,

(ii) each Γi is satisfiable, and (iii) Γn is empty.

Proof. We actually show the following: Let Γ be any

satisfiable, non-empty set of cap constraints over HE (with

the Standard Protocol Property), and σ any given mini-

mal ground solution for Γ; then there is an ID-inference

Γ ⇒ID
Γ′ such that σ induces a solution for the set of cap

constraints Γ′. For this, we may assume that σ is a HE+-

normalized substitution.

Case 1: Consider first the case, where for some constraint

S⊲(SYM,HE)u in Γ, the set S contains a term with ‘p’ on top.

In this case, the Projection inference of ID can be applied;

it is easy then to derive from σ a solution to the inferred cap

constraint set Γ′, which proves our claim.

So we may assume henceforth, that for every cap con-

straint S ⊲(SYM,HE) u in Γ, each term in S is either a pure

variable or a constant, or has ‘e’ as its top symbol. (Note:

by Lemma 8, the symbols d, π1, π2 cannot appear in Γ.)

Case 2: Suppose then that for some cap constraint S ⊲ u

in Γ, the set S contains only terms with ‘e’ on top, and u

is neither a variable nor a constant. We have two subcases

here:

- case 2.1: Either the top symbol of the RHS term u of

the constraint is ‘p’: in which case, a Cap Decomposi-

tion inference is applicable to Γ;

- case 2.2: Or else the top symbol of the RHS term u

is ‘e’: in this subcase, (depending on the symbol set

SYM) either Homomorphic Deduction or Decryption

can be applied Γ.

In both subcases, one can derive from σ a solution for the

inferred system Γ′.

Case 3: So, we assume henceforth, that in every cap con-

straint S ⊲(SYM,HE) u in Γ, pure variables or constants have

to appear as members of S (the RHS u can be a variable, or

a constant, or a term with ‘p’ or ‘e’ on top).

Now, suppose Γ contains a constraint S ⊲(SYM,HE)u where

the term u has ‘p’ or ‘e’ as top symbol; in such a case,

one of the Degeneracy, Cap Decomposition, Decryption or

Homomorphic Deduction inference rules can be applied to

prove our claim. So we may assume that the RHS of all

constraints in Γ are either pure variables or constants. We

have then two subcases to consider:

- Case 3.1: Suppose the RHS of all constraints in Γ are

constants. In this case, the terms to the left of any constraint

in Γ must all be ground terms, because of the Variable Intro-

duction property. In this case, the Degeneracy rule applies

and proves our claim.

- Case 3.2: So remains finally to consider the case where

for some cap constraint in Γ, the RHS term is a pure variable.

Let S1 ⊲(SYM,HE) z1, · · · , Sr ⊲(SYM,HE) zr be all the cap

constraints in Γ, whose RHS are pure variables. For any

j, 1 ≤ j ≤ r, let the e-height of zj (wrt the given solution

σ) be defined as the number of times the symbol ‘e’ appears

in the ground term zjσ; we then choose the first index p ∈

{1, . . . , r} for which the e-height of zp is maximal. It follows

that zp cannot appear at a non-root position in any of the

terms in any of the sets Sj , 1 ≤ j ≤ r: indeed, due to our

previous reductions, any term in an Sj that contains zp at

a non-root position would have ‘e’ as top symbol, and the

corresponding RHS variable zj would be of a strictly bigger

e-height. In other words, if zp appears in any of the Sj , then

it is a member by itself of the set Sj .

Now, by assumption the substitution σ solves each con-

straint in Γ, and in particular Sp ⊲(SYM,HE) zp, with p as

chosen above; by Definition 4, this implies that zpσ is equal,

modulo HE, to some term t ∈ Cap({t1σ, . . . , tmσ}, SYM),

where the t1, . . . , tm are some non-variable terms (not con-

taining zp) over the LHS of the constraints in Γ; and this

term t must also be in Cap(Sσ, SYM) for every constraint in

Γ of the form S ⊲(SYM,HE) zp, i.e., whose RHS is zp.

We then define a substitution θ : zp 7→ Pv(t1, · · · , tm),

where v is some legal bit string sequence of length m, and

apply the Variable Substitution inference to Γ, wrt θ. The

system thus inferred Γ′ = Γθ has a smaller number of vari-

ables: V ars(Γ′) = V ars(Γ)r {zp}. From the given minimal

ground solution σ for Γ, we then derive a ground substitu-

tion σ′ on the set of variables of Γ′, by setting yσ′ = yσ, for

every variable y of Γ′.

The claim is that σ′ extends naturally to a solution for the

constraint system Γ′. To prove this, note first that the RHS

of any constraint in Γ′ is either a variable 6= zp of Γ, or is the

term Pv(t1, · · · , tm). It is therefore obvious that σ′ solves

any constraint in Γ′ whose RHS is a variable; so, we only

need to consider a constraint in Γ′ of the form S′ ⊲(SYM,HE)

Pv(t1, · · · , tm), with S′ = Sθ, obtained by applying θ to a

constraint in Γ of the form S ⊲(SYM,HE) zp.

To prove our current claim, we may suppose zp 6∈ S, or

Pv(t1, · · · , tm) 6∈ S′. Therefore Sσ = S′σ′, and our above

term t ∈ Cap({t1σ, . . . , tmσ}, SYM) is also in the cap closure

Cap(S′σ′, SYM). Now, the symbols p, π1, π2 are in SYM in

all cases; on the other hand, by Lemma 13, they do not

appear in t; these facts put together allow us to conclude

that σ′ does induce a solution also for the cap constraint

S′ ⊲(SYM,HE) Pv(t1, · · · , tm) of the inferred system Γ′.

5.3 Illustrative Example - Contd.

In Section 3, we discussed the“NEEDHAM-SCHROEDER

SYMMETRIC KEY PROTOCOL” and the attack on it

based on homomorphism; we also saw how we generated

the following cap constraints.

201

i. {A, B, Na} ⊲({p,π1,π2,e,d},HE) p(p(A,B), Na)

ii. {A, B, Na, e(p(p(p(Na, B), Kab), e(p(Kab, A), Kbs)), Kas)}

⊲({p,π1,π2,e,d},HE) p(e(p(x,B),Kas), x)

To solve (i), we use Cap Decomposition twice and get

the following constraints; each of them can be solved using

Degeneracy.

i-1. {A, B, Na} ⊲({p,π1,π2,e,d},HE) A

i-2. {A, B, Na} ⊲({p,π1,π2,e,d},HE) B

i-3. {A, B, Na} ⊲({p,π1,π2,e,d},HE) Na

To solve (ii), first we use Cap Decomposition:

Deduced constraint ii-1.

{A, B, Na, e(p(p(p(Na, B), Kab), e(p(Kab, A),Kbs)), Kas)}

⊲({p,π1,π2,e,d},HE) x

Deduced constraint ii-2.

{A, B, Na, e(p(p(p(Na, B), Kab), e(p(Kab, A),Kbs)), Kas)}

⊲({p,π1,π2,e,d},HE) e(p(x,B), Kas)

Now, ii-1 can be solved by using Degeneracy: set x to Na.

And ii-2 can be solved by using Homomorphic Deduction,

Projection and Degeneracy:

(Homomorphic Deduction)

{p(p(p(Na, B), Kab), e(p(Kab, A), Kbs))}

⊲({p,π1,π2},HE) p(x,B)

(Projection)

{p(p(Na, B),Kab), e(p(Kab, A),Kbs)}

⊲({p,π1,π2},HE) p(x,B)

{p(Na, B), Kab), e(p(Kab, A, Kbs)}

⊲({p,π1,π2},HE) p(x,B)

(Degeneracy) ∅

6. CONCLUSION
There are two basic reasons why the approach presented in

this paper works for active deduction modulo Homomorphic

Encryption. One is that normalized narrowing wrt the sys-

tem HE+ (equivalent to HE) terminates; and the other is

that such a narrowing allows us to ‘reduce’ deduction mod-

ulo HE+ to deduction modulo the subtheory Eh, for which

unification is essentially syntactic. It would be of interest

to try to generalize our approach to other algebraic intruder

theories for which similar reductions are possible, and to

cases where the encryption schemes are assumed to satisfy

certain group homomorphism properties. We also would like

to mention a couple of other points:

i) The form of the rules of our rewrite system HE might

lead to conclude that our approach would work only for sym-

metric encryption schemes; but it is not hard to adapt the

system HE and the approach to handle asymmetric keys.

ii) The approach presented is appropriate for encryption

based on ECB (Electronic Code Book) block chaining. A

block chaining technique less vulnerable than ECB is CBC

(Cipher Block Chaining); cf. e.g., [16]. Some works ([10])

have considered a version of homomorphism theory that is

incomplete for such an encryption, i.e., might miss some

attacks. The following convergent AC-rewrite system R1

(where + = XOR is AC) models such an encryption:

x + 0→ x, x + x→ 0

p1(cons(x, y))→ x, p2(cons(x, y))→ y

dec(enc(x, y), y)→ x

cbc(cons(x, y), z, w)→

cons(enc(z + x,w), cbc(y, enc(z + x, w), w))

cbc(nil, z, k)→ nil

Here cbc(ls, vs, k) stands for the encryption, with k as key,

of the list ls of message blocks, with vs as padding vector;

while enc(m, k) (resp. dec(m, k)) stands for message block

m encrypted (resp. decrypted) with key k. Passive deduc-

tion modulo R1 can be shown to be decidable, by extending

the results of [1] to AC-rewriting. Refining the approach

of our current paper, into one that would be complete for

active deduction modulo R1, is part of ongoing work.

In this paper we have given an algorithm for a homo-

morphic operator over a free theory, which models the ECB

encryption algorithm. This is just a first step in model-

ing encryption algorithms. We hope to extend our result to

homomorphic operators over more expressive theories, and

more useful for cryptographic protocol analysis.

7. REFERENCES

[1] S. Anantharaman, P. Narendran, M. Rusinowitch.

“Intruders with Caps”. In Proc. of Int. Conf. RTA’07 ,

LNCS 4533, pp. 20–35, Springer-Verlag, June 2007.

[2] S. Anantharaman, H. Lin, C. Lynch, P. Narendran,

M. Rusinowitch. “Unification modulo Homomorphic

Encryption”. In Proc. of Int. Conf. FROCOS 2009,

TRENTO-Italy, LNAI 5749, pp. 100–116,

Springer-Verlag, September 2009.

[3] A. Armando, L. Compagna. “SATMC: A SAT-based

Model Checker for Security Protocols”. In Proc. of

JELIA 2004 , LNCS 3229, pp. 730–733, Springer-Verlag,

2004.

[4] D. Basin, S. Mödersheim, L. Viganò. “An On-The-Fly

Model-Checker for Security Protocol Analysis”. In Proc.

of ESORICS’03, LNCS 2808, pp. 253–270.

Springer-Verlag, 2003.

[5] M. Baudet. “Deciding security of protocols against

off-line guessing attacks”. In Proc. of ACM Conf. on

Computer and Communications Security , pp. 16–25,

2005.

[6] Y. Chevalier, M. Kourjieh. “Key Substitution in the

Symbolic Analysis of Cryptographic Protocols”. In Proc.

Int. Conf FSTTCS’07 , LNCS 4855, pp. 121–132,

Springer-Verlag, December 2007.

[7] Y. Chevalier, R. Küsters, M. Rusinowitch, M. Turuani.

“An NP Decision Procedure for Protocol Insecurity with

XOR”. In Proc. of the Logic In Computer Science

Conference, LICS’03, pp. 261–270, 2003.

[8] H. Comon-Lundh, R. Treinen. “Easy Intruder

Deductions.” Verification: Theory and Practice In

LNCS 2772, pp. 225–242, Springer-Verlag, February

2004.

[9] V. Cortier, S. Delaune, P. Lafourcade. “A Survey of

Algebraic Properties Used in Cryptographic Protocols”.

In Journal of Computer Security 14(1): 1–43, 2006.

202

[10] V. Cortier, M. Rusinowitch, E. Zalinescu. “A

resolution strategy for verifying cryptographic protocols

with CBC encryption and blind signatures”. In Proc. of

the 7th ACM SIGPLAN Symposium PPDP 2005, pp.

12–22.

[11] S. Delaune, F. Jacquemard. “A decision procedure for

the verification of security protocols with explicit

destructors”. In Proc. of the 11th ACM Conference on

Computer and Communications Security (CCS’04), pp.

278–287, Washington, D.C., USA, October 2004. ACM

Press.

[12] S. Delaune, P. Lafourcade, D. Lugiez, R. Treinen,

“Symbolic protocol analysis for monoidal equational

theories.” In Information and Computation 206(2-4), pp.

312-351, 2008.

[13] S. Escobar, C. Meadows, J. Meseguer. “A

Rewriting-Based Inference System for the NRL Protocol

Analyzer and its Meta-Logical Properties.” In Theoretical

Computer Science, Vol. 367(1-2), pp. 162–202, 2006.

[14] F. J.-T. Fabrega, J. C. Herzog, J. D. Guttman.

“Strand Spaces: Why is a Security Protocol Correct?” In

Proc. of IEEE Symposium on Security and Privacy, May

1998.

[15] J.M. Hullot. “Canonical Forms and Unification”. In

Proc. of the Int. Conf. on Automated Deduction

CADE-5, LNCS 87, pp. 318–334, Springer-Verlag, 1980.

[16] S. Kremer, M. D. Ryan. “Analysing the vulnerability

of protocols to produce known-pair and chosen-text

attacks”. In Proc. of the 2nd Int. Workshop on Security

Issues in Coordination Models, Languages, and Systems

(SecCo 2004), ENTCS, Vol. 128, Issue 5, pp. 87–104,

2004.

[17] C. Meadows, P. Narendran. “A unification algorithm

for the group Diffie-Hellman protocol”. In Workshop on

Issues in the Theory of Security (in conjunction with

POPL’02), Portland, Oregon, USA, January 14-15 ,

2002.

[18] J. Millen, V. Shmatikov. “Constraint Solving for

Bounded-Process Cryptographic Protocol Analysis” In

Proc. of the 8th ACM Conference on Computer and

Communications Security pp. 166–175, 2001.

[19] E. Tiden, S. Arnborg. “Unification Problems with

One-sided Distributivity”. In J. of Symb.

Computation 3(1–2): 183–202, 1987.

[20] C. Weidenbach. “Towards an automatic analysis of

security protocols”. In Proc. of the 16th Int. Conf. on

Automated Deduction, CADE-16 , LNAI 1632, pp.

378–382, Springer-Verlag, 1999.

203

