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ABSTRACT
Non-malleability is an important and intensively studied se-
curity notion for many cryptographic primitives. In the con-
text of public key encryption, this notion means it is infea-
sible for an adversary to transform an encryption of some
message m into one of a related message m′ under the given
public key. Although it has provided a strong security prop-
erty for many applications, it still does not suffice for some
scenarios like the system where the users could issue keys
on-the-fly. In such settings, the adversary may have the
power to transform the given public key and the ciphertext.
To withstand such attacks, Fischlin introduced a stronger
notion, known as complete non-malleability, which requires
that the non-malleability property be preserved even for the
adversaries attempting to produce a ciphertext of some re-
lated message under the transformed public key. To date,
many schemes satisfying this stronger security have been
proposed, but they are either inefficient or proved secure
in the random oracle model. In this work, we put for-
ward a new encryption scheme in the common reference
string model. Based on the standard DBDH assumption,
the proposed scheme is proved completely non-malleable se-
cure against adaptive chosen ciphertext attacks in the stan-
dard model. In our scheme, the well-formed public keys and
ciphertexts could be publicly recognized without drawing
support from unwieldy techniques like non-interactive zero
knowledge proofs or one-time signatures, thus achieving a
better performance.
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1. INTRODUCTION
Non-malleability is a crucial security requirement in many

high-level protocols such as electronic auctions. This prop-
erty has been formulated for various cryptographic primi-
tives like commitments and signatures. Of particular inter-
est in this work is the non-malleability of public key en-
cryption (PKE), which was initially introduced by Dolev et
al. [12]. Informally, an encryption scheme is called non-
malleable if it is infeasible for any adversary provided with
a public key and a ciphertext of some plaintext m to come up
with a ciphertext of a related plaintext m′ (under the same
public key) and a relation R, via which m′ and m are related.
When the adaptive chosen ciphertext attack is considered,
the adversary is also given access to a decryption oracle even
after seeing the challenge ciphertext. In this case, it is al-
ways thought of as the strongest security notion for pub-
lic key encryption, which is usually called non-malleability
against adaptive chosen ciphertext attacks (NM-CCA2). So
far, many NM-CCA2 secure public key encryption schemes
have been proposed such as [9, 21, 10, 7, 20, 16, 8, 17]1.

Although non-malleability could provide a strong security
property for many applications, it still can not suffice for
some scenarios like the system where users could issue keys
on-the-fly. In such settings, the adversary may have the
power to transform the given public key and the ciphertext.
For example, in an auction system an honest user’s bid is
encrypted with her public key. An adversarial user, in the
middle of the auction process, may be powerful enough to
transform such a sealed bid into a new one that is related via
the adversarially generated public key and thus easily beat
the honest user with a slightly higher bid. The adversary
may be able to open his bid only when the honestly sealed
bid is opened, even without the corresponding secret key.

Initially motivated by constructing non-malleable com-
mitment [11, 14] by means of encryption schemes, Fischlin
[13] introduced a stronger notion, known as complete non-
malleability. This notion requires that the non-malleability
property be preserved even for the adversaries additionally
allowed to choose a new public key (without necessarily
knowing the associated private key) that may be related to
the original one. More precisely, this notion mainly has two
differences in contrast to the regular one. First, the adver-

1Recall that NM-CCA2 was proved equivalent to the notion
of indistinguishability against adaptive chosen ciphertext at-
tacks (IND-CCA2) [4].
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sary now is more powerful, who has the ability to tamper
the given public key. Second, the goal of the adversary now
is to generate a ciphertext (under the tampered public key)
of some plaintext that is related to the original via a more
general relation which also takes the given and adversarially
chosen public key.

As indicated in [13], complete non-malleability is a strictly
stronger notion. Particularly, Fischlin proposed some effi-
cient attacks against the well-known Cramer-Shoup encryp-
tion scheme [10] and RSA-OAEP [5, 15], which showed that
although being NM-CCA2 secure in the regular sense, they
are not completely non-malleable even if the adversary is
not given access to the decryption oracle. Moreover, a full
analysis of relationships of security notions among indistin-
guishability, non-malleability and complete non-malleability
was given in [22], which demonstrated that the complete
non-malleability can provide the strongest security guaran-
tee. Thus this notion offers a more adequate security for
many scenarios such as the encryption scheme-based higher
level protocols, and so as stressed in [12] it will have much
more applications than the standard non-complete one.

1.1 Related Work
Although this new notion is more powerful and useful, it

turns out in [13] that completely non-malleable PKE scheme
is particularly difficult to construct in the plain model.

To further understanding the complete non-malleability
of encryption schemes and immunize constructions from the
random oracle idealization, Ventre and Visconti [24] revis-
ited this concept and gave a game-based definition follow-
ing the comparison-based approach in [4]. Under this new
definition, they also presented two solutions without ran-
dom oracles conditioned on some assumptions. The first
is derived from any semantically secure encryption scheme
based on the non-malleable non-interactive zero knowledge
proof technique under the assumption that a common refer-
ence string is available to all parities (the so-called common
reference string model). The second is constructed in the
interactive setting assuming that oracle queries are issued
sequentially. Due to relying on the unwieldy techniques like
generic zero knowledge proof, these constructions are mostly
feasibility proof of the concept.

Later, Libert and Yung [19] proposed two efficient NM-
CCA2* secure PKE schemes in the common reference string
model under the framework [24]. In particular, the first is
derived from the selective identity-based encryption scheme
[6] and a generic one-time signature scheme, which stems
from the well-known Canetti-Halevi-Katz (CHK) paradigm
[7]. Under the standard bilinear Diffie-Hellman assumption,
the scheme is proved NM-CCA2* secure without random
oracles. The second is derived from the lossy trapdoor func-
tion [20], which is more general but suffers from longer ciph-
texts compared with the first one. Almost simultaneously,
Barbosa and Farshim [3] put forth another completely non-
malleable PKE scheme by using both the techniques from
Waters identity-based encryption [25] and certificateless en-
cryption [2]. This scheme is also proved secure in the stan-
dard model but suffers from a long public parameter, the
length of which is proportional to the output-size of a cryp-
tographic hash.

More recently, Sepahi et al. [23] investigated how to achieve
complete non-malleability in the lattice-based setting and
gave an efficient provably secure PKE scheme under the

learning with errors assumption. As in [19], the scheme is
also derived via the CHK methodology but from an lattice-
based identity-based encryption [1].

1.2 Motivation
The main motivation for complete non-malleability is to

construct higher-level protocols on top of public key encryp-
tions. This notion is useful for guaranteeing the security
of such protocols or systems that allow users to issue keys
on-the-fly. As mentioned before, it is not easy to construct
efficient schemes under this stronger security notion with-
out random oracles. Although a few schemes have been pro-
posed recently, they are either inefficient or proved secure
in the random oracle model. As the basic building block of
high-level systems, the security and efficiency of the under-
ling PKE scheme plays an important role for the applicabil-
ity of the whole system. So the scheme with high efficiency
and security is more desirable.

1.3 Our Contribution
In this work, our goal is to construct more efficient and

simpler PKE schemes in the common reference string model.
More precisely, we put forward a new PKE scheme in the
pairing-based setting and show that it is proven NM-CCA2*
secure in the standard model under the decisional bilin-
ear Diffie-Hellman assumption. In our construction, the
well-formed public keys and ciphertexts could be publicly
recognized without drawing support from heavy primitives
like non-interactive zero knowledge proofs or one-time sig-
natures. It thus requires short public parameters and ci-
phertexts, leading to a relatively lower communication cost.
Moreover, the encryption only requires 3 exponentiations.
Hence, it enjoys a good performance and is more suitable
for higher-level applications, such as auctions where users
encrypt their bids popularly using mobile devices now. The
detailed analysis is shown in table 1.

In the comparison, we use |G| to denote the size of a
group-element representation in G, similarly for GT and
Zp. Let “exp1” denote an exponentiation operation over
group G (some of the exponentiations are actually multi-
exponentiation), “exp2” denote an exponentiation operation
over GT , and “pair” be a bilinear pairing operation. For sake
of simplicity, the non-expensive operations such as the com-
putation of collision-resistant hash H are discarded. In ad-
dition, we assume that the one-time signature scheme used
in [19] is denoted by S=(Gen,Sig,Ver), where Gen outputs
a signing and verification key (skS , vk) and Sig generates a
signature σ for message m.

2. PRELIMINARIES

Notation. Throughout the paper, we use κ to denote the
security parameter. For a finite set S, we write s ← S to
denote the operation of sampling s from S uniformly at ran-
dom. For a distribution M , m ← M denotes the operation
of sampling m according to the distribution. If A(·) is a
randomized algorithm, we use a← A(·) to denote the oper-
ation of running the algorithm and assigning the result to a,
and use A(x; r) to denote the unique output of A on input
x with random coins r. PPT is the abbreviation of proba-
bilistic polynomial-time and negl(κ) denotes some negligible
function in κ.
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Table 1: Comparison of Completely Non-Malleable CCA Secure Schemes
Scheme CRS public key† ciphertext Encryption Decryption
LY[19] 3|G|+S |G| +|GT | 2|G|+|GT |+vk+σ 2exp1+exp2+Sig 3pair+2exp1+Ver
BF[3] (n+3)|G|+H 2|G|+|GT | 2|G|+|GT | 2pair+2exp1+exp2 3pair+4exp1

Ours 4|G|+H |G|+|GT | 2|G|+|GT |+|Zp| 2exp1+exp2 3pair+2exp1

†: like the other schemes, the pairing e(pk, u) in our construction can be pre-computed; n: the output-size of H.

2.1 Bilinear Pairing and Assumptions
Let (G,GT ) be a couple of cyclic multiplicative groups of

prime order p, and e : G × G → GT be a map from G to
GT . We call the map e a bilinear pairing if it satisfies the
following properties: (1) Bilinearity: e(ga, hb) = e(g, h)ab,
for ∀g, h ∈ G and a, b ∈ Z∗p, (2) Non-degeneracy: there exists
g ∈ G such that e(g, g) 6= 1GT , and (3) Computability: there
exists an efficient algorithm to compute e(g, h) for ∀g, h ∈ G.

Definition 1. Let (G,GT ) be cyclic groups of prime order
p, which are endowed with a bilinear pairing e : G × G →
GT . The decisional bilinear Diffie-Hellman (DBDH) prob-
lem is to distinguish between the distributions {(g, ga, gb,
gc, e(g, g)abc)} and {(g, ga, gb, gc, e(g, g)z)}, where g is a gen-
erator of G and a, b, c, z are selected uniformly at random
from Zp. For any PPT distinguisher D given a random tu-
ple (g, ga, gb, gc, T ), it outputs a bit β. If β = 1, it guesses
T = e(g, g)abc, otherwise T = e(g, g)z. Formally, its advan-
tage is defined as:

AdvDBDHD,G,GT
(κ) = |Pr[D(g, ga, gb, gc, e(g, g)abc) = 1]−

Pr[D(g, ga, gb, gc, e(g, g)z) = 1]|.

Definition 2. We say that the DBDH assumption holds if
for any PPT distinguisher D, its advantage AdvDBDHD,G,GT

(κ) is
negligible in κ.

Definition 3. A hash function H : X → Y is said to be
collision-resistant if for any PPT algorithm B, its advantage
AdvCRB,H(κ) defined as Pr[x′ 6= x ∧ H(x′) = H(x) : x, x′ ←
B(H) and x, x′ ∈ X ], is negligible in κ.

2.2 Public Key Encryption
In the common reference string model, a PKE scheme

consists of four polynomial time algorithms (CRSGen, Key-
Gen, Enc, Dec): given a security parameter κ, CRSGen(1κ)
outputs a common reference string CRS; given CRS, Key-
Gen(CRS) generates a public and secret key pair (pk, sk);
given a public key pk and a message m, Enc(pk, m) out-
puts a ciphertext c; given a secret key sk and a ciphertext
c, Dec(sk, c) returns a plaintext or a symbol ⊥ indicat-
ing that the ciphertext is invalid. For the standard cor-
rectness, it is required m = Dec(sk, Enc(pk,m)) for any
message m, public parameters CRS ← CRSGen(1κ) and
(pk, sk)← KeyGen(1κ).

Note that the common reference string is generated by a
trusted party and shared by all parties in the system, but
not controlled by the adversary. In practice, it can be hard-
wired into a device in the implementation.

In addition, all the other algorithms also take (partial)
CRS as input, we don’t present it explicitly for simplicity.

2.3 Completely Non-Malleable Security
In this work, we follow the game-based notion defined by

[24]. First, let us recall an important ingredient termed com-

plete relation. A complete relation R is an efficient (proba-
bilistic) algorithm, which takes as input a public key pk, a
message m, another public key pk∗, a vector of ciphertext
~c∗ encrypted under pk∗ and the vector of plaintext ~m∗ as-
sociated with ~c∗, and outputs a boolean value. Note that in
the common reference string model, the relation also takes
the reference string as input.

Definition 4. As defined in [24, 19], let PKE=(Gen, Enc,
Dec) be a public key encryption scheme. For any security
parameter κ ∈ N and adversary A = (A1,A2), we define

AdvNM-CCA2∗
A,PKE (κ) = |Pr[ExptNM-CCA2∗-0

A,PKE (κ) = 1]−
Pr[ExptNM-CCA2∗-1

A,PKE (κ) = 1]|.

where the experiment ExptNM-CCA2∗-δ
A,PKE (κ) is defined as:

ExptNM-CCA2∗-δ
A,PKE (κ):

CRS← CRSGen(1κ), (pk, sk)← KeyGen(CRS)

(M, st)← AO1
1 (CRS, pk)

m0,m1 ←M, C = Enc(pk,mδ)

(R, pk∗, ~C∗)← AO2
2 (st,M, pk, C)

return 1 iff ∃ ~m∗ such that
(~C∗ = Enc(pk∗, ~m∗))∧
(C /∈ ~C∗ ∨ pk 6= pk∗)∧
(~m∗ 6= ⊥)∧
(R(m0, ~m

∗, pk, pk∗, ~C∗,CRS) = 1)

In the experiment, O1(·) = Dsk(·) and O2(·) = D(C)
sk (·),

meaning the adversary has access to the decryption oracle
for any ciphertext but C, even after the challenge phase.

As specified in the previous work [19, 24], the message
distribution M is deemed valid if |m| = |m′| for any m,m′

with non-zero probability in the message space M . More-
over, the condition ~m∗ 6= ⊥ means that there is at least one
valid ciphertext in ~C∗, i.e., at least one of the messages in
~m∗ is not ⊥.

Definition 5. The scheme PKE is called NM -CCA2∗ se-
cure if for any PPT adversary, its advantageAdvNM-CCA2∗

A,PKE (κ)
is negligible in κ.

3. OUR PROPOSED SCHEME
In this section, inspired by the technique in [18], we present

a new PKE scheme in the common reference string model.
As argued in previous works, this model is crucial to achieve
NM-CCA2* security without random oracles. In fact, we
have to find a way to successfully conceal an escrow key in
the common reference string, so that it could be used, in the
security proof, to not only simulate the decryption oracle but
also open the ciphertexts encrypted under the adversarially
generated public key.
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More concretely, our construction PKE is composed of four
efficient algorithms (CRSGen, KeyGen, Encrypt, Decrypt):

CRSGen(1κ): taking a security parameter κ as input, this
algorithm generates cyclic groups (G,GT ) of prime order p,
which are endowed with a bilinear pairing e : G×G→ GT . It
also randomly chooses g, u, v, w ∈ G and a collision-resistant
hash function H : G×GT×G→ Zp. Finally, it sets the com-
mon reference string as CRS = (κ,G,GT , e, g, u, v, w,H).

KeyGen(CRS): given the common reference string CRS,
the algorithm randomly picks α ∈ Zp and sets the public
key pk = gα and the secret key sk = α.

Encrypt(pk, m): taking as input pk and a message m ∈
GT , the algorithm randomly chooses r, s ∈ Zp and computes
C0, C1 and C2 as:

C0 = e(pk, u)r ·m, C1 = gr, C2 = (utvsw)r,

where t = H(pk, C0, C1). Eventually, it returns C = (C0, C1,
C2, s) as the ciphertext.

Decrypt(pk, sk, C): given pk, sk and a ciphertext C =
(C0, C1, C2, s), this algorithm first computes the value t =
H(pk, C0, C1), and then it checks if

e(C1, u
tvsw) = e(g, C2).

If not, it returns ⊥; otherwise, computes and outputs

m = C0/e(C1, u
α).

Remark 1. As in the first construction of [19], for any
group element in G (the public key space), there exists a
corresponding private key in Zp, so all elements of G are ad-
missible public keys2 in our construction. Moreover, the va-
lidity of ciphertexts could be verified publicly, without rely-
ing on the non-interactive zero knowledge proofs or one-time
signatures compared with the previous work. Obviously, our
construction would enjoy a better efficiency.

4. SECURITY ANALYSIS
The correctness of the scheme could be easily verified. In

the following, we give the security analysis of our construc-
tion based on the standard hardness assumptions.

Theorem 1. The proposed scheme is NM-CCA2∗ secure
under the DBDH assumption and the collision-resistance of
hash function H. Particularly, for any security parameter κ
and efficient adversary A, it holds that

AdvNM-CCA2∗
A,PKE (κ) ≤ 4AdvCRB,H(κ) + 2AdvDBDHD,G,GT

(κ)
+ 2(qd + qc)/p+ 2ε,

where qd denotes the number of decryption queries made by
A, and qc the number of elements of ~C∗ finally output by A.

Proof. For the limit of space, we only give a rough proof
here, which is conducted via a sequence of games. Through-
out the proof, we use Gamei(δ) to denote the i-th game and
Si(δ) to denote the event that the challenger finally succeeds.

Game0(δ): This is essentially the real game. In more
details, the challenger generates and returns the common
reference string CRS and the public key pk, and answers
the decryption queries using the secret key sk. During the

2Similar to our scheme and [19], the admissible public keys
in [3] also need not to be guaranteed by non-interactive zero
knowledge proofs like [24], but they have to satisfy some
additional pairing equations.

challenge phase, the adversary makes a challenge query for
a plaintext distribution M of his choice. For this query, the
challenger chooses m0,m1 ← M , randomly picks r, s ← Zp
and computes C0, C1 and C2 as follows:

C0 = e(pk, u)r ·mδ, C1 = gr, C2 = (utvsw)r,

where t = H(pk, C0, C1). Then it returns C = (C0, C1, C2, s)
as the challenge ciphertext. After this, the adversary keeps
on querying the decryption of any ciphertext except for C.
Finally, the adversary A outputs a possibly new public key
pk∗, a vector of ciphertext ~C∗ (encrypted under pk∗) and
the description of a relation R. At this point, the challenger
calls an all powerful oracle that could compute α∗ ∈ Zp
satisfying pk∗ = gα

∗
, and then uses α∗ to open the cipher-

texts ~C∗. We denote the corresponding plaintext vector by
~m∗ = Decrypt(pk∗, sk∗, ~C∗). Then the challenger uses ~m∗

and ~C∗ to evaluate the relation R(m0, ~m∗, pk, pk
∗, ~C∗,CRS)

and checks whether (C /∈ ~C∗∨pk 6= pk∗) and ~m∗ 6= ⊥ or not.
If all these conditions are satisfied, the challenger outputs 1,
otherwise 0. By definition, we have AdvNM-CCA2∗

A,PKE (κ) =
|Pr[S0(0)]− Pr[S0(1)]| .

Game1(δ): This game is the same as Game0(δ), except
that the common reference string is generated in the follow-
ing way: the challenger chooses random elements b, xv, xw,
yv, yw from Zp at the outset of the game, and then sets
u = gb, v = gbxv+yv , w = gbxw+yw rather than randomly
choosing u, v, w from G. Obviously, the common reference
string generated in this way has the same distribution as the
real game. Hence, we have Pr[S1(δ)] = Pr[S0(δ)].

Game2(δ): This game differs from the previous only in
the generation of the challenge ciphertext. Concretely, the
ciphertext C = (C0, C1, C2, s) is generated as follows:

1. Choose m0,m1 ←M and randomly pick r ← Zp.

2. Compute C0 = e(pk, u)r ·mδ and C1 = gr, and evalu-
ate t = H(pk, C0, C1).

3. Set s = −(t+ xw)/xv and C2 = Csyv+yw1 .

From the construction, we know that C2 = Csyv+yw1 =

gbr(t+sxv+xw) · gr(syv+yw) = (utvsw)r and the values xv and
xw are completely hidden by yv and yw respectively. Thus,
the ciphertext is well-formed and properly-distributed, which
implies that Pr[S2(δ)] = Pr[S1(δ)].

Game3(δ): This game is the same as Game2(δ) except for
the treatment of the decryption queries. For such a query
C′ = (C′0, C

′
1, C

′
2, s
′), the challenger answers it as follows.

If C′ is queried before the challenge phase, the challenger
computes t′ = H(pk, C′0, C

′
1) and verifies its validity. If in-

valid, outputs ⊥. Otherwise, implying C′2 = (ut
′
vs
′
w)r

′
for

some r′ ∈ Zp s.t gr
′

= C′1, it further checks if t′+s′xv+xw 6=
0. If so, it computes ur

′
= (C′2/C

′
1
s′yv+yw )1/(t

′+s′xv+xw)

and decrypts C′ by evaluating m′ = C′0/e(pk, u
r′). Other-

wise, it aborts and outputs a random bit.
If C′ appears after the challenge phase, the challenger

decrypts it via the following steps, recalling that C′ 6= C in
this case:

1. Compute t′ = H(pk, C′0, C
′
1) and check if (pk, C′0, C

′
1) 6=

(pk, C0, C1) but t′ = t. If true, the challenger aborts
and outputs a random bit. Note that in this case we
could find a collision of H by employing A.
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2. In the case (pk, C′0, C
′
1) 6= (pk, C0, C1) and t′ 6= t, we

have t′ + s′xv + xw 6= 0 if s′ = s. Provided that C′ is
valid, then it could be decrypted as before. If s′ 6= s,
the challenger checks if t′ + s′xv + xw 6= 0. If so, the
ciphertext is decrypted as above. Otherwise, it aborts
and outputs a random bit.

3. For the last case (pk, C′0, C
′
1) = (pk, C0, C1), the chal-

lenger directly returns ⊥ since the ciphertext C′ 6= C
is invalid except with a negligible probability ε.

It is easy to observe that the decryption oracle is perfectly
simulated in the above game unless the challenger aborts or
the adversary generates a valid C′ such that (C′0, C

′
1) =

(C0, C1). From the above, we know that C′ is valid with
only a negligible probability ε. Moreover, the challenger
aborts only when the collision of H happens or the equation
t′+s′xv+xw = 0 holds. As mentioned before, the probability
for the former case is bounded by AdvCRB,H(κ) due to the
collision-resistance of H. For the latter case, we analyze it
as below.

At the beginning of this game, both xv and xw are blinded
by yv and yw respectively, and so they are initially hid-
den from the adversary. For each decryption query C′ =
(C′0, C

′
1, C

′
2, s
′), the challenger returns ⊥ if C′ is invalid and

otherwise it outputs the corresponding plaintext. Actually,
the adversary only obtains from the later case the linear
combinations of bxv + yv and bxw + yw, which was already
known from the CRS. Hence, the answers to these queries
leak no more information about xv and xw. After observ-
ing the challenge ciphertext C, the adversary gets the fact
that t + sxv + xw = 0, but there still exist exactly p possi-
ble and equally likely pairs (xv, xw) satisfying this equation.
Hence the probability that t′ + s′xv + xw = 0 is at most
1/p. Assuming that the adversary makes at most qd decryp-
tion queries, the probability that t′ + s′xv + xw = 0 holds
for at least one query is at most qd/p. Thus, we get that
|Pr[S3(δ)]− Pr[S2(δ)]| ≤ AdvCRB,H(κ) + qd/p+ ε.

Game4(δ): The only difference of this game from the

previous is the processing of the vector of ciphertexts ~C∗

output by the adversary in the end. Instead of decrypting
the ciphertext C∗ = (C∗0 , C

∗
1 , C

∗
2 , s
∗) ∈ ~C∗ with the help of

all powerful oracle, we handle it by employing the trapdoor
information xv, xw, yv, yw concealed in CRS. More precisely,
for each C∗ w.r.t the public key pk∗, it is treated as follows:

1. If pk∗ = pk, we have C∗ 6= C. In this case, it could be
handled like the decryption queries before.

2. Otherwise, compute t∗ = H(pk∗, C∗0 , C
∗
1 ) and check if

(pk∗, C∗0 , C
∗
1 ) 6= (pk, C0, C1) but t∗ = t. If true, the

challenger aborts and outputs a random bit. Similarly,
if this were happen, we would find a collision of H.

3. For the case (pk∗, C∗0 , C
∗
1 ) 6= (pk, C0, C1)3 and t∗ 6= t,

we have t∗ + s∗xv + xw 6= 0 if s∗ = s. Further, when
C∗ is a valid ciphertext, implying C∗2 = (ut

∗
vs
∗
w)r

∗

for some r∗ ∈ Zp s.t gr
∗

= C∗1 , we can get ur
∗

=

(C∗2/C
∗
1
s∗yv+yw )1/(t

∗+s∗xv+xw) and recover the plain-

text by computing m∗ = C∗0/e(pk
∗, ur

∗
). If s∗ 6= s,

check whether t∗ + s∗xv + xw 6= 0 or not. If so, the

3Similar to the last case in Game3(δ), the challenger will re-
turn ⊥ for the ciphertext C∗ such that (C∗0 , C

∗
1 ) = (C0, C1).

The detailed analysis will be given in the full version.

ciphertext could be decrypted similarly. Otherwise, it
aborts and outputs a random bit.

It is easy to observe from the above simulation that all ci-
phertexts including the decryption queries and the elements
of the final output ~C∗ could be properly processed in poly-
nomial time. Unless the challenger aborts, the treatment of
C∗ is perfectly simulated, just as it were decrypted using the
associated secret key sk∗. Similar to the analysis before, we
get |Pr[S4(δ)]− Pr[S3(δ)]| ≤ AdvCRB,H(κ) + qc/p, where qc is

the number of ciphertexts in ~C∗ output by A in the end.
Game5(δ): This game is identical to the above except

that both the CRS and the ciphertext are computed using
the DBDH tuple (g, ga, gb, gc, e(g, g)abc), where a, b, c ←
Zp. Specifically, the challenger chooses xv, xw, yv, yw ∈ Zp
uniformly at random and sets pk = ga, u = gb, v = gbxv+yv

and w = gbxw+yw .
For the challenge ciphertext C = (C0, C1, C2, s), it is gen-

erated as:

1. Choose m0,m1 ←M , set C0 = e(g, g)abc ·mδ, C1 = gc

and evaluate t = H(pk, C0, C1).

2. Set s = −(t+xw)/xv and compute C2 = (gc)(syv+yw).

This game is essentially identical to the previous, so we have
Pr[S5(δ)] = Pr[S4(δ)].

Game6(δ): The final game is identical to the previous ex-
cept that the challenge message mδ is hidden by a uniformly
random element e(g, g)z ∈ GT , where z ← Zp.

Under the DBDH assumption, it is easy to show that
Game6(δ) is computationally indistinguishable from Game5(δ),
so we have |Pr[S6(δ)]− Pr[S5(δ)]| ≤ AdvDBDHD,G,GT

(κ).

In combination of all the probability (in)equations, we get

|Pr[S6(δ)]− Pr[S0(δ)]|
≤ 2AdvCRB,H(κ) +AdvDBDHD,G,GT

(κ) + (qd + qc)/p+ ε.

Thus, for any PPT adversary A, its advantage against our
scheme is

AdvNM-CCA2∗
A,PKE (κ)

= |Pr[S0(0)]− Pr[S0(1)]|
≤ |Pr[S0(0)]− Pr[S6(0)]|+ |Pr[S6(0)]− Pr[S6(1)]|

+|Pr[S6(1)]− Pr[S0(1)]|
≤ 4AdvCRB,H(κ) + 2AdvDBDHD,G,GT

(κ) + 2(qd + qc)/p+ 2ε,

where the last inequation follows from Pr[S6(0)] = Pr[S6(1)].

5. EFFICIENCY ANALYSIS
In this section, we give a brief efficiency analysis of our

scheme and compare it with the efficient constructions pro-
posed by Libert et al. [19] and Barbosa et al. [3] respectively.
In this comparison, the modified version of RSA-OAEP [13]
is not considered as its security is proved in the random
oracle model. We also do not take into account the con-
structions given in [24] and [23], where the former is based
on the inefficient non-interactive zero knowledge proof or
the interaction techniques and the latter is constructed in
the lattice-based setting (similar to [19], also with one-time
signature as the basic building block). The detailed com-
parison is given in Table 1.
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6. CONCLUSION
In this work, we put forward a new efficient public key

encryption scheme, and show that it is provably completely
non-malleable secure against adaptive chosen-ciphertext at-
tacks in the common reference string model without random
oracles. In contrast to the existing work, our scheme relies on
neither the inefficient non-interactive zero knowledge proofs
nor the one-time signature schemes, thus it achieves a bet-
ter performance and is more suitable to be applied in the
high-level systems where efficiency is extensively concerned,
especially for mobile applications.
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