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ABSTRACT
Along with the increasing popularity of mobile devices, there
exist severe security and privacy concerns for mobile apps. On
Google Play, user reviews provide a unique understanding of
security/privacy issues of mobile apps from users’ perspective,
and in fact they are valuable feedbacks from users by considering
users’ expectations. To best assist the end users, in this paper, we
automatically learn the security/privacy related behaviors inferred
from analysis on user reviews, which we call review-to-behavior
fidelity. We design the system AUTOREB that automatically
assesses the review-to-behavior fidelity of mobile apps. AUTOREB

employs the state-of-the-art machine learning techniques to
infer the relations between users’ reviews and four categories of
security-related behaviors. Moreover, it uses a crowdsourcing
approach to automatically aggregate the security issues from
review-level to app-level. To our knowledge, AUTOREB is the first
work that explores the user review information and utilizes the
review semantics to predict the risky behaviors at both review-level
and app-level.

We crawled a real-world dataset of 2, 614, 186 users, 12, 783
apps and 13, 129, 783 reviews from Google play, and use it to
comprehensively evaluate AUTOREB. The experiment result shows
that our method can predict the mobile app behaviors at user-review
level with accuracy as high as 94.05%, and also it can predict
the security issues at app-level by aggregating the predictions at
review-level. Our research offers an insight into understanding the
mobile app security concerns from users’ perspective, and helps
bridge the gap between the security issues and users’ perception.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection; I.2.6
[Artificial Intelligence]: Learning

General Terms
Security, Privacy, Algorithm
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Figure 1: Infer the security-related behaviors from users’ reviews.
Overview of the framework of AUTOREB : (a) Engine 1: Review-level
security behavior inference engine; (b) Engine 2: App-level security
behavior inference engine.
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1. INTRODUCTION
Nowadays, people spend more time using mobile apps on

smart phones and tablets because of the convenience they bring
to people’s daily life. Personalized service (such as targeted
advertising) is possible on mobile devices when users’ personal
information (e.g., contacts, user locations), is accessible by mobile
apps. However, disclosing personal information to mobile apps
could lead to serious security and privacy concerns.

On Google play store, user reviews are public to all
users (see Fig. 1). The user reviews describe how the users think
about the app, and give an idea of the security-related behaviors
during the running of apps, which we call “review-to-behavior
fidelity1". For mobile app end users, whether an app has exposed
severe security risk or not actually depends on how they think
about it. User review provides such information and can help
people make a decision. The user review perspective has been
applied in other applications, such as restaurant recommendations
and online product purchase.

With the belief that the user reviews and apps’ behaviors should
be consistent, we present AUTOREB, a system that automatically
identifies the user reviews that reflect the security-related behaviors
both at review-level and app-level. This is the first work on app
risk analysis from real users’ reviews. In this work, we extend
many techniques to the context of mobile app review analysis,

1
In this paper, the “behavior” only refers to the security and privacy related

behavior of mobile apps. We focus on four categories of security-related
behaviors extracted from user reviews, which are demonstrated in Table 1.
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Category Behavior Descriptions

Spamming Ads in notification bar, ads via email,
ads via SMS, pop-up ads, fishing, etc.

Financial
Issue

Paid for In-App-Purchase (IAP), but do
not get the item, free to premium, etc.

Over-privileged
Permission

Request too much permissions than
users’ expectations

Data leakage Access privacy data without users’
acknowledgement, e.g., users’ account,
contact, location, etc.

Table 1: Security/Privacy-related behaviors

including information retrieval, text mining, and machine learning.
AUTOREB can be applied in the following scenarios.
• End users can automatically infer whether the app has security-

related behaviors from other users’ experiences and expectations.
• Mobile app developers are alert of users’ complains from

users’ feedbacks, and are aware of the security-related behaviors
that the mobile app has displayed.

• App security behavior analysis is helpful for the risk
assessment of mobile apps, which can be used to improve the
credibility of app rating scores in app markets.

However, in practice, in order to build a system that can
automatically solve the review-to-behavior fidelity problem, we
need to address the following challenges (C1-C3):

C1: Review semantics Most of the reviews are short, probably
with wrongly spelled words or even made-up words. Moreover,
different words and expressions can be used for the same purpose.
Therefore, it requires to gather enough semantics from user reviews
to understand the security-related behaviors.

C2: Users’ security concerns Not all reviews reflect
security/privacy-related concerns. Recent study from the
distribution of user ratings [12] shows that users tend to give
positive feedback. Some reviews include vague and pure
emotional comments, and some reviews may complain about the
quality and the high cost of an app, which have few relations
with security and privacy issues. Therefore, how to infer the
security-related behaviors from the crowded users’ reviews is still
very challenging.

C3: Credibility of users The user reviews can be noisy and
diverse. User reviews are from different users. Some users may
not be responsible for their reviews. Some users are not likely to
report the security problems. In other words, not all reviews are
informative. How to distinguish different types of users, and make
the app-level results more reliable?

To address the above problems in the context of review-to-
behavior fidelity, we design and implement a system called
AUTOREB, which automatically infers the security-related
behaviors by considering the semantics of user reviews and
aggregating the security-related behaviors from review-level to
app-level via crowdsourcing.

The contribution of this paper is summarized as follows.
• To address the challenge of review semantics (C1), at user

review level, we use a feature augmentation approach by exploring
the “relevant feedback” technique, where the correlations and
co-occurrences of different reviews are automatically taken into
account.

• To address the challenge of users’ security concerns (C2),
we build a classifier to automatically learn the four categories
of security-related behaviors (Table 1) using machine learning
technique. As long as enough training user reviews with labels are

given, our system can automatically infer the security behaviors of
mobile apps with accuracy as high as 94.05% at the user-review
level.

• To address the challenge of user credibility (C3), with
the extracted review-level semantic features, we aggregate the
behavior annotation results from review-level to app-level based
on the expertise of different users. We do not put full confidence
on all the users, instead, the wisdom of crowds are automatically
learned via crowdsourcing.

We believe that the AUTOREB system provides a generic and
universal framework for the analysis of user reviews with enhanced
semantic understandings of security-related behaviors. Besides,
this framework could be easily extended to analyze the security and
privacy issues from the reviews appeared of websites, e.g., Yelp,
etc. Furthermore we have the following interesting observations.

• Evaluation As the first work that infers the security behaviors
from user reviews, we made great efforts to collect and label
the user reviews. The evaluation of our system on 19, 413
reviews and 3, 174 apps demonstrates that AUTORBF can
accurately predict the review-level security behaviors with
accuracy as high as 94.04%. Compared to the baseline using
keyword-based approach, our work excels a large margin
with 51.36% in accuracy, which validates the effectiveness
of our system design and deployment.

• Insight We list the 50 apps that have user complains about
security issues (Table 8). We discuss the relations (in Section
6.4) between the examined four behaviors abstracted from
user reviews and those from program analysis. We find
that user reviews can reveal how the users think about the
security issues, but not necessarily the exact behaviors of
apps, which provides an important source to understand
mobile app security problems complementary to program
analysis.

The remainder of paper is organized as follows. Section 2 states
the problem. We present the detailed design of AUTOREB system
in Section 3, followed by the design of review-level security
behavior inference engine in Section 4. Section 5 presents the
design of app-level behavior inference engine. Section 6 presents
the experimental evaluation of our system, followed by the
discussions of relations with program analysis. Section 7 discusses
the related work and finally Section 8 concludes the paper.

2. PROBLEM STATEMENT
On the Android platform, users are known to be very concerned

about the security-related behaviors of mobile apps [10]. As is
sharply observed in Felt et al. [11], automatically understanding
the security behaviors from meta data is not an easy job for most
of the users. Our goal is to predict the mobile app security-related
behaviors from crowded users’ reviews, which we call “review-to-
behavior” fidelity. As compared to mobile app permission analysis
or static/dynamic analysis ( [7], [46], etc.), inferring the security
behaviors from the user reviews is still lacking. User reviews
provide users’ perception on app behaviors, from which we can
identify the most pertinent information about users’ concerns.

In this paper, we aim to design and implement a system (namely
AUTOREB) to address the following problems: given the reviews
from different users on mobile apps, can AUTOREB automatically
infer the security-related behaviors of apps? And how accurate
is it? This system is expected to help users be aware of security
issues, and accurately predict app behaviors both at review level
and app level. Besides, given enough training user reviews and
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Figure 2: The framework of review-level security behavior inference
engine (solid lines are for the training process, and dashed line for the
process of annotating new user reviews).

labeled behaviors, the whole process is expected to perform
automatically without any human intervention. The developed
system can be deployed as an individual app or deployed at
Google play markets. It summarizes users’ concerns about
security issues, and can help to improve the trustiness of overall
app markets and make the android echo-system better.

An illustration We show several user review examples from
Google play, and explain the labeled security behaviors.

—————————————————————————–
Review 1: Seemed ok, but the morning after signing

in my account spammed everyone on my contact list

with junk mail from me...could be a coincidence...

Anonymized User 1
Labels: Data leakage, Spamming

——————————————————————————–
Review 2: Why does this need to send sms messages

and make calls? Updates not that timely.

Uninstalling.

Anonymized User 2
Labels: Financial Issue, Over-privileged permission

——————————————————————————–
For each review, its labels are given automatically by AUTOREB

as one or several security behaviors listed in Table 1. The scope
of this paper is to infer the “security” behaviors from the user
reviews. More specifically, we focus on the four categories
of security behaviors in Table 1. Since most of the users are
not professional security experts, their reviews indicate the
understandings of security issues from ordinary users in a vague
way. The four categories of security behaviors are summarized
from raw user reviews after manual checking. Each category of the
behaviors corresponds to a coarse-grained security behavior, which
covers a group of fine-grained behaviors illustrated in Table 1.

3. OVERVIEW OF SYSTEM DESIGN
Fig. 1 illustrates the overview of AUTOREB design, which

includes two key engines: (a) review-level security behavior
inference engine (RLI), and (b) app-level security behavior
inference engine (ALI). Fig. 2 and Fig. 3 give the detailed design
of each engine, respectively.

Given the user reviews, RLI automatically generates review-
level security behavior labels (i.e., four categories of security

behavior in Table 1) corresponding to each review using machine
learning.

Then the review-level security behavior labels are fed into ALI.
ALI automatically generates app-level security behavior labels in
consideration of users’ credibility. Although it appears similar
to the review-level security behavior labeling process and also
denoted as the four categories of security issues shown in Table 1,
it labels the behaviors of an app by aggregating all different
reviewers’ opinions via utilizing the wisdom of crowds. We will
illustrate the detailed design of each engine in Section 4 and 5,
respectively.

4. REVIEW-LEVEL SECURITY BEHAVIOR
INFERENCE ENGINE (RLI)

Given enough training user reviews, the goal of review-level
inference engine (RLI) is to automatically label a new user review
to a particular security behavior category. The design of RLI is
depicted in Fig. 2, which consists of two key phases: training phase
(denoted in solid line in Fig. 2) and testing phase (denoted in dash
line in Fig.2). In the training phase, a classifier is trained using the
labeled user reviews, and in the testing phase, new user reviews are
fed into the classifier and automatically labeled.

4.1 Training vs. Testing phases
The training phase includes the following three key steps.
Step 1: Security-related feature extraction and selection. To

infer the security-related behaviors, we first extract the features
(including words and phrases) that have close relations with
the four categories of security concerns. This is to address the
challenge C2, since it has been observed from the user review
dataset that the complains about the functionality, quality and
attractiveness of mobile apps account for the majority of users’
concerns. We use a keyword-based approach to select the security-
related words and phrases appeared in user reviews. After step 1,
only security related features are preserved and selected, and will
be used to build a classifier for labeling user reviews.

Step 2: Semantic expansion. To address the challenge C1,
this step concerns how to understand the user reviews described
in different words and phrases but for the similar or the same
meaning. By taking advantage of the “relevance feedback”
technique [44] in information retrieval, we find the words/phrases
relevant to security-related features, and expand the original review
features by adding new “relevant" words and phrases. This process
is iterated until all the “relevant” features are added to the review
feature sets. This process is also known as “feature augmentation”.
We aim to capture the semantics of user reviews as much as
possible by utilizing the relations among different user reviews.
After this step, each user review is abstracted into a feature vector
denoted as a bag of word (BOW).

Step 3: Training classifier using sparse machine learning.
To address the challenge C1, once we have obtained the BOW
features after semantic expansion, we train the classifier for
prediction of each category of security-related behaviors. Our
framework is open to any classifier that requires the BOW feature
as the training samples to classify a new user review. Such
classifiers include the kNN classifier, SVM classifier, etc. In our
approach, we use machine learning classifier (i.e., sparse SVM) by
exploring the structural sparsity of feature space, which has shown
the state-of-the-art performance [41].

Testing phase The output of the training phase is an automated
user review classifier. Given new user reviews, we first extract
and select the word/phrase features related to security concerns,
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and then generate BOW features. Next, we feed the features to
the trained sparse machine learning classifier and automatically
determine the security behavior category.

Our framework does not require any human intervention. In
a dynamic environment where there are new user reviews, the
process repeats by retraining the sparse machine learning classifier.
Next we will elaborate on the technical details of each step.

4.2 Security feature extraction and selection
In this subsection, we focus on the extraction of the security

features. Proper pre-processing is applied to user reviews before
feature extraction, including removing stop words and stemming.
Since many user reviews are not related to security concerns of
mobile apps, a necessary step we need to take is to narrow down
the huge number of user reviews to a more feasible set for further
analysis and annotation. To achieve this, a coarse-grained filtering
is firstly applied to create a subset of suspect user reviews. We
adopt a keyword-based approach to preserve a set of the suspect
user reviews, i.e., any user review that contains at least one of the
predefined keywords will be put into the suspect set.

The key words are manually picked in an iterative way. The
initial set of the key words are set to {security, privacy}. Then new
key words are selected from those that have high co-occurrence
with current key words. The co-occurrence of key words in user
reviews are computed based on the user review corpus L (see
Section 6.1) we collected on Google Play. If the co-occurrence of
the word-pairs exceeds a large threshold and one of the word-pair
is in the suspect set, we add the other word into the suspect set.
The rationality behind this approach is that these key words reflect
users’ concerns on the security and privacy issues. This process is
iterated until no more new key words are added into the suspect
set.

To avoid mismatch, not only the synonyms are considered, other
forms of the keywords (e.g., antonyms, mismatch words, etc.) are
also taken into account. For example, insure and unsure are added
for key-word “security”, stole and stolen are added for key-word
“steal", etc. We call these words as “security-related” features
which capture the semantics of the security behaviors. In this step,
instead of using the traditional black-box feature selection methods
such as F-statistics [6] and mutual information, which rely heavily
on the statistical property of the data, our semantics-aware feature
selection approach identifies the security key words by considering
the semantic meaning and correlations among different keywords
in a white-box way.

4.3 Semantic expansion
User reviews have some properties which have significant

differences from the properly edited documents. User reviews
are normally short, probably have wrongly spelled words (as
mentioned in Section 4.2), or even made-up words (such as
“privasy, nonsecure”). Moreover, different words or expressions
may be used for the same meaning. These properties may harm
the performance of classifier if the extracted keywords are directly
used for features.

Our idea is from information retrieval domain. In information
retrieval, the query submitted to the search engine could be
short, misspelled and vary in the choice of the words, which
is very similar to our situation. For the same motivation, a
traditional technique called query expansion with pseudo relevant
feedback [44] in information retrieval is used to make reviews
expansion. Originally, this technique uses the top documents in the
retrieval ranking list with respect to the original query as “relevant”
documents, and these documents are further used to expand the

original query, generating a new query resembling the “relevant”
documents. This query expansion is reported to always have a
positive effect on the retrieval performance [44]. A similar process
is adopted for review semantics expansion as follows. The process
consists of two steps: (1) find the “relevant” reviews; (2) augment
the “original” reviews with “relevant" reviews. The relevance
between reviews is evaluated using the similarity in information
retrieval model, i.e.,cosine similarity between the tf-idf features.

An interesting question would be the scope of the retrieval.
Should the candidate “relevant” reviews be picked from all other
reviews? Or just the reviews from the same app or the same
category of apps? Besides, the “relevant” reviews should only be
those posted before the reviews for expansion, so we are not using
the “future” reviews to extend the current reviews. A sufficiently
long ranking list from the retrieval engine will be returned, and
the scopes and restrictions will be applied to this list to pick the
“relevant” reviews afterwards.

With a set of “relevant” reviews, the review expansion can be
conducted by making a sum of the original reviews and the mean
of the set of “relevant” reviews on feature level as follows:

f new = (1− α)fold + α
1

|R|
∑

fexpand∈R

fexpand,

where fold is the Bag of Words (BOW) feature of the original
reviews, fnew is the feature vector after the expansion of user
reviews, fexpand is the feature vector for the expanded user reviews,
and R is the set of the “relevant” reviews with respect to the
reviews for expansion. α serves as a tunable parameter for the
degree of effect of the expansion, and can be tuned for the best
performance.

In summary, review expansion is an efficient way to explore the
relations among reviews, and incorporate semantics into the review
understanding process. The review expansion also relies on the
retrieval engine, the cost of which is normally constant. Hence, the
total cost of review semantic expansion is linear to the number of
user reviews, which makes it applicable in practical problems.

4.4 Sparse machine learning classifier
After obtaining the BOW feature from the above steps, now

we are ready to present the classifier designed to classify user
reviews to the security behavior categories defined in Table 1.
More formally, given the BOW feature and the annotated four
categories, the suspect user review datasets can be represented as
X = [x1,x2, · · · ,xn], where xi ∈ �p denotes the BOW feature
vector for each user review, and n is the number of user reviews.
Let Y = [Yik](1 ≤ i ≤ n, 1 ≤ k ≤ K) be the label vectors
for user reviews, and Yik ∈ {0, 1} with Yik = 1 indicating the
presence of the k-th label for user review i.

In our problem, more than one security behavior categories
can be simultaneously assigned to one user review. This is
known as multi-label learning in the machine learning community.
Meanwhile, we hope our approach can work well on large-
scale user review datasets. To achieve this goal, we use the
linear classifier, where the output classification decision is simply a
weight vector that separates the data points in the high-dimensional
space. Spare linear Support Vector Machine (SVM) has been
widely used in large-scale malicious web-site detection [27] and
drive-by-download attack detection [38] due to its simplicity,
scalability and interpretability. We adopt sparse SVM for solving
the user review labeling problem for the exactly same reason.

In sparse SVM model [4], we use hinge loss (1st term in Eq. 1)
and enforce the structural sparsity on feature space with LASSO
regularization [41] to eliminate feature correlations. Meanwhile we
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Figure 3: The framework of App-level security behavior inference engine:
inferring the app-level labeling via crowdsourcing.

consider the label correlations among different behavior categories.
Given a set of n labeled data points {xi,yi}ni=1, the goal of training
spare SVM is to find the projection matrix W ∈ �p×K such that:

min
W

n∑
i=1

(1−wT
yixi + max

m �=yi
wT

mxi)+ + αΩ1(W) + αΩ2(W), (1)

and Ω1(W) =
∑k

m=1 ‖wm‖1,

Ω2(W) =
∑
ij

(wi)
T
(D− S)ijw

j = Tr(WTLW),

where i = 1, 2, · · · , n, m = 1, 2, · · · , k, W = [w1,w2,wk],
(x)+ = max{x, 0}. The 1st term in Eq. 1 measures how data fit
into the model given the separating surface W, which is directly
minimizing the training error. The 2nd term Ω1(W) is a penalty
for projection W using �1,1-norm that tends to yield sparse
solutions for feature selection purpose. The 3rd term Ω2(W)
is to eliminate the label correlations among different categories
since some security behaviors occurred simultaneously. As in
other classification problems, the iterative shrinkage method and
L-BFGS quasi-Newton method [1] are applied for solving the
optimization problem of Eq.(1). The convergence of the algorithm
can be rigorously proved as that in [1].

5. APP-LEVEL SECURITY BEHAVIOR
INFERENCE ENGINE (ALI)

The review-level security behavior inference model has
annotated each review as one or several security behaviors shown
in Table 1. Different users may have labeled the same app to
different labels. A natural question that follows is: what is the final
label at app-level in consideration of all users? We suggest using
crowdsourcing technique to aggregate the security labels from user
review level to app level.

Crowdsourcing [37] is a technique to infer the true labels of
a given item from the annotations of multiple works, where the
annotations are assumed to be low quality and may contradict with
each other. Crowdsourcing has been used for the improvement
of the product quality, semi-automatic generation of software
programs [3], etc. Although there may be substantial disagreement
among different annotators, we aim to learn from “crowds” to
annotate the app by considering different opinions. We model
the mapping of labels from user-review level to app-level as a
crowdsourcing problem, treating user review behaviors as labels
from works/annotators.

More formally, the app-level annotation problem by different
users can be described as follows. For each user u with respect to
app i, its reviews du,i ∈ {0, 1}r is denoted as a r-dimensional set
(r = 4 in our case) corresponding to the four categories of security
behaviors shown in Table 1, i.e., du,i = {d1u,i, · · · , dru,i}, where r

is the size of label set, and d�u,i is the binary auto annotation result
of the �th classifier for the review given by user u to app i, i.e.,

d�u,i =

{
1; if user u labels app i as label �
0; otherwise

(2)

Given all the above labels du,i generated from different
reviewer u with respect to each app i, we need to learn
a mapping which automatically projects the review-level
labels du,i = {d1u,i, · · · , dru,i} to the app-level security

labels yi = [y1
i , y

2
i , · · · , yr

i ], i.e., {du,i} → yi, where
y�
i = {0, 1}, 1 ≤ � ≤ r. If security behavior � appears in app i,

y�
i = 1; otherwise, y�

i = 0.

5.1 Why not majority voting?
One naive way is to treat all the users equally, i.e., simply trust

all the users and combine all the reviews’ comments no matter they
are trustful or not. For example, if most of the users say that this
app has “data-leakage” issue, we say this app has “data-leakage”
issue. This is known as majority voting [37] in crowdsourcing.

To treat each user equally by averaging over the labels of all
the users, the final label for each app i computed from users
{1, 2, · · · , j, · · · ,m} will be

y�
i =

1

m

m∑
j=1

d�j,i.

By thresholding y�i , this method provides binary crowdsourcing
result. One major problem with this method is that it treats each
user equally and hence the contribution of experts would be
overwhelmed by the crowds’ less valuable opinions. In practice,
some users are more trustable while others may not be very
responsible for their reviews, or even fraudulent and deceptive.

5.2 Crowdsourcing by giving more credit to
trustworthy users

We use a two-coin [37] model to annotate the apps from
review-level to app-level, which pays more credit on trustworthy
users. More specifically, the probability that a worker labels an app
correctly is assumed to follow bernoulli distribution, one for the
true positive label, and the other for negative. The advantage is that
we can give a more accurate prediction of the security behavior of
each app by taking into account the credibility of difference users.

There are two cases. For a specific app i, we use α�
u to denote

sensitivity, i.e., the probability that a user u would label an app
with security behavior � under the condition that the security
behavior � really exists; and we use β�

u to denote specificity, i.e.,
the probability that a user u would label an app with no security
behavior � under the condition that the security behavior does not
exist. Mathematically,

α�
u = Pr(d�u,i = 1|y�

i = 1), (3)

β�
u = Pr(d�u,i = 0|y�

i = 0), (4)

where i (1 ≤ i ≤ n) refers to each app, u (1 ≤ u ≤ m) refers
to each user, and � (1 ≤ � ≤ r) refers to each behavior label.
Parameters α = [α�

u], β = [β�
u] can be learned from he training

data using EM algorithm according to Maximum Likelihood
Estimation (MLE), and y�

i is then computed via Bayesian rules.
According to the maximum likelihood principle, this approach

maximizes the following objective function:

J(θ,y) = max
θ,y

[
ln Pr([du,i]|θ,y) + lnPr(θ)

]
,
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where θ = {α, β} is the parameter as in Eqs.(3, 4), and

Pr([du,i]|θ,y) =
n∏

i=1

r∏
l=1

[
Pr(y�

i = 1|θ)
m∏

u=1

Pr(d�u,i|y�
i = 1; θ)

+ Pr(y�i = 0|θ)
m∏

u=1

Pr(d�u,i|y�
i = 0; θ)

]
; (5)

Pr(d�u,i|y�
i = 1; θ) = (α�

u)
d�u,i(1− α�

u)
1−d�u,i , (6)

Pr(d�u,i|y�
i = 0; θ) = (β�

u)
1−d�u,i(1− β�

u)
d�u,i . (7)

After derivations using EM algorithm [5], finally the app-level
behavior indicator y�

i is expressed as:

yl
i =

a�
i Pr(y

�
i = 1|θ)

a�
i Pr(y

�
i = 1|θ) + b�i Pr(y

�
i = 0|θ) , (8)

where a�
i is the likelihood of app i getting label �, b�i is the

likelihood of app i not getting label �, i.e.,

a�
i =

m∏
u=1

(α�
u)

d�u,i(1− α�
u)

1−d�u,i , (9)

b�i =

m∏
u=1

(β�
u)

1−d�u,i(1− β�
u)

d�u,i , (10)

and Pr(y�
i = 1|θ) is the prior probability 2 for app i labeled �, and

Pr(y�
i = 1|θ) = 1− Pr(y�

i = 0|θ).
5.3 Determining app-level behavior via y�

i

However, y�
i is not directly useful for determining the app-

level behavior. Although we utilize crowdsourcing technique to
aggregate review-level labels to app-level labels, the review-level
labels are not really users’ annotations, but auto annotations by
a trained classifier (in Section 2). The reviews given by users
are not originally annotations for the security issues. Therefore,
the prior probability of finding a user review mentioning one of
the four security issues is quite low, even given the fact that the
security issues exist for the app. This is easy to understand since
the user may not actually encounter the security issue when using
the app, or may not give a review after encountering the issue, or
the review-level classifier fails to recognize the semantic meaning
in the review. As a result, y�

i may not be taken as the probability
of the app having the security issues, but more as a security-risk
ranking score for comparing the security risks of the app having
the issues against others.

In order to get a clear output of whether the app has the security
behavior or not, a threshold is needed to be tuned for each label
to provide the binary prediction. This threshold can be determined
through active manual annotation, which is discussed in Section 6.

6. EXPERIMENT
We present the experimental results of AUTOREB. AUTOREB

aims to bridge the gap between users’ understanding of apps
and apps’ actual behaviors. To evaluate the effectiveness of
AUTOREB, we compare the behaviors inferred at both review-level
and app-level against those labeled by human beings, and then
make a quantitative study on the performance of the system. More
specifically, we design the experiment and answer the following
two questions:

2
Initialization using Pr(y�i = 1|θ) = 1

m

∑m
j=1 d

�
j,i, α, β represent the

probability of a binary event, thus a natural choice is the Beta distribution.
i.e., Pr(α|a1, a2) = Beta(α|a1, a2), Pr(β|b1, b2) = Beta(β|b1, b2),
where a1, a2, b1, b2 are the parameters for Beta distribution.

• RQ1: What is the prediction performance using review-level
security behavior inference model?

• RQ2: Can we get the app-level security behavior annotation
results via crowdsourcing? What is the credibility of different
users? Will users report the security problems?

6.1 Data Collection
Our dataset was collected from Google Play. On Google Play,

user reviews about Apps are publicly available. Once we obtain the
Google ID of a user, we can locate all the Apps that the user has
reviewed. For each retrieved App, we crawled its reviews from
Google Play. The crawler was written in python. One dataset
L was collected during November 2013, containing 19, 413 user
reviews on 3, 174 apps from Google play. We use this dataset
to validate the review-level security behaviors. This dataset was
annotated manually3 by several mobile app professionals in two
months. Each user review was given a label by three annotators. If
three annotators reached a consensus, the user review was labeled
as a specific label. Otherwise, the three annotators would discuss
and reach a consensus on the controversial user reviews. Each
user review was labeled with either one, several or none of the
above labels described in Table 1. The annotation was conducted in
consideration of the meanings of the reviews rather than the actual
app behaviors. The statistics of dataset L is listed in Table 2.

Dataset #app #Review Mean Max Min

L 3,174 19,143 6 4,500 1

Table 2: Dataset L details. The mean, max and min are statistics of for the
number of reviews per app. The mean number of reviews per app is small
because we have already filtered out the reviews with over 3 ratings, which
are the majority of them.

Moreover, we collected another dataset D to validate the
effectiveness of our approach on app-level security behavior
inference. This dataset was collected through December 2013 to
May 2014, containing 12, 783 apps4 with 13, 129, 783 reviews
from 2, 614, 186 users. Dataset D has no intersection with the
apps in dataset L. However, we did not hire enough labors to
manually label dataset to get the ground truth of security behaviors
with respect to each app. Table 3 summarizes the statistics of
dataset D. In addition, Fig. 4a shows the distribution of the number
of apps over the number of reviews, in which the peak at 4000 is
artificial, due to the fact that our crawler is set to only crawl the
first 4, 000 reviews for each app. Fig. 4b shows the distribution of
apps over the 5 rating values from the reviews. It is clear that most
users tend to give high ratings to the apps once they decide to give
them reviews. This, however, also implies that most of the reviews
are not valuable for our purpose of detecting security issues.

Dataset #app #Review #User Max Min

D 12,783 13,129,783 2,614,186 4,000 1

Table 3: Dataset D details. The mean, max and min are statistics of
the number of reviews per app. The max number of reviews (4, 000) is
artificial, because our web crawler is set to crawl only the first 4000 reviews
for each app.

We next describe the evaluation results of AUTOREB in
identifying review-level and app-level security behaviors.

3
The ground-truth of review labels was from the manually labeling mobile

app reviews.
4
The apps were selected in a random manner.
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(a) Histogram for the number of
apps vs. the number of its reviews
in the collected dataset.

(b) Histogram for the number of
reviews with different ratings in
the collected dataset.

Figure 4: Statistics of the collected dataset D.

6.2 RQ1: Review-level security behavior
inference

Experiment setting The evaluation of the proposed review-level
classification is conducted on the annotated dataset L. As a
supervised method, training dataset is required for training the
model. The whole data set is randomly split in a 50%/50%
manner into a training set with 10, 893 reviews and a testing set
with 8, 520 reviews. This splitting is at app-level, so the reviews
for the same app can only be either in the training or testing set,
and the number of reviews in the two sets are not even.

In solving the optimization problem of security behavior
inference, a five-fold cross validation method is adopted for finding
the best αs in the training set. For semantic expansion, tf-idf
features with cosine similarity is adopted for the retrieval model
and Lemur5 is used as the actual tool for the word retrieval. Time
constraint is enforced to prevent review expansion with “future
relevant” reviews. The indexes of retrieval model are built for the
two sets separately so that the model parameters such as document
number and IDF values will not interfere between the sets. The
mixture ratio α and the size of “relevant” document set R for
the expansion are fixed by using five-fold cross validation in the
training set for each label along with the scope. The size of R is
selected from {1, 3, 5, 10}.
Evaluation measurement The metrics used for evaluation are
precision, recall and F1 value. Let the values of true positives, false
positives, true negatives, and false negatives be TP , FP , TN and
FN , respectively w.r.t. each label. TP indicates that AUTOREB

correctly labels the review as a security issue if the review is.
FP indicates that AUTOREB incorrectly labels a review as a
security issue if the review is not. TN indicates that AUTOREB

correctly labels a review as a non-security issue if the review is
not. FN indicates that AUTOREB incorrectly labels a review as a
non-security issue if the review is.

The precision metric is defined as Precision = TP
TP+FP

, and the

recall metric is Recall = TP
TP+FN

. The F1 measure is the harmonic

mean of precision and recall, i.e., F1 = 2TP
2TP+FP+FN

, and the

accuracy is Accuracy = TP+TN
TP+FP+TN+FN

. Larger values of these
metrics suggest better classification results. Thus the values of
these metrics indicate how well the security behavior inference
results match with the human annotated results.
Experiment result analysis Table 4 shows the performance of our
method in identifying different categories of security issues. The
results indicate that out of 8,520 reviews, AUTOREB effectively

5http://www.lemurproject.org/

Label Keywords

Spamming ad, spam, notif, advertis, advert, spammi,
add, money, secur, push, etc

Financial
Issue

text, deduct, sm, bought, paid, took,
privat, txt, taken, charg, purchas, etc

Over-
privileged
Permission

permiss, access, money, read, info,
privaci, regist, camera, need, want,
contact, requir, ask, locat, data, internet,
request, credit, email, call, necessari, etc

Data leakage permiss, privaci, info, hack, access,
contact, money, fool, lie, id, ground,
inform, lockscreen, steal, wit, wall,
camera, data, requir, phish, internet,
licenc, locat, etc

Table 6: Sample keywords used in “keyword based approach".

labels the security-related behaviors with average precision, recall,
F1 score and accuracy of 80.10%, 82.46%, 81.26% and 94.05%,
respectively. We are aware that the high value of TN is due to
few user reviews on security issues, which generally produces a
very high accuracy. After carefully looking at different categories
of security-related behaviors, we find that AUTOREB can identify
“spamming”, “over-privileged permission" and “data leakage”
issues with average precisions of 83.84%, 78.25%, 77.97%,
respectively, and with average accuracies of 91.96%, 95.99%,
93.46%, respectively. This confirms the effectiveness of our
method.

An exceptional case is the detection of security issues related
to “finance”, the precision of which is not as high as the above
three categories. When we check the user reviews, we find
that the false positives and false negatives are higher than those
computed from the other three security categories. We find that
many users actually do not complain about the “financial issue”,
but their reviews are labeled as “financial issues”. Also, some
users complain about the “financial issues” without using any
words related to “buy, purchase, pay, paid, etc.”, which misleads
AUTOREB in making the decision.
Comparisons against keyword-based method For comparison,
we use keyword-based method as a baseline to show the necessity
of using the proposed semantic expansion techniques and
advanced machine learning method in AUTOREB. We agree that
keyword-based approach can be extended to be more advanced.
As the most fundamental and intuitive method, we evaluate the
performance of keyword-based method. A number of keywords
are manually selected for each security label as in Table 6, and
this approach predicts all the reviews that contain at least one
of the keywords to be positive for the underlining label. These
keywords are stemmed 6 in pre-processing, so that the words from
the same origin may be matched to each other. Following the same
evaluation measurement used in AUTOREB, we summarize its
results in Table 5.

We then compute the performance improvement using
AUTOREB against the keyword-based approach. Let �Precision,
�recall, �F1 and �ACC be the performance differences between
our approach and the keyword-based approach corresponding
to different metrics. Table 7 shows the performance differences
in identifying security issues between AUTOREB and the
keyword-based approach. For all the four categories and
overall performance, AUTOREB gains significant performance

6http://en.wikipedia.org/wiki/Stemming
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Label # size TP FP FN TN Precision Recall F1 ACC

Spamming 2, 788 2, 574 496 214 5, 236 83.84% 92.32% 87.88% 91.66%
Financial Issue 578 337 179 241 7, 763 65.31% 58.30% 61.61% 95.07%

Over-privileged Permission 711 511 142 200 7, 667 78.25% 71.87% 74.93% 95.99%
Data leakage 1, 258 977 276 281 6, 986 77.97% 77.63% 77.82% 93.46%

Sum 5, 335 4, 399 1, 093 936 27, 652 N/A N/A N/A N/A

Average N/A N/A N/A N/A N/A 80.10% 82.46% 81.26% 94.05%

Table 4: Evaluation on different metrics of AUTOREB. # size denotes the number of positive samples with respect to the label, and ACC denotes accuracy.

Label # size TP FP FN TN Precision Recall F1 ACC

Spamming 2, 788 2, 780 5, 619 8 113 33.10% 99.71% 49.70% 33.96%
Financial Issue 578 549 3, 282 29 4, 660 14.33% 94.98% 24.90% 61.14%

Over-privileged Permission 711 706 6, 012 5 1, 797 10.51% 99.30% 19.00% 29.38%
Data leakage 1, 258 1, 172 4, 490 86 2, 772 20.70% 93.16% 33.87% 46.29%

Sum 5, 335 4, 399 1, 093 936 27, 652 N/A N/A N/A N/A

Average N/A N/A N/A N/A N/A 21.16% 97.60% 34.78% 42.69%

Table 5: Evaluation on different metrics using keyword-based method. # size denotes the number of positive samples with respect to the label, and ACC
denotes accuracy.

Label �Precision � Recall �F1 �ACC

Spamming 50.74% −7.39% 38.18% 57.70%
Financial
Issue

50.98% −36.68% 36.71% 33.93%

Over-
privileged
Permission

67.74% −27.43% 55.93% 66.61%

Data
leakage

57.27% −15.53% 43.95% 47.17%

Average 68.94% −15.14% 46.48% 51.36%

Table 7: Performance differences between our approach and keyword-
based approach. � indicates the performance difference in terms of
different metrics.

improvement in terms of precision, F1 and accuracy. We observe
that the recall of our approach is generally lower than that of
the keyword-based approach because our approach has higher
false negatives. However, the keyword-based approach has
extremely high false positives since many user reviews that include
sensitive words do not necessarily cause security-related issues.
Considering the tradeoff between the precision and recall, our
approach outperforms the keyword-based approach significantly,
i.e., an average of 46.48% performance improvement in terms
of F1, and an average of 51.36% performance gain in terms of
accuracy.

It does not make much sense to evaluate each technique in our
system separately for the best system performance since different
components jointly contribute to the improvement of the overall
system performance. Only one technique is not sufficient to
improve the system performance.

6.3 RQ2: App-level security behavior
inference

Experiment setting With the trained classifier from the review
level experiment, e.g., the classifiers evaluated in Table 4, all the
reviews in dataset D are automatically annotated with the four
labels. We apply the crowdsourcing algorithm introduced in Sec. 5

to generate app-level result Y for each app in D while evaluating
the credibility of the users in D.
Experiment results In order to determine the thresholds for the
four labels, we labeled about 50 apps for each label and tuned
the thresholds to best classify those labeled apps. These apps are
randomly selected from the apps whose (y�

i ) values are within
the range of [mean(y�

i ) − std(y�i ),mean(y�i ) + std(y�
i )], where

mean(y�
i ) is the average values of y�

i , and std(y�
i ) is the standard

deviation of y�
i .

In this way, we get all the security labels for each app at app-
level. For example, CallToPark is a web app that aims to make
personal payment and account management faster. Its y�

i computed
from crowsourcing approach (Sec. 5) is

[0; 0.997; 0.002; 0.003],

corresponding to the four categories of security issues of
spamming, financial issue, over-privileged permission and data
leakage. The results indicate it has 3 security issues (i.e., financial
issue, over-privileged permission and data leakage) out of the four.
The serious degrees of security issues are reflected by the values
of these corresponding numbers. The greater values indicate the
more serious security issues from user perspective, such as more
complains and dissatisfaction. We show a number of apps that
have severe security problems using our analysis tool7 in Table 8.
Analysis of user credibility A by-product of crowdsourcing in
AUTOREB is the learned parameters for each user, indicating how
reliable the users’ reviews are in our system. Figs. 5, 6 show
the distributions of the number of users based on the trained
parameters. The distribution of the number of users over the
learned α values shows three peaks (Fig. 5).

The middle peak is around 0.5, which is the manually set prior
value. In fact, this peak is the expectation of the distribution,
indicating the behavior of majority users.

The lower peak shows the users that are less likely to report the
issues in reviews, hence are given less credibility, and contribute

7
We are aware that the performance of AUTOREB is not perfect, and some

of the labels may have false positives or false negatives. For example,
the voicerecorder app (APK name: com.tokasiki.android.voicerecorder)
actually has spamming issue, however, very few users complain ads, and
AUTOREB does not label it as “spamming".
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App Name Spamming Financial

Issue

Over-

privileged

Permission

Data

Leakage

com.chirpme.swipe � � � �
com.BeatMakerMicProFree � × � �
com.usablenet.android.aetna × × � �
org.dyndns.devesh.flashlight × × � �
org.geometerplus.zlibrary.ui.android.squid × × � �
com.Vertifi.Mobile.P211391825 × × � �
shipmate.norwegian × × � �
com.seattletimes.android.SeattleTimesMobileNews � × × �
com.sicecommentr.buttonfootball � × × �
org.dmfs.android.contacts � × × �
com.grainger.mobile.android × × � �
com.netpatia.android.filteredcompass × × � �
pl.pawelbialecki.smartsysteminfo × × � �
com.qwapp.android.netping × × � �
com.comerica.mobilebanking × × � �
com.livewallpaper.livewallpaper.garmaplelef × × � �
org.usaswimming.deckpass × × � �
poker.hands.order × × � �
com.foundersfcu.mobile × × � �
jp.picolyl.led_light × × � �
com.uvukeclub.fretboard × × � �
com.funtrigger.mp3tag × × � �
jp.gr.java_conf.hanitaro.tide × × � �
com.calories.burned.calculator × × � �
com.kakapo.slotsfarm × � × �
com.mdt.doforms.android × � × �
com.tokasiki.android.voicerecorder × � � ×
la.droid.periodic × × � �
com.electronmagic.animalnumbers × × � ×
de.j4velin.vibrationNotifier � � × ×
com.kosenkov.alarmclock × × � �
com.qxmd.calculate × × � �
cx.hell.android.pdfview × � � ×
com.leumi.leumiwallet × × � �
com.fallacystudios.zombiehandbooklite × × � �
com.giraone.encmanlite × × � �
com.fiberlink.maas360.android.control × × � �
com.imprezzio.android.CallToPark × � × �
com.punyweakling.skins.storm × × � �
com.snowbee.colorize.hd × × � ×
com.ap.postdispatch × × � ×
com.upstartmobile.Cabulous × � × ×
com.raycom.wxix � × × ×
com.mobidia.android.mdm × × × �
com.ifs.mobilebanking.fiid5334 × × × �
com.handcent.nextsms × � × ×
com.picobrothers.whcf × × � ×
com.ihunda.android.hiit × � × ×
com.kemsoft.myconsultant � × × ×
com.rollcallz.fbcheckin × × × �
com.imprezzio.android.CallToPark × � � �
fm.gigbeat.android � × × ×

Table 8: A list of 50 apps that have the security problems labeled by our method at app level, where � denotes that the app has the corresponding security
problem and × indicates that there is no corresponding security problem.
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Figure 5: Distribution of # of users (log scale) over the learned α.

less in the crowdsourcing process. These users may more focus
on the functionality and attractiveness over the security issues of
the app, or simply do not want to make the efforts of reporting the
issues.

The higher peak shows the users that are much more likely to
report a security issue. They are considered as experts and their
reviews are considered with high weights in the crowdsourcing
process. These users are sensitive to those four security issues and
are more willing to report them once they find them.

The distribution of users over the learned β values (Fig. 6) shows
not much information, compared to that over α. Although α and
β look symmetric in Eqs.(3, 4), in fact they are quite different in
data. Users are not obligated to report security issues in reviews,
and their default behavior is to report nothing. Therefore, β, the
value of the probability of reporting nothing when the app does not
have the issues, has a very high expectation with lower variance.
As a result, the distribution of β has a clear tendency towards 1,
and the three peaks are less obvious than those over α (note that
the number of users is in log scale, and the peak near 1 is actually
much more significant).

It is worth noting that the parameters are learned based mainly
on how well the users’ opinions match the majority. It does not
reveal the exact reason why the credibility is low for some users.
So we are not considering those users with low credibility as fraud
users. It is just that their opinions carry less value for these four
underlining security problems, and it is perfectly fine for the users
not reporting any of the issues in reviews.

This also shows why we use the two-coin crowdsoucing model
instead of the simple majority voting in the crowdsourcing process.
With the distinction of different types of users, the app-level results
would be much more reliable. User credibility can be used to detect
the low quality annotators or spammers who assign labels randomly
(e.g., without actually looking at the apps).

6.4 Discussion
Utility As demonstrated in the experiment results, generally

users have different psychological expectations for different apps,
and do not necessarily concern about the same security issue [22].
We believe that it could benefit end-user security8. On the other
hand, if market owners implement such a feature in app store, it

8
Even so, different users may react differently after seeing such labels. For

example, an attacker may even intentionally use security keywords to make

Figure 6: Distribution of # of users (log scale) over the learned β.

is potentially counterproductive for the revenue, since some apps
have security issues!

Relations with program analysis We acknowledge that
program analysis (e.g., [8], [15], [2], [14], [31], [17], [7], [46])
reveals the security behaviors that actually happened. However,
this paper focuses on a different perspective. For the sake of
completeness, we discuss the differences between the behaviors
from user reviews and those from program analysis regarding the
four security behavior categories.

The first behavior, spamming, has different meanings from the
ads libraries detected from program analysis. Spamming refers
to both foreground and background ads and spamming behaviors,
including ads in the notification bar, ads via email, ads via SMS,
pop-up ads, fishing, etc. Program analysis can easily find ads
libraries [16] used in mobile apps. Ads are present in most free
Android apps, so it would be surprising if users would consider
all ads as spamming. In other words, spamming can not be simply
conflated with ad libraries. Given the ads library used by apps,
why the user complains about some apps but not others? The ads
detection task defined in ads analysis from program analysis may
not comply with what users really feel about the ads.

The second behavior, financial issue, is quite difficult to
be detected using program analysis. Financial issues include
complains about In-App-Purchase (IAP), free app to premium
update and others that cause the users actual money lost in external
contexts other than the running apps. For example, users may pay
for IAP or upgrade but get nothing as described, and a bank app
may transfer money for users but only deduction happened without
deposit. These issues may be caused by program bugs but also
by intentional fraud. These issues bother users’ experience and
cause security concerns that are beyond the running apps in users’
devices.

The third behavior, over-privileged permission, has different
meanings for users and static analysis. For users, it means that the
user does not believe that an app should request a permission for
its intended functions. For static analysis, it means that the app
requests permissions not required by its API calls. We can expose
this in the following example. When an alarm clock app requests
the camera permission, the user would always deem it as over-
privileged permission, no matter how the app is written. However,

the app have a security label; another attacker may begin to write more
negative reviews.
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the app can fly under the radar of static analysis by invoking the
camera API. We agree that the latter is more dangerous because
the app actually uses the dangerous permission instead of merely
requesting it.

The last behavior, data leakage, refers to accessing sensitive
information without user’s acknowledgement. For example, in an
app, users’ location information can be accessed and sent to the
third party without users’ awareness. Our detection is more from
users’ perspective. We are aware that user review analysis can not
capture sensitive data flow and how data are sent out of phone as
static or dynamic analysis does. However, we do know whether the
users feel comfortable if their personal data are “leaked".

In summary, user review analysis is an important complement to
program analysis due to the facts that:

• The user reviews reveal how the users feel about their
experiences. Users’ expectations play a big role on how much the
users can tolerate the apps’ behaviors. Similar app behaviors may
receive different responses from users.

• External factors of the app behaviors when using are much
easier revealed by user reviews.

• Privacy issues are relative and personal. The borderline
between privacy-intruding and tolerable misbehaviors is fuzzy
and highly dependent on users’ subjective expectations. Hence
user reviews may provide an important complementary source
for determining the threshold with the objective app behaviors
revealed by program analysis.

6.5 Limitations
Firstly, we need human efforts to label whether each review

states about the four categories of security-related behaviors.
The operation of AUTOREB depends on the availability of user
reviews of mobile apps. When new categories of security-related
behaviors are added, we can refer to the semi-supervised learning
technique [43] to free people of labeling large amount of new
training samples.

Secondly, the four categories of security behaviors are defined
based on common sense. Since this is the first work about app
risk analysis using user reviews, no previous works have discussed
about what kind of behaviors users are most concerned with. As a
future work, we will address this limitation by conducting a more
thorough user study to support other categories of risk behaviors.

Finally, similar to other machine learning based systems,
thresholds are used for feature learning and classification of user
reviews. Determination of these thresholds generally needs domain
knowledge and cross validation.

7. RELATED WORK
Machine learning for security Since the initial intrusion

detection work done by Lee et al. [21], machine learning has
been used to solve security problems, such as worm signature
generation [32], malware classification [20] [45], software
plagiarism detection [24], etc. Recently, machine learning has
been used to understand the mobile app permissions and behaviors
through analysis on the meta-data such as descriptions [33] [36],
and contextual API dependency graphs [48], etc. In our work, we
treat the user review understanding as a machine learning problem,
and our approach is unique in that we consider the semantics of
users’ reviews when automatically inferring the security behaviors
of mobile apps.

Mobile app risk assessment using meta-data Most (if not
all) existing works on the analysis of mobile app risks from
meta data focus on the descriptions of mobile apps [19] [36]
which are provided by developers. WHYPER [33] predicts the risk

assessment of mobile apps based on the analysis of the descriptions
of apps from natural language processing perspective using first-
order logic. Autocog [36] uses natural language technique and
machine learning based approach to access the description-to-
permission fidelity of mobile apps. Recently, Lin et al. [22]
introduce a new model for privacy by capturing users’ expectations
via crowdsoucing, where the users’ expectations of mobile apps are
captured from user study rather than the user reviews by millions
of users across the world as in AUTOREB. Sentiment analysis [23]
has advantages in extracting and identifying subjective information
from text corpus, which could be used to find more fine-grained
user behaviors.

Annotations/Comments from users can be seen as decision aids
that provide how others feel about the content. Muralidharan et
al. [28] found that annotations are most helpful when they are from
people known to have expertise in the current domain. Nelson et
al. [30] found that expert annotations improved learning scores for
exploratory learning tasks. User reviews can be viewed as “human
annotations", which reflect how users feel about the apps. Existing
studies show that if the app risk is too high, users decide not to
install the app [42]. Moreover, the quality of mission critical app is
not very high [18]. Unfortunately, users are unaware of app risks.
As a new perspective, user reviews provide cues to help people
evaluate the risks of apps.

Mobile security using code analysis There exist many works
on permission analysis [9] [49], code analysis [15] [2], [47], and
run-time behavior analysis [17] [7] [46] for security and privacy
enhancement on mobile phones. Livshits et al. [25] proposed a
two-prong static analysis algorithm for correct resource access
prompt placement in smartphones. Nan et al. [29] proposed a
run-time security enhancement mechanism for user input data
protection on smart phones. However, these works are orthogonal
to ours. AUTOREB explores the user reviews to understand
users’ real concerns for security issues, which can be used as
a complementary tool to program analysis for improving user
experiences and interactions on mobile apps.

NLP and data mining in software engineering DynaMine [26]
was developed to find common error patterns by mining software
revision histories. Qi et al. [35] point out that the earlier well-
known advanced search-based technique for automatic bug
repairing doesn’t even beat a naive random deletion technique.
Gegick et al. [13] leverage the existing basic NLP and text mining
techniques to identify security bug reports among all bug reports.
Tan et al. [40] take the first step in automatically analyzing
comments written in natural language and use them to detect
inconsistencies between comments and source code, indicating
either bugs or bad comments. Pandita et al. [34] analyze natural
language API documents to extract specifications that target
towards generating code contracts. Slankas et al. [39] combine
the techniques of information extraction and machine learning to
discover patterns that represent access control rules in sentences.

There are several key distinctions between our approach and
those works. Firstly, the texts in user reviews are much more free
and messy compared to code comments and documentations in
these works. The advanced NLP method such as POS tagging,
syntax parsing and ontology tend to fail on the short, unstructured
pieces of texts with misspelling and made-up words, since they are
not written to be documented. Secondly, we adopt pseudo relevant
feedback in information retrieval, due to the similarity between the
freely conscripted query string and the messy review text. We do
not claim there is no appropriate NLP technique that can improve
the performance. Finally, we apply the techniques in machine
learning and information retrieval to solve the problems which
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may be hard to solve with other methods, e.g., evaluating users’
credibility on certain security issues from their reviews.

8. CONCLUSION
In this paper, we propose the system AUTOREB that understands

the review-to-behavior fidelity in Android apps. AUTOREB can
infer the mobile app security behaviors from the apps’ reviews
from different users via crowdsourcing. The machine learning
based algorithm and crowdsourcing techniques are able to mine
the relations between user reviews and app security behaviors. To
our knowledge, AUTOREB is the first work that has the capability
to accurately detect the apps’ security behaviors from user reviews.
Our system achieves the average accuracy as high as 94.05% in
inferring the security behaviors from user reviews. We also get
credibility for different users at app-level. Our study provides
valuable insights and quantitative analysis in understanding the
app behaviors from the users’ perspective.
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