
Efficient Privacy-Preserving Matrix Factorization
via Fully Homomorphic Encryption

[Extended Abstract]
∗

Sungwook Kim1

sw14.kim@samsung.com
Jinsu Kim1

jinsu86.kim@samsung.com
Dongyoung Koo2

dykoo@nslab.kaist.ac.kr
Yuna Kim1

yuna1.kim@samsung.com
Hyunsoo Yoon2

hyoon@kaist.ac.kr
Junbum Shin1

junbum.shin@samsung.com
1Software R&D Center, Samsung Electronics, Seoul, South Korea

2School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

ABSTRACT
Recommendation systems become popular in our daily life.
It is well known that the more the release of usersâĂŹ per-
sonal data, the better the quality of recommendation. How-
ever, such services raise serious privacy concerns for users.
In this paper, focusing on matrix factorization-based recom-
mendation systems, we propose the first privacy-preserving
matrix factorization using fully homomorphic encryption.
On inputs of encrypted users’ ratings, our protocol performs
matrix factorization over the encrypted data and returns en-
crypted outputs so that the recommendation system knows
nothing on rating values and resulting user/item profiles. It
provides a way to obfuscate the number and list of items
a user rated without harming the accuracy of recommen-
dation, and additionally protects recommender’s tuning pa-
rameters for business benefit and allows the recommender to
optimize the parameters for quality of service. To overcome
performance degradation caused by the use of fully homo-
morphic encryption, we introduce a novel data structure to
perform computations over encrypted vectors, which are es-
sential operations for matrix factorization, through secure
2-party computation in part. With the data structure, the
proposed protocol requires dozens of times less computation
cost over those of previous works. Our experiments on a
personal computer with 3.4 GHz 6-cores 64 GB RAM show
that the proposed protocol runs in 1.5 minutes per iteration.
It is more efficient than Nikolaenko et al.’s work proposed
in CCS 2013, in which it took about 170 minutes on two
servers with 1.9 GHz 16-cores 128 GB RAM.
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1. INTRODUCTION
A lot of recommendation services, including mobile ads

and movie recommendations, have been used in our daily
life, and a collaborative filtering (CF) is one of commonly
used algorithms for such services [2, 36]. The principle of CF
algorithm is to infer user’s preference from gathered other
users’ history and to give a recommendation for new items
similar users prefer.

To address privacy issues caused by CF [26, 31, 40], there
have been numerous works to propose privacy-preserving CF
algorithms [6, 21, 24, 28, 32]. It has been discovered that
anonymization of users’ data is not sufficient to protect the
privacy [6, 26, 37]. Differential privacy [21, 24, 32] has been
proposed for minimizing the chances of identifying any sin-
gle user’s data. However it takes trade-off between privacy
and accuracy of estimated prediction and does not offer con-
fidentiality of user’s rating values by definition.

Recently, a remarkable approach based on cryptographic
techniques, that is garbled circuits, was proposed by Niko-
laenko et al. [28]. They targeted a matrix factorization,
mainly used among several CF algorithms. It addresses how
to protect both user’s rating values and which items are
rated by the user. However it seriously requires improve-
ment of efficiency and utility for practical use. In addition,
it only supports a fixed number of iteration of matrix fac-
torization, which does not guarantee the quality of matrix
factorization.

In this paper, we focus our interest on how to efficiently
perform matrix factorization to compute user and item pro-
files from the ratings given by users in a privacy-preserving
way with full functionality. We develop a fully homomorphic
encryption-based matrix factorization protocol among users,
a recommendation system (RecSys), and crypto-service pro-
vider (CSP).
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We revisit the following three security requirements for se-
cure matrix factorization for practical use: (i) Privacy, (ii)
Accuracy, and (iii) Completeness. Privacy consists of con-
siderations for both users and the RecSys. On a user’s side,
it typically comprises a user’s rating values, which items a
user has rated, the number of items a user has rated, and
user/item profiles. On RecSys’s side, tuning parameters for
matrix factorization can be considered as sensitive informa-
tion, because the efficacy of the outputs depends on the pa-
rameters that the RecSys chooses [38]. Accuracy points out
that a privacy protection mechanism should not weaken the
accuracy of the recommendation as far as possible. Com-
pleteness means a mechanism needs to support a full learn-
ing process for recommendation, repeatedly training and val-
idation until it converges. During the process, the tuning
parameters can be optimized for faster convergence [8, 43].

To the best of our knowledge there is no known mechanism
for privacy-preserving matrix factorization which meets all
of previously mentioned requirements. In this work we ini-
tiate a study in the direction of efficient privacy-preserving
matrix factorization to take all requirements into account.

1.1 Contributions
Main contributions and features of the proposed protocol

are as follows:

New construction from fully homomorphic encryp-
tion. We first construct a privacy-preserving matrix factor-
ization via fully homomorphic encryption (FHE). Our con-
struction performs matrix factorization to compute user/item
profiles using approximation techniques (e.g. gradient de-
scent) as described in Section 3.3. Our protocol runs a se-
cure two-party computation protocol between the RecSys
and CSP, when it is too burdensome to perform the above
operations by FHE solely. The efficient use of FHE is quite
non-trivial; authors in [28] introduced garbled circuit instead
of FHE, pointing out that FHE schemes for simpler alge-
braic computations are not as efficient as garbled circuit
approaches.

The main obstacles for gradient descent computation us-
ing FHE are (i) the inner product operation of vectors ac-
cording to the index, which is induced from the user-item
matrix and (ii) the fixed point operation due to vectors over
real numbers. For inner product operation, a naive use
of Single Instruction Multiple Data (SIMD) operation sup-
ported by FHE [34] does not help for reducing computation
cost since it gets to perform one homomorphic multiplica-
tion for one inner product operation only, not multiple inner
products, after all (refer to Section 4.1 for details). For the
fixed point arithmetic, it requires the division-like operation
over encrypted data and as far as we know there is no ef-
ficient method to evaluate it homomorphically. Thus naive
approach using FHE does not work efficiently in the sense
that the computation and communication costs linearly de-
pend on the number of ratings.

We resolve the above limitations of FHE in gradient de-
scent by introducing a novel data structure. It enables to
enjoy the full use of slots supported by the SIMD operation
in FHE ciphertext while allowing one homomorphic oper-
ation for multiple operations over vectors during gradient
descent. As a result, both the running time and the com-
munication overhead of the proposed protocol are linear in
M/L, where M and L are the number of ratings and slots
which FHE supports, respectively. Since L is typically a

number in thousands in our implementation, the data struc-
ture reduces computation cost by dozens of times. For the
fixed point arithmetic on encrypted data, we use secure 2-
party computation between the RecSys and CSP. That is,
the CSP performs fixed point arithmetic over masked plain-
texts without learning any information about actual plain-
texts and then returns the encrypted results to the Rec-
Sys. We believe that our technique can be generally applied
to various privacy-preserving data analytics protocols using
gradient descent.

Additionally, we provide an optimization for the cipher-
text size of FHE itself. In most FHE constructions [10, 11,
16], the size of ciphertext grows quadratically in the size
of message space, and it causes large computational and
communication overhead. To obtain small ciphertexts for
the case of large message space, we represent the message
in several smaller spaces using Chinese remainder theorem.
This technique yields linear growth in the ciphertext size.

Privacy and security. Our protocol guarantees the se-
crecy of rating values from users and all intermediate compu-
tation results during joint computation between the RecSys
and CSP. The final results, user/item profiles, are also re-
turned under FHE encryption so that the RecSys and CSP
cannot learn both user and item profiles in the clear. On
RecSys’s side, the optimized parameters for quality recom-
mendation can be kept secret, because the RecSys itself can
set tuning parameters for matrix factorization without dis-
closure from the use of FHE.

Finally the extension of the proposed protocol delivers the
ability of launching various techniques to obfuscate the num-
ber of items and the list of items a user rated. Among the ob-
fuscation techniques, we describe how to apply an injection
of fake ratings considered in differential privacy approach [9,
32], and the description can be helpful for applying another
techniques easily.

Accuracy and completeness. As mentioned previously,
the use of differential privacy or the injection of fake ratings
suffer from distortion of results of data analysis. We ensure
the accuracy of the recommendation by introducing the en-
crypted indicator of rated items. The indicator sets 0 or 1
by users, depending on whether the item is rated or not.
Through the protocol, the indicator vector works correctly
without revealing the value at all to both the RecSys and
CSP. If the rating is real, it gets to involve to the computa-
tion for analysis. Otherwise its influence on the computation
is removed.

Typically, matrix factorization iteratively computes user/
item profiles using gradient descent. The iteration ends up
with convergence of the profiles. In our protocol, the Rec-
Sys can check the convergence by verifying a stopping cri-
teria without knowing the raw values of users’ ratings or
user/item profiles. Thus it provides the ability to complete
a learning process by optimizing the gradient descent pa-
rameters.

Efficiency. We implement our protocol and evaluate the
performance. We use the MovieLens dataset for our exper-
iment. Our matrix factorization protocol without obfusca-
tion of rating information takes about 1.5 minutes with 580
MB communication between the RecSys and CSP per itera-
tion for 14K ratings dataset. This improves execution time
and communication overhead drastically over the work in
[28], which takes 2.9 hours with 128 GB. The extended pro-
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tocol takes 1.9 minutes with 623 MB for 10% fake ratings,
and 2.5 minutes with 910 MB for 50%.

We further estimate performance with taking into account
parallelism and compare to recent progress on parallelization
of Nikolaenko et. al’s protocol using GraphSC [27] and opti-
mization technique of circuits for the garbled circuit protocol
called TinyGarble [35]. The estimate shows that parallelized
version of our construction is expected to be about 33 times
faster than that of Nikolaenko et al.’s protocol together with
TinyGarble.

2. RELATED WORK
Our work is to present an efficient and practical matrix

factorization for collaborative filtering based-recommendation
while preserving user privacy about item ratings and the
analyzed preference throughout the two-party protocol be-
tween the RecSys and CSP.

Privacy with cryptography. A lot of works have been
done to solve the privacy issues for various machine learn-
ing algorithms, and some of their basic operations can be
protected using cryptography efficiently: classification [4],
regression [3, 29].

The first work for privacy-preserving matrix factoriza-
tion is proposed by Nikolaenko et. al. [28], which used a
mixed protocol of additive homomorphic encryption [7, 30]
and garbled circuits [42] for secure two-party computation,
and applied oblivious sorting network for supporting spar-
sity of rating data. They tried to improve efficiency of the
implementation using multi-threaded FastGC [22], and par-
allelization of the sorting network. However, the excessive
computation and communication cause impracticality, for
example, it takes 2.9 hours per iteration for 14K ratings.
The performance comparisons between [28] and ours will be
given in Section 8.

Nayak et al. [27] proposed more practical approach, named
GraphSC, by applying both a GraphLab [9] for a parallelism
and oblivious approach [18] for the security. They have
shown that the previous work proposed by Nikolaenko et
al. [28] can be extended using GraphSC and showed that it
can make overall parts of secure matrix factorization parallel
on large dataset of 1M ratings, which is a large improvement
from the original one [28]. Such a parallelism for our work
is analyzed in Section 8.3.

Besides matrix factorization, crypto-based privacy protec-
tion techniques have been applied to other collaborative fil-
tering methods [13, 39]. Erkin et al. [13] applied homomor-
phic encryption to user-based collaborative filtering using
cosine similarity between users’ ratings. For reducing com-
putational and communication overhead, multiple numerical
values are packed in a single ciphertext. It differs from our
data packing in that their packing can be applied only to vec-
tor scalar multiplications, not batch inner products needed
for matrix factorization.

Veugen et al. [39] proposed a generic framework for secure
multi-party computations based on secret sharing, especially
focusing on the recommendation systems. It provides secu-
rity in the malicious model, where one of servers may not
follow the protocol specifications and may control a couple
of users to deduce more personal data. It also focuses on
efficient online recommendation when a user asks for rec-
ommendation with updated ratings. Differently from their
work, we focus on efficient computation of matrices for user

Users RecSys CSP

…

Encrypted User & Item Profiles

Encrypted 

Ratings

Encrypted 

Recommendation

Secure

Matrix Factorization

Figure 1: Three Parties in Our Protocol Design.

and item profiles without leakage of private data before rec-
ommendation.

Privacy with non-cryptography. Differential privacy is
mainly considered for non crypto-based privacy protection
[12, 25], including the recommendation privacy [21, 24, 32,

41]. It prevents attacker from the inference of usersâĂŹ pri-

vacy by adding fake usersâĂŹ ratings as long as it does not
affect significantly to the distribution of the systemâĂŹs out-
put. However, differential privacy approach does not guar-
antee confidentiality of users’ data to the RecSys, and reduce
accuracy of recommendation as much as fake ratings added.
In our work, users can add fake ratings along with indicator
vectors, 1 for real rating and 0 for fake to obfuscate which
items are rated. This does not affect the accuracy of recom-
mendation, since the fake ratings are removed when matrix
factorization runs.

3. PRELIMINARIES

3.1 Setting
The proposed protocol and system consists of three ends:

Users, the Recommendation System (RecSys), and Crypt-
Service Provider (CSP), as shown in Figure 1. User’s rating
information is uploaded to the RecSys, which provides a rec-
ommendation service based on users’ uploaded information.
In our model, we will use a matrix factorization algorithm to
infer the value of un-rated item: the details will be explained
in Section 3.3.

Users’ rating information will be encrypted using a pub-
lic key homomorphic encryption, so it is very important to
protect such a key. Therefore, we will use the CSP, which is
secure server and the key will be stored and used only inside
the CSP to minimize the risk of key exposure.

Regarding the security, we assume the standard adver-
sary model used in [28]: Following the definition of honest-
but-curious adversary model [17], either the RecSys or CSP
can be compromised by an adversary, but they will follow
the prescribed protocol correctly. In addition, the adversary
might look at the data exchanged with the other parties, and
try to uncover users’ data including the ratings and to infer
recommendation and matrix factorization results including
both user and item profiles. However, the RecSys does not
misbehave with users’ ratings such as altering, dropping,
or copying them to control the output. The CSP can also
always keep the secrets. We also assume the RecSys and
CSP do not collude, and such an assumption makes sense in
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business environment because they value the reputation. In
addition, the CSP usually could be a governmental organi-
zation guarding the privacy protection of users [39].

3.2 Tools and Notations
In the protocol we use somewhat (possibly fully) homo-

morphic encryption and additively homomorphic encryption
schemes, denoted by HE and AHE, respectively. With public
keys hpk for HE, we call HE(hpk,msg) a HE-ciphertext or a
HE-encryption of a plaintext msg. Given two HE-ciphertexts
HE(hpk,msg1) and HE(hpk,msg2), we call C1+(×)C2 homo-
morphic addition (multiplication) which is a HE-encryption
of msg1 + (×)msg2. When it is clear in the context, we just
say addition or multiplication and omit the public key part
in encryption algorithm, i.e., HE(msg). Similar notations
are used for AHE with a public key apk. .

In [34], Smart et al. suggested homomorphic encryption
supporting Single Instruction Multiple Data (SIMD) oper-
ation, which enables to pack many plaintexts into each ci-
phertext. We say HE has #slot L if L plaintexts can be
packed.

A vector is written in bold, i.e., a. Given two vectors
a = (a1, . . . , ak) and b = (b1, . . . , bk), we define

a×c b = (a1b1, . . . , akbk)

and sum(a) =
∑k
i=1 ai. We then have 〈a,b〉 = sum(a×c b).

For a vector a we denote HE(a) by a HE-encryption of
a, where each entry of a is encrypted to each slot of a ci-
phertext. Then HE(a) consists of k/#slot HE-ciphertexts.
Note that HE(a) + HE(b) is a HE-encryption of a + b and
HE(a)× HE(b) is a HE-encryption of a×c b.

A fixed point representation over a real number f is de-
noted by f . For a vector a = (a1, . . . , ak), we denote a by
component-wise fixed point representation. In this work, we
use the binary fixed point representation and denote α by
the bit length of scaling factor.

3.3 Matrix Factorization
We briefly introduce a matrix factorization method to be

used in our system, which is also considered in [28]. Sup-
pose n users rate a subset of m possible items. We use the
following notations:

• [n] = {1, . . . , n}, [m] = {1, . . . ,m}: the sets of users
and items, respectively,

• rij ∈ R: the user i’s rating for the item j,

• M ⊂ [n]× [m]: a set of the user/item pairs for which
a rating has been generated,

• M : the total number of ratings, i.e., M = |M|,

• ui,vj ∈ Rd: profiles for the user i and item j, respec-
tively, where d is the dimension of profiles

• U ∈ Rn×d: the user-profile matrix (user profiles) whose
i-th row is ui,

• V ∈ Rm×d: the item-profile matrix (item profiles)
whose j-th row is vj

Given the ratings {rij : (i, j) ∈ M}, matrix factorization
computes the user profiles U and item profiles V . The re-
sulting profiles are used to predict the user i’s rating for
item j, that is, 〈ui,vj〉, for (i, j) 6∈ M. This can be done

by fitting 〈ui,vj〉 on the existing ratings rij for (i, j) ∈ M,
that is, solving the regularized least squares minimization:

min
U,V

1

M

∑
(i,j)∈M

(rij −〈ui,vj〉)2 +λ
∑
i∈[n]

‖ui‖22 +µ
∑
j∈[m]

‖vj‖22

for some λ, µ > 0.
Among methods to solve the above, we use gradient de-

scent [23], a popular method in practice. It iteratively adopts
the profiles U and V through the following adaptation rule:

ui(t) = ui(t− 1)− γ∇uiF (U(t− 1), V (t− 1)),

vj(t) = vj(t− 1)− γ∇vjF (U(t− 1), V (t− 1)),
(1)

where γ > 0 a small gain factor and

∇uiF (U, V ) = ∇ui

=
∑

j:(i,j)∈M

vj(〈ui,vj〉 − rij) + λui,

∇vjF (U, V ) = ∇vj

=
∑

i:(i,j)∈M

ui(〈ui,vj〉 − rij) + µvj ,

(2)

where U(0) and V (0) consist of uniformly random norm 1
rows.

The number of iterations depends on stopping criteria.
One of typical criteria is to set a (small) threshold for gra-
dient norms, which is applied to the proposed protocol in
Section 4. The protocol stops when the number of iteration
exceeds some pre-defined number or when both∑
i:(i,j)∈M

‖ ∇uiF (U, V ) ‖22 and
∑

j:(i,j)∈M

‖ ∇vjF (U, V ) ‖22

become smaller than some threshold values, respectively.
Note that the values of d, γ, λ, µ, and stopping criteria can

be a know-how for a recommendation service provider [38].

4. DESIGN COMPONENTS

4.1 Naive Approach and Challenges
Fully homomorphic encryption. We can consider a
naive way to perform gradient descent using fully homo-
morphic encryption. The simplest way is to encrypt each
component in vectors ui,vj independently. In this case, we
need to deal dM HE-ciphertexts to compute gradient de-
scent, which is computational burden.

Instead, the SIMD operation proposed in [34] can be used
to improve the inner product algorithm, that is, if we pack
elements in two vectors of length d into two ciphertexts, re-
spectively, the computation overhead is reduced by a factor
of (2 log d/d) 1. In our case, on the other hand, encrypting
one vector in one ciphertext is quiet inefficient, since the di-
mension of ui,vj is quite small compared to the number of
slots underlying HE and the number of ciphertexts grows in
M .

To make use of full message slots, one may consider pack-
ing several user and item profile vectors into a single ci-
phertext, respectively. Let cu = HE(u), cv = HE(v) for
u = (u1|| · · · ||un) and v = (v1|| · · · ||vm) where || means
vector concatenation. To compute 〈ui,vj〉 with i < j, we

1The inner product on packed two vectors of length d can
be carried out through log d shift in plaintext slots and log d
multiplications instead of d.

620



operate d · (j − i) left-shift of plaintext slots on cv, say c′v,
and then evaluate homomorphically multiplication of cv and
c′v. Even though we have cu× c′v whose slots from d · (i− 1)
to d · i are ui ×c vj , the rest of slots is hard to be exploited
in computing gradient descent. This means that we need to
evaluate one homomorphic multiplication for only one inner
product, which does not enjoy the benefit of SIMD at all.

Another concern in adapting HE is to perform fixed point
arithmetic in encrypted form. Since there is no efficient ho-
momorphic encryption supports rational number arithmetic,
we need to transform data into integer form. In this case,
it essentially needs additional post-process like integer divi-
sion to maintain the same scaling factor. Under HE, this
post-process seems heavy computations as in [14].

Stopping criteria. In general, the matrix factorization for
recommendation runs several iterations while tuning some
parameters such as γ, λ and µ until one gets meaningful
user/item profiles. Furthermore, these tuning parameters
might be know-how of the recommendation service provider.
Therefore, it is important to construct recommendation sys-
tem that can adjust tuning parameters during matrix fac-
torization without leakage of the private parameters.

4.2 Data Structure for Gradient Descent
To overcome challenges in the previous section, we come

up with an elaborate data structure to exploit slots fully so
that the protocol requires only M/L HE-ciphertexts, instead
of M , for #slot L. The idea behind our approach is to set
a long vector whose segments are profile vectors preserving
index information induced from the user-item matrix and
perform joint computation with the CSP. If inner products
and fixed point operations are required, the RecSys calls the
CSP as encryption/decryption oracles and computes a part
of operations with the CSP.

We define a total order on a set M as follows: for (i1, j1)
and (i2, j2) ∈M,{

(i1, j1) > (i2, j2) if i1 > i2 or j1 > j2 when i1 = i2,
(i1, j1) = (i2, j2) if i1 = i2 and j1 = j2.

From now on we assume elements in M are sorted in as-
cending order. Then for a set M, we define 4 vectors as
follows:

• U =‖(i,j)∈M ui and V =‖(i,j)∈M vj , where ‖ means
vector concatenation. Note that, depending on its or-
der, every d-dimensional vector ui (vj) in U (V) cor-
responds to the unique pair (i, j) in M.

• Û =‖(i,j)∈M ûi, where ûi = ui if i of the correspond-
ing index (i, j) appears first and the d-dimensional zero

vector otherwise. We define V̂ similarly, according to
the index j from (i, j) ∈M.

Suppose MI = {i1, . . . , i`u} and MJ = {j1, . . . , j`v} are
the sets of distinct user index i’s and item index j’s of
(i, j) ∈M in ascending order, respectively. Consider a dM -
dimensional vector A = a1 ‖ · · · ‖ aM , where ak is a d-
dimensional vector. Then we can match ak to (i, j) ∈ M
according to order, which is a 1-1 correspondence. With this
correspondence, we define additional 4 operations on A as
follows:

• aggu, aggv: We define aggregations of the user and

item profiles in A according to M in aggu and aggv:

aggu(A,M) =
∑

j:(i1,j)∈M
aj ‖ · · · ‖

∑
j:(i`u ,j)∈M

aj ,

aggv(A,M) =
∑

i:(i,j1)∈M
ai ‖ · · · ‖

∑
i:(i,j`v )∈M

ai.

• recu, recv: We define reconstitutions of the user/item
profiles by

recu(aggu,M) =‖(i,j)∈M A′i,

recv(aggv,M) =‖(i,j)∈M A′′j

where

aggu(A,M) = A′1 ‖ · · · ‖ A′`u ,

aggv(A,M) = A′′1 ‖ · · · ‖ A′′`v .

When it is clear in the context we omit M of agg and rec.

4.3 Fixed Point Arithmetic on Encrypted Data
We use fixed point representation (FPR) of real number

instead of floating point representation at the cost of small
errors as in [28]. We use the integral version of FPR and
denote the FPR with fixed α-bit precision by a for a real
number a ∈ R. Here, we just say the FPR for integral
version of that. The operations on FPR are as follows:

• Addition/Subtraction: a± b = a± b

• Multiplication: a · b =
⌊
a · b/2α

⌋
where b·c is a round down function. In our construction,
we encrypt the FPR of user/item profiles and perform ho-
momorphic additions/subtractions and multiplications on
them. When encrypting this type of data, the main ob-
stacle is multiplication because of integer division by 2α and
rounding, which can be considered as the α-bit right shift.
In [15], the authors proposed homomorphic computation of
right shift on integers using bit-extraction. On the other
hand, α multiplicative depth of underlying FHE is consumed
and it needs α2 homomorphic multiplications, which results
in huge computational overhead.

We design the RecSys to work jointly with the CSP to
enhance the efficiency when performing multiplications on
FPR values. We need one encryption and one decryption
with one interaction in handling fixed point multiplication
as follows: (i) the RecSys sends masked encryption of mul-
tiplication result to the CSP to protect the privacy of data.
(ii) the CSP decrypts the masked ciphertext and computes
right shift on the plaintext. (iii) the CSP encrypts resulting
data and send it to the RecSys. (iv) the RecSys removes
the mask and obtain the result. If the right shift is applied
to masked integer, the overflow in the LSB of integer may
occur. However it does not affect to the quality of matrix fac-
torization significantly because of its small magnitude. The
detail analysis and experimental results will be presented in
Section 8.1.

5. OUR PROTOCOL
We present our privacy-preserving matrix factorization

protocol. Our protocol consists of the setup, rating-upload,
and matrix factorization phases. The recommendation phase
after finishing matrix factorization is described in the full
version of the paper.
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5.1 Setup
In the setup phase, the CSP generates its HE-public/secret

key pairs and AHE-public/secret key pairs. For any pu-
bic key encryption PE, the users also generate their PE-
public/secret key pairs.

The RecSys specifies the following public parameters: (i)
the dimension of profiles d, (ii) the number of items m, the
number of users n, (iii) the number of bits used to represent
the integer and fractional parts of a real number in ratings
as well as the fractional part of real numbers λ, µ, and γ in
gradient descent computation.

We denote by α and β the number of bits used to rep-
resent the fractional part of real numbers in ratings and γ,
respectively. We do not set such numbers for λ, µ assuming
that they are smaller than α (see Step 6 of Figure 4). Note
that λ, µ, and γ are privately selected by the RecSys and
kept secret from users and the CSP.

5.2 Rating-Upload

Figure 2: The Rating-Upload Phase

In the rating-upload phase (Figure 2), the users upload
their ratings so that the RecSys performs matrix factoriza-
tion to obtain the user and item profiles. Since users’ ratings
are secret information, the RecSys are given encrypted rat-
ings via the CSP. During the phases no one learns rij except
the user i. In the below protocol, all public key encryption
schemes use only public/secret keys of the CSP. So we omit
key argument (the 1st argument) in encryption. The de-
tailed description is as follows:

1. For i ∈ [n] and j ∈ [m], each user i encrypts ratings
rij ’s with AHE under the public key of the CSP. The
users send (i, j,AHE(rij))’s to the RecSys.

2. Receiving

{(i, j,AHE(rij)) : (i, j) ∈M},

the RecSys generates random masks σij ’s. It then
computes and sends

{(i, j,AHE(rij + σij)) : (i, j) ∈M}

to the CSP.

3. The CSP decrypts AHE-ciphertexts to obtain

{(i, j, rij + σij) : (i, j) ∈M}.

It then sets the set of d-dimensional vectors

{(−rij − σij , 0, ..., 0) : (i, j) ∈M}.

Finally it computes and sends

HE(‖(i,j)∈M (−rij − σij , 0, ..., 0))

to the RecSys.

4. From the knowledge of σij
′s the RecSys can build the

set of d-dimensional vectors

{(σij , 0, ..., 0) : (i, j) ∈M}.

It then adds

HE(‖(i,j)∈M (σij , 0, ..., 0))

to a given

HE(‖(i,j)∈M (−rij − σij , 0, ..., 0)).

The result is a HE-encryption of

‖(i,j)∈M (−rij , 0, ..., 0).

Let r =‖(i,j)∈M (−rij , 0, ..., 0). At last the RecSys se-
lects uniformly random norm 1 vectors ui(0) and vj(0)

for i ∈ [n] and j ∈ [m] and sets U(0), Û(0), V(0), and

V̂(0).

5.3 Matrix Factorization

RecSys CSP

Step 1 2: HE(

repeat [until satisfying the stopping criterion]

)

Step 12: True/False 

<Step 10 12: Stopping Criterion Check>

<Step 1 9: Gradient Descent>

output:HE

output:HE

Figure 3: The Matrix Factorization Phase

Given M, let

U(t− 1) =‖(i,j)∈M ui(t− 1), V(t) =‖(i,j)∈M vj(t− 1)

from ui(t−1)’s and vj(t−1)’s in (1). Û(t−1) and V̂(t−1)
are induced vectors from U(t−1) and V(t−1), respectively
as defined in the previous section. For items which nobody
rates, item profiles are directly computed by the RecSys,
since no rating rij is involved in the gradient descent com-
putation (1) and (2). For items which are rated, we consider
the vector representation of ∇ui and ∇vj for i ∈ MI and
j ∈MJ in (2) as

∇U(t− 1) = ∇ui1
(t− 1) ‖ · · · ‖ ∇ui`u

(t− 1) (ik ∈MI),

∇V(t− 1) = ∇vj1 (t− 1) ‖ · · · ‖ ∇vj`v (t− 1) (jk ∈MJ).

Now we are in a position to present how to compute HE-
encryption of {U,V, Û, V̂,∇U,∇V} at t from HE-encryption
at t − 1 for a positive integer t. Note that the RecSys can
initialize each vector since it does not require rating infor-
mation at t = 0.

In the protocol, random masking vectors are required when
the RecSys sends HE-ciphertexts to the CSP. Given M and
the message space B of HE, we define the distributionD(M,B),
which works as follows:
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1. chooses M making vectors ev(i,j) = (ev
(i,j)
1 , ..., ev

(i,j)
d )

for (i, j) ∈ M, where ev
(i,j)
k ’s are random elements

from B.

2. outputs ev =‖(i,j)∈M ev(i,j).

The protocol consists of the secure 2-party computation
between the RecSys and CSP, as shown in Figure 3. To keep
intermediate values secret from the CSP, the RecSys mostly
sends the HE-encryption of masked values. Then the CSP
decrypts them. The CSP performs fixed point arithmetic
and gets back them to the RecSys in HE-encrypted form.
Given HE-ciphertexts the RecSys can remove masks since
it creates them. It is important to note that this mask-
removing approach causes small errors to the accuracy of
the resulting profiles. However it is easy to see that errors
are limited and negligible. For details refer to Section 7.

The detailed procedure for the matrix factorization phase
is described in Figure 4. For an insightful example see the
full version of the paper.

5.4 Enhancing Privacy of Rated Items
Besides users’ ratings on items, other information can be

used to infer users’ partial identities. In [40], it has been
shown that one can infer user’s gender from which items
the user rated. To address the issue, the use of differen-
tial privacy or injection of fake ratings has been suggested.
However these methods distort results of data analysis, i.e.,
U and V of matrix factorization.

The protocol presented in the previous section permits all
the above approaches, that is, in the rating-upload phase
users can blur their rating information. Note that noising
users’ ratings is unnecessary in the protocol since all rat-
ings are encrypted, hence, kept secret from the RecSys and
CSP. Thus we extend the previous protocol by taking the
injection of fake ratings in this section. To prevent the dis-
tortion of resulting profiles, the protocol removes the effects
of fake ratings in the matrix factorization phase from the use
of input indicators produced by the users in the encrypted
form2.

The protocol then is able to additionally hide the following
information from the above approach: (i) which items the
users rated exactly and (ii) the number of ratings given by
the users. Note that this approach increases the number of
ratings in encrypted form. However it increases the running
time of the protocol only linearly with the number of fake
items.

There are slight differences in both the rating-upload and
matrix factorization phases. We give the description of the
extended protocol focusing on the difference.

The rating-upload phase. In the rating-upload phase
the users generate their fake and real ratings attached with
indicators τij ∈ {0, 1}. 0 indicates the fake and 1 the real.
Users send the AHE-encryption of the ratings under CSP’s
public key. After the CSP decrypts them, it figures out the
HE-encryption of the masked rating vector as it does in the
original protocol. In addition, it reconstructs the masked
indicator vector τ according to M so that every ui in U(t)
corresponds to (1, . . . , 1) if it is real or (0, . . . , 0) otherwise
in the clear forms. The detailed procedures are as follows
(all encryptions are made under CSP’s public key):

2This approach has been mentioned in [28], however, was not
included in the design of the protocol for efficiency issue.

1. User i sends (i, j,AHE(rij),AHE(τij)) to the RecSys.

2. Adding errors σij and σ′ij to AHE-encryptions, the
RecSys sends {(i, j,AHE(rij + σij),AHE(τij + σ′ij))}
to the CSP.

3. The CSP sets two dM -dimensional vectors

‖(i,j)∈M (−rij − σij , 0, ..., 0),

‖(i,j)∈M (τij + σ′ij , · · · , τij + σ′ij),

where all vectors in concatenation are d-dimensional.
The CSP encrypts them with HE and sends the cipher-
texts to the RecSys.

4. The RecSys removes errors in the encrypted vectors as
it does in the original protocol. The rest of the phase
is identical.

The matrix factorization phase. Let τ be a HE-encryption
of the error-free indicator vectors obtained in the previous
phase, i.e, τ = HE(‖(i,j)∈M (τij , · · · , τij)). The only differ-
ence happens when computing ∇′U(t) and ∇′V(t), that is,
the multiplication of R vector to V and U vectors at Step
6 in Figure 4. That is, the RecSys computes

HE(τ ×c V(t− 1)×c R(t− 1) + αλÛ(t− 1)),

HE(τ ×c U(t− 1)×c R(t− 1) + αµV̂(t− 1)).

Note that multiplying HE(τ) requires the appropriate set-up
of multiplication depth for HE, but does not the enlarged
message space.

6. ANALYSIS OF THE PROTOCOL
In this section we give an analysis of our protocol in Sec-

tion 5.

6.1 Complexity
We analyze computation and communication complexi-

ties of the proposed protocol in Table 1. We only counted
the number of cryptographic operations performed by each
party. Given fixed d, the table shows that the proposed
protocol requires O(M/L) computation and communication
complexities.3

RU and MF are abbreviations for rating-upload, matrix
factorization, respectively. enc and dec denote encryption
and decryption algorithm, respectively. add, smul, and mul
point out addition, scalar multiplication, and multiplication
over encrypted data, respectively. |AHE| and |HE| mean
the sizes of AHE and HE-ciphertexts, respectively. We re-
mark that masks themselves are encryption, so we do not
count adding and removing masks by the RecSys as a cryp-
tographic operation.

In MF, workloads for both the RecSys and CSP are com-
parable. In fact we observe that HE.dec is more expensive
than any other homomorphic operations (see Section 8.3)
because it requires an evaluation of polynomials to recover
plaintext in each slot. However our evaluation in Section
8.2 shows that the workload for the CSP in our construc-
tion is quite small compared to that from garbled circuit
approaches.

3M includes the number of fake ratings in the case of the
extended protocol in Section 5.4.
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On inputs r, HE-encryption of {U(t− 1), Û(t− 1),V(t− 1), V̂(t− 1)}, the RecSys and CSP jointly and securely

compute HE-encryption of {U(t), Û(t),V(t), V̂(t)}. At the end of the below procedure, the RecSys confirms
the stopping criteria and decides to continue the next iteration.

1. The RecSys determines parameters λ, µ, and γ within the ranges defined in the setup phase. It computes

HE(U(t− 1))× HE(V(t− 1))− 2α · HE(r),

where a positive integer α is used to match fixed point representation of entries in r to those in U(t − 1) ×c V(t − 1) (See
Section 4.3 for details). Let R′(t− 1) = U(t− 1)×c V(t− 1)− 2αr.

2. The RecSys samples ε(t− 1)
$←− D(M,B) and stores it. The RecSys then computes

HE(U(t− 1))× HE(V(t− 1))− 2α · HE(r) + HE(ε(t− 1)),

and sends HE-ciphertexts to the CSP.

3. The CSP decrypts given HE-ciphertexts from the RecSys. The CSP then performs significant arithmetic over it, which yields

‖(i,j)∈M {ui(t− 1)×c vj(t− 1)− (rij , 0, . . . , 0) + ε(i,j)(t− 1)}.

4. The CSP computes Rij = sum(ui(t− 1)×c vj(t− 1)− (rij , 0, . . . , 0) + ε(i,j)(t− 1))’s for (i, j) ∈ M, and sets R′′(t −
1) =‖(i,j)∈M (Rij , . . . , Rij), where each vector in concatenation is d-dimensional. At last the CSP computes HE(R′′(t− 1)),
and sends them to the RecSys.

5. The RecSys computes ε′′(i,j)(t − 1) = sum(ε(i,j)(t− 1)), sets the concatenation of dimension d vectors ε′′(t − 1) =‖(i,j)∈M
(ε′′(i,j)(t− 1), . . . , ε′′(i,j)(t− 1)). It then computes HE(R′′(t− 1))− HE(ε′′(t− 1)), which yields a HE-encryption of

R(t− 1) =‖(i,j)∈M (〈ui(t− 1),vj(t− 1)〉 − rij , . . . , 〈ui(t− 1),vj(t− 1)〉 − rij),

where each vector in concatenation is d-dimensional.

6. The RecSys computes HE-encryptions of

∇′U(t) = V(t− 1)×c R(t− 1) + 2αλÛ(t− 1), ∇′V(t) = U(t− 1)×c R(t− 1) + 2αµV̂(t− 1).

It then computes HE-encryptions of

U′(t) = 2α+β · Û(t− 1)− γ2β · ∇′U(t), V′(t) = 2α+β · V̂(t− 1)− γ2β · ∇′V(t).

7. The RecSys samples δU(t), δV(t), θU(t), θV(t)
$←− D(M,B). It then computes and sends the CSP

{HE(U′(t) + δU(t)),HE(V′(t) + δV(t))}, {HE(∇′U(t) + θU(t)),HE(∇′V(t) + θV(t))}.

8. After decrypting HE-ciphertexts the CSP performs fixed point arithmetic on them to get

U′(t) + δU(t), V′(t) + δV(t), ∇′U(t) + θU(t), ∇′V(t) + θV(t).

It then computes U′′(t) = rec(aggu(U′(t) + δU(t)) and Û′′(t) in turn. Similarly it computes V′′(t) = rec(aggv(V(t) + δV(t))

and V̂′′(t).

9. The CSP computes

∇′′U(t) = aggu(∇′U(t) + θU(t)), ∇′′V(t) = aggv(∇′V(t) + θV(t)).

Note that when mask vectors in U′′(t), Û′′(t), V′′(t), V̂′′(t), ∇′′U(t), and ∇′′V(t) are removed, those vectors equal to U(t),

Û(t), V(t), V̂(t), ∇U(t), and ∇V(t), respectively. At last it sends HE-encryption of U′′(t), Û′′(t), V′′(t), V̂′′(t), ∇′′U(t),
and ∇′′V(t)

10. From the knowledge of δU(t), δV(t), θU(t), and θV(t), the RecSys removes aggregated mask vectors in given HE-ciphertexts

to get HE-encryptions of desired vectors U(t), Û(t), V(t), V̂(t), ∇U(t), and ∇V(t).

11. The RecSys sets threshold values for the user and item profiles, say ωu and ωv . It generates mask vectors wu and wv , whose
dimensions are equal to those of ∇U(t) and ∇V(t), respectively. It computes and sends the CSP

HE(∇U(t)×c ∇U(t) + wu), HE(∇V(t)×c ∇V(t) + wv)

together with su = ωu + sum(wu) and sv = ωv + sum(wv).

12. The CSP computes
s′u = sum(∇U(t)×c ∇U(t) + wu), s′v = sum(∇V(t)×c ∇V(t) + wv).

Finally, it returns a boolean vector (su − s′u ≥ 0?, sv − s′v ≥ 0?) to the RecSys.

Figure 4: Matrix Factorization
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RecSys CSP
Communication

Cost

RU
AHE.dec - M

M |AHE|+ dM
L
|HE|

HE.enc - dM/L

MF

HE.enc - 7dM/L

14dM
L
|HE|

HE.dec - 7dM/L

HE.add 5dM/L -

HE.smul 7dM/L -

HE.mul 5dM/L -

Table 1: Computation and Communication Com-
plexities
RU: rating-upload, MF: matrix factorization, enc
and dec: encryption and decryption, resp., add, smul,
mul: addition, scalar multiplication, and multiplica-
tion over encrypted data, resp., |AHE| and |HE|: the
sizes of AHE and HE-ciphertexts, resp., M : # of rat-
ings, d: the dimension of profile vectors, L: # of
slots

6.2 Security
As mentioned in Section 1, the purpose of privacy preserv-

ing matrix factorization is to protect the followings: user’s
rating values, the list and number of items a user has rated,
tuning parameters of the RecSys side, intermediate values
and user/item profiles.

Our protocol protects all user’s rating values, intermedi-
ate values, and resulting user/item profiles using homomor-
phic encryptions (AHE and HE) and random mask all in the
three phases. In a rating uploading phase, users’ ratings are
AHE-encrypted under CSP’s public key, so the RecSys can-
not reveal the data; and the CSP can obtain no information
about users’ ratings even if it decrypts AHE-ciphertexts, be-
cause the rating values are masked by the RecSys. Note that
mask works if there is no colluding attack of the RecSys and
CSP, which is already assumed in Section 3. The similar
argument works in the matrix factorization and recommen-
dation phases. All intermediate values are kept secret, since
the RecSys computes gradient descent on HE-encrypted data
homomorphically and the values are masked when it needs
help of the CSP. Furthermore, user/item profiles, output of
matrix factorization, are obtained in HE-encrypted form and
used in recommendation phase with masking for an individ-
ual user.

Regarding protection for the rated item list and number
of ratings each user generates, our construction adopts an
injecting method of fake ratings along with indicators. The
construction without hiding the item profile in [28] has in-
ferior security level than that of ours, since the adversary
can infer whether a target user rate on a target item or not
as described in [28, Section 4.1]. They extended their con-
struction to protect the rated item list using random mask
provided by the CSP at the cost of additional computa-
tion and communication overhead [28, Section 4.2]. The
extended construction seems to have higher security level
with respect to the rated item list than that of ours.

However there are some applications where only a specific
item set, possibly small, is sensitive to leak whether rated or
not. In such applications, we only obfuscate the small por-
tion of the whole item set in our construction, hence achieve
the same security with the extended version of [28]. For

example, we can apply the collaborative filtering to med-
ical check-up to predict patients’ medical condition. The
fact whether patients have checked typical medical condi-
tion such as blood pressure and sugar does not leak any
private information on the patients. On the other hand, the
fact that they have checked HIV infection or mental status
is significantly related to privacy. In this case, we obfuscate
only these sensitive checkup items to keep the user privacy.

When computing gradient descent in matrix factorization
phase, the RecSys itself computes constant HE-multiplications
with tuning parameters (γ, µ, λ) without help of the CSP.
Therefore the optimized tuning parameters for quality rec-
ommendation can be kept secret from the CSP.

7. IMPLEMENTATION
In this section, we describe an implementation of our con-

struction. In our protocol, we use two encryption scheme,
an additively homomorphic encryption (AHE) and a fully
(or somewhat) homomorphic encryption (FHE). For AHE
in our protocol, a partially additive homomorphic property,
which allows a constant addition to encrypted data with-
out knowing any secret key, is enough, since the additive
property is only used for large random masking. There-
fore, we use hash-ElGamal encryption scheme [7]. We use a
RLWE-based homomorphic encryption for FHE, which pro-
vides several optimizations such as efficient key switching,
message packing and message slot movement [5, 15, 16, 34].
We implement our protocol using HELib [20], a homomor-
phic encryption library based on RLWE. The library is writ-
ten in C++ and uses the Gnu MP library [19] and the NTL
mathematical library [33].

The main bottleneck in deploying FHE is huge computa-
tion and communication overhead due to its large cipher-
text. There are several factors that determines the size of
ciphertext: multiplicative depth, security level and message
space (Zp). If the bit length of message space becomes
k times larger, then the size of ciphertext is increased k2

times.4 Since the computational overhead heavily depends
on the size of ciphertext, the reduction of the size is the
most important to enhance the efficiency. We consider chi-
nese remainder theorem (CRT) to represent a large mes-
sage. When applying CRT to message space, we obtain
only linear overhead increase in ciphertext size. For a large
message msg, we compute HE.enc(msg1), . . . ,HE.enc(msgk)
where msgi = msg mod pi for relatively primes p1, . . . , pk
of the same size. Since the Chinese remainder algorithm is
a ring isomorphism, this optimization does not affect the
correctness of our construction.

8. EVALUATION
In this section we discuss accuracy of computation results

including user and item profiles in the proposed protocol and
provide experiment results.

8.1 Error Estimation
Compared to the work in [28], our protocol introduces

more error in profiles depending on d, the dimension of pro-
files, due to fixed point arithmetic between the RecSys and

4This can be easily verified from the parameter selection
of [16]
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Figure 5: Relative Errors due to the Fixed Point
Representation

CSP described in 4.3. The Recsys computes

d∑
k=1

(fijk + εk − εk)

not
∑d
k=1 fijk for fij = (fijk)k=1,...,d and a mask vector

(εk)k=1,...,d in Step 3–4 of matrix factorization phase. This
computation increases the error size in profiles. For a, ε ∈ R,
let us consider the difference of a and (a+ ε− ε). We have∣∣∣a− (a+ ε− ε

)∣∣∣ ≤ 1,

which means the overflow is bounded by 2−α. Therefore
the error in our protocol becomes at most d · 2−α by trian-
gle inequality and this does not affect significantly on the
accuracy of matrix factorization.

We evaluated the relative error of our matrix factoriza-
tion to the original matrix factorization that operates in the
clear with the float point representation. We use the relative
error, which is used in [28]. Given user profiles U and item
profiles V , the squared error is

E(U, V ) =
∑

(i,j)∈M

(rij − 〈ui,vj〉)2.

The relative error is then defined as

|E(U∗, V ∗)− E(U, V )|
|E(U, V )| ,

where U∗ and V ∗ are computed using our protocol with
fixed-point representation and U and V are computed using
gradient descent executed in the clear over floating point
arithmetic. Figure 5 shows the relative error of our matrix
factorization for the 100K MovieLens dataset. It shows that
the relative errors occurred during 10 iterations is small (less
than 10−4) for more than 20-bit fractional part.

8.2 Experiment
Parameters and encoding of message. Let us con-
sider message space of the i-th FHE, Rprii

= Zprii [x]/Φki(x),

where Φki(x) is the ki-th cyclotomic polynomial. Since the
bit length of message space for the dataset is 36, we use
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Figure 7: Comparison of Communication Cost to
[28]

three FHE whose message space moduli are relatively co-
prime pi’s of size 16-bit to represent 48-bit message space.
In this case, we fix ri = 1 for all i and find pi and ki to have
large enough message slots in Rpi . We choose pi and ki such
that the number of message slots of underlying FHE is at
least 6000 for all i. To evaluate our protocol we need FHE
that allows only 3 multiplicative depth. Putting them to-
gether, the FHE-ciphertext size is 700 KB. For AHE, we use
hash-ElGamal from OpenSSL [1] with slight customization5.
Every encryption scheme supports 80-bit security.

Experiment results. We implement the proposed protocol
and test the performance. We use MovieLens 100K dataset
for experiment, which is popular real dataset in the research
area. It contains 100K ratings on 1682 movies made by 943
users. For comparison with [28], we evaluate the time and
communication performance for the above dataset restricted
to 40 most popular movies. The restricted dataset contains
14683 ratings generated by 940 users. The rating-upload
phase finishes in 4.3 seconds. For the matrix factorization,
we measure the run time for one iteration to compare the
result of the previous protocol [28]. Our matrix factorization

5The description can be found in the full version of the pa-
per.
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protocol takes 1.5 minutes with 580 MB for communication.
Note that our matrix factorization protocol includes the pro-
cedure to verify the stopping criterion.

The test is performed on a single machine with 3.4GHz
6-cores 64GB RAM, where the operation system is Ubuntu
and the program language is C++. Our platform equips
about 2 times faster CPU than that of [28]. After normal-
izing the factor, we can estimate our matrix factorization
protocol runs at least 50 times faster and consumes much
less communication cost6, compared to [28]. Figure 6 and 7
compare the execution time and the communication cost of
our matrix factorization to those of [28] for the same sets,
respectively.

As describe in Section 5.4, each user can add fake ratings
to enhance his own privacy. Our extended protocol takes 1.8
minutes with 623 MB for 10% fake ratings and 2.3 minutes
with 910 MB for 50%, which is almost linear growth to the
number of ratings.

8.3 Further Analysis and Comparison
We consider further potential improvement of the pro-

posed protocol toward parallelism. We also give comparison
to recent results on parallelized privacy-preserving matrix
factorization [27] and optimization of circuits for the gar-
bled circuit protocol [35].

Parallelism. In the matrix factorization phase of our proto-
col, all operations over ciphertexts such as HE.enc, HE.dec,
HE.add, HE.smul, and HE.mul can be parallelized since ci-
phertexts are treated independently. For example, consider
Step 1 of the matrix factorization in Figure 4 to compute

HE(U(t− 1))× HE(V(t− 1))− 2α · HE(r).

Suppose there are N ′ machines acting as the RecSys and
each HE(U(t − 1)), HE(V(t − 1)), and HE(r) consists of
N HE-ciphertexts, say HE(U(t − 1))i, HE(V(t − 1))i, and
HE(r)i for i = 1, . . . , N . Parallelism then can be achieved
by sending

{HE(U(t− 1))i,HE(V(t− 1))i,HE(r)i}i=j+1,...,j+N/N′

to the j-th machine and gathering the result

{HE(U(t−1))i×HE(V(t−1))i−2α ·HE(r)i}i=j+1,...,j+N/N′

computed by the j-th machine for j = 1, . . . , N ′. The CSP
side can be parallelized in a similar way.

On the contrary to the case of ciphertexts, operations over
plaintexts should be performed by a single machine since
they include reconstitution of data according to the order
defined on M. However run time for operations over plain-
texts is negligible compared to that over ciphertexts; From
the experiment for 14K dataset, we observe that the Rec-
Sys and CSP totally spend 15.5 and 73.8 seconds for matrix
factorization (1.5 minutes overall), respectively. Run times
over plaintexts are 1.57 seconds for the RecSys and 0.16 for
the CSP. Run time over plaintexts has only 1.9% of total
run time, which implies that time complexity of our matrix
factorization is almost reduced by a factor of the number of
machines involved in parallel operations.

Further comparison from the estimate. In 2015 Songhori
et al. presented techniques, called TinyGarble, for optimiz-
ing circuits for protocols with garbled circuits [35]. It min-
imizes the number of non-XOR gates in a circuit. Their

6When M = 4096, [28] already consumes 40 GB.

proof-of-concept implementation showed that the technique
decreases the number of non-XOR gates by 80%, which re-
sults in 5 times speed-up in generating and evaluation of a
garbled circuit. The run time of Nikolaenko et al.’s protocol
together with TinyGarble is estimated to about 34.8 min-
utes. It is still 10 times slower than our protocol (3 minutes
after normalization due to CPU clock).

At the same time Nayak et al. proposed a parallel secure
computation framework called GraphSC. It focuses on se-
cure 2-party computation protocol based on garbled circuit
[27]. They evaluated matrix factorization over 1M ratings on
GraphSC, which takes 13 hours using a cluster, which con-
sists of 7 machines of 128 processors (1.9–2.6 GHz CPUs)
with 2048 cores overall. From the experiment result, esti-
mated run time for 14K ratings using GraphSC is about 10
minutes. Since our experiment takes 1.5 minutes (3 minutes
after normalization from CPU clock), our protocol even on
a single machine with 6 cores is still about 3 times faster.

GraphSC together with TinyGarble may reduce the run
time of matrix factorization further, that is, 13 hours for
1M rating to 2.6 hours. We estimate our protocol under
the same environment of GraphSC, that is, 7 machines with
2048 cores. Our experiment on 14K ratings over a single
machine with 6 cores (3.4 GHz) shows that it takes about
175.3 seconds for operations over ciphertexts and 3.4 sec-
onds over plaintexts with CPU clock normalization. Thus,
for 1M dataset, parallelization of our protocol is expected to
take 36.7 seconds for operation over ciphertexts and 244.2
seconds over plaintexts since operations over plaintexts is
not parallelizable. Thus, by adapting parallelization, the
run time of our protocol is estimated to 4.7 minutes, which is
about 33 times faster than the expected run time of GraphSC
together with TinyGarble for 1M dataset.

9. CONCLUSION
A new efficient and practical privacy preserving matrix

factorization protocol is proposed in this paper. The pro-
tocol protects users’ rating values, user/item profiles and
service’s tuning parameters. Using various obfuscation tech-
niques, we reasonably protect the rated item list and number
users rated. We improved the efficiency by optimizing the
use of fully homomorphic encryption, so the performance
of ours is at least 50 times faster than that of the previous
work [28]. Furthermore, ours satisfies both accuracy and
completeness requirements.
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