
POSTER: Towards Compiler-Assisted Taint Tracking on the
Android Runtime (ART)

Michael Backes
CISPA, Saarland University

& MPI-SWS
backes@mpi-sws.org

Oliver Schranz
CISPA, Saarland University

schranz@cs.uni-
saarland.de

Philipp von
Styp-Rekowsky

CISPA, Saarland University
styp-rekowsky@cs.uni-

saarland.de

ABSTRACT
Dynamic analysis and taint tracking on Android was typi-
cally implemented by instrumenting the Dalvik Virtual Ma-
chine. However, the new Android Runtime (ART) intro-
duced in Android 5 replaces the interpreter with an on-
device compiler suite. Therefore as of Android 5, the ap-
plicability of interpreter instrumentation-based approaches
like TaintDroid [1] is limited to Android versions up to 4.4
Kitkat. In this poster, we present ongoing work on re-
enabling taint tracking for apps by instrumenting the Op-
timizing backend, used by the new ART compiler suite for
code generation. As Android now compiles apps ahead-of-
time from dex bytecode to platform specific native code on
the device itself, an instrumented compiler provides the op-
portunity to emit additional instructions that enable the
actual taint tracking. The result is a custom compiler that
takes arbitrary app APKs and transforms them into self-
taint tracking native code, executable by the Android Run-
time.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection–
Information flow controls

Keywords
Information Flow Control, Taint Tracking, Android, ART,
Compiler

1. MOTIVATION
In modern mobile operating systems, potentially privacy-
critical user data and hardware capabilities are often ex-
posed to apps through permission-guarded APIs. For An-
droid versions up to 5.1, those permissions are requested and
granted only once at installation time, while the approaching
Android M release will feature dynamic permission revoca-
tion for a selected subset of permissions. However, the ac-
tual usage of those privacy-sensitive resources remains com-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
ACM 978-1-4503-3832-5/15/10.
DOI: http://dx.doi.org/10.1145/2810103.2810129.

pletely opaque to the user. In order to take a closer look at
the data usage of apps, taint tracking has proven valuable
in the Android setting.
Taint Tracking on Android. In order to track the flow
of information through an application, the app’s code needs
to be instrumented. Each piece of data returned from a
privacy-critical source, like a permission protected API, is
tainted immediately in the app process itself. In case such
data is used in computations, the taint carries over to the
results. As soon as a data sink (e.g. network transaction,
I/O call) is reached, the involved variables’ taint values are
checked and a predefined set of actions is triggered. For
example, a dynamic system could interrupt an app in case
it tries to send data derived from a user’s contact list to a
remote server. In the general case, the definition of sinks,
sources and the actions to take upon leakage are specified
by policies.
State of the Art. We distinguish static and dynamic ap-
proaches for taint tracking. Static techniques analyze apps
offline [2][3] to provide risk assessment before the app is actu-
ally run or installed. The downside is their lack of runtime
information, raising coverage problems if code is dynami-
cally loaded at runtime. Dynamic systems [1] monitor the
app at runtime and can actively prevent data leakage but
suffer from missing structural information to detect implicit
information flow. Even though hybrid approaches exist to
provide better results, soundness and completeness are still
open challenges in many contexts. Despite those downsides,
taint tracking has proven to be a powerful tool to detect
data leakage in practice.
While offline analysis remains unaffected by the new An-
droid Runtime (ART), dynamic approaches which instru-
ment the Dalvik Virtual Machine suffer from the fact that
the interpreter is replaced by an ahead-of-time compiler suite.
Therefore, systems like TaintDroid [1] lack their instrumen-
tation target and thus are not applicable anymore as of An-
droid 5.
Our Ongoing Work. The new runtime provides a novel
opportunity for Android solutions to place the instrumenta-
tion point in the compiler itself. At this point, we have full
control over how the app is compiled and what is produced
as its native representation, without the need to rewrite
the original app or to modify the concrete runtime envi-
ronment. Using this approach, additional code to handle
the taint tracking is inserted as a part of the compilation
process. From the system’s point of view, a regular app
is executed since the code is not injected dynamically but
already present in the compiled app.

1629

2. DESIGN DECISIONS

2.1 Target Compiler
The introduction of a dedicated compiler suite changed the
way apps are installed on Android. In the past, the byte-
code was optimized before execution and just-in-time (JIT)
compiled at runtime by the Dalvik Virtual Machine. Even
though the new compiler suite operates on dex files for com-
patibility reasons, it comprises a flexible toolset instead of
a simple replacement for dex optimization. The dex2oat ex-
ecutable serves as an entry point to the compiler suite and
takes advantage of several possible compiler backends for
the actual code generation. Quick, the current standard, is
derived from the JIT compiler and thus not suited for more
complex ahead-of-time optimizations such as Linear Scan
Register Allocation. In order to allow for state of the art op-
timization techniques during the compilation phase, Google
designed a new compiler backend from scratch, namely the
Optimizing backend. Figure 1 gives an overview on how
the compiler suite compiles an application using the Opti-
mizing backend. The intermediate representation (IR) is
a control flow graph enriched with meta information like
post-domination and def-use-pairs, created to ease complex
optimizations. Given its clean and powerful IR and the in-
dication that Google is planning to make it default in the
long term, it yields a promising instrumentation target.

2.2 Instrumentation Points
For the Optimizing backend, there are three canonical loca-
tions to place the taint tracking code generation at.

1. Dex to IR Transformation. The logic to insert new
nodes into the IR and interlink them with the current
graph is already present at this stage and can be reused
to generate additional tracking code. Inserting new
code is possible here in a non-invasive way that leaves
the IR intact and therefore does not interfere with the
subsequent optimization passes.

2. IR Graph. Adding nodes here is not as straightfor-
ward, but gives the opportunity to decide which opti-
mization passes may ease the process of code injection
and may run beforehand, and which ones have to fol-
low afterwards. This allows for flexible placement of
the tracking code generation phase. Additionally, the
built and interlinked IR graph provides the necessary
infrastructure to create own passes.

3. IR to Native Code Transformation. Directly adding
code here is comparable to instrumenting the result-
ing binary, even though helper functions are present to
ease the process of generating native code. However,
the compiler’s abstraction from registers and stack slots
is not applicable to code not present in the IR, so this
logic has to be replicated. Furthermore, optimization
passes over the taint tracking code are not easily pos-
sible at this late phase because they rely on a proper
IR graph that lacks information about our additional
code in this case.

We reuse the IR generation routines of the dex to IR trans-
formation phase to add taint tracking code, but for the fu-
ture we plan to combine it with optimization passes that
operate on the created IR graph to improve the runtime
performance of the resulting code.

dex2oat

APK
Shared Object

<binary code>

<binary code>

<binary code>

Optimizing

Method 2

Method 3

START

Exit

ELFIR

Figure 1: Sequence diagram of the dex2oat suite
compiling an application. The Optimizing backend is
used to first transform each method to an IR graph
and finally compile them to native code.

2.3 Performance
Typically, dynamic taint tracking requires additional code to
be added to take care of the taint generation, propagation,
and checking. This usually imposes significant performance
overhead. The injected code requires additional computa-
tion time and the memory footprint increases due to the
storage of taints. There is always a trade-off between per-
formance overhead and accuracy, raising the challenge on
how to get reasonable results without sacrificing app perfor-
mance to an extent that affects user-experience. One of the
reasons to instrument the compiler instead of modifying the
dex file directly is the advantage of benefiting from the com-
piler’s optimization infrastructure. The IR graph is tailored
in a way that greatly facilitates adding new optimizations,
like passes that utilize static information to optimize the
taint tracking code. For instance, the tainting of local vari-
ables that again have only local variables in their forward
slice can be omitted.

2.4 Accuracy
In most cases, taint tracking is neither complete nor sound,
still recent results [1][2] prove its value in finding critical data
leakage. In our setting, tainting is done for intra-process
computation as only the app and not the whole system is
seen by the compiler, so if tainted data leaves our controlled
environment, the taint may get lost. In general, there are
several points in Android’s application framework that in-
troduce certain kinds of haziness concerning taint tracking.
For some of those challenges, the amount of accuracy loss
can be decreased by extending the scope of the taint tracking
or by defining proper policies.
Framework and Boot Image. Android provides a rich set
of framework libraries, like framework.jar, that applications
can use for recurring tasks. ART precompiles such libraries
into a boot image consisting of boot.oat and boot.art. It is
loaded into each application’s process for optimization pur-
poses as it constitutes the classes that most apps make use
of. Creation of the boot image happens once during startup
after an Android upgrade and is performed by the dex2oat
compiler suite. This gives us the opportunity to also include
taint tracking code in the framework classes to increase the
accuracy by using our instrumentation for the image com-
pilation, too.

1630

I/O and Serialization. When tainted data is written to
file storage, it is not straightforward to decide how to handle
its taint. First problem is to keep the tainting information
intact. Simply dropping the taint results in a loss of accu-
racy, but keeping the taint may raise compatibility issues
with other non-taint tracking apps. The sweet spot is to ac-
tually store the taint along the actual data in a backwards-
compatible way. A näıve solution would store files with ad-
ditional meta files carrying the taint information. If the file
is read by code that supports taint tracking, then the taint
is also read, otherwise it is simply ignored. TaintDroid [1]
utilizes the file system’s extended attributes to store the
taint. However, this requires system modifications. Second
problem is to define a proper granularity. If tainted data
is appended to a file, either the whole file or only the spe-
cific subtext is tainted, depending on how fine-grained the
tainting is defined.
Native Libraries. Native libraries are already shared ob-
jects and therefore there is no need for the backend to com-
pile them again. The downside is that the compiler has no
information about the actual native code that is called from
within the Java world. Simply ignoring taint information
for native calls may miss leakage, but tainting every variable
returned from the native world can result in massive over-
tainting which leads to false-positives. While TaintDroid
completely refuses to load native libraries that are not part
of the firmware [1], we plan to support them. Tolerating
native calls may decrease the accuracy but also greatly en-
hance compatibility and acceptance since games for instance
often utilize native libraries for performance reasons.
Inter Process Communication. Android makes heavy
use of the Binder module for inter-process communication
(IPC), which poses challenges similar to those for I/O and
Serialization. For the app-to-app communication, the policy
depends on whether both apps support taint tracking. This
topic was recently addressed by a system called IccTA [4].
Beside inter-app communication, Binder IPC is frequently
used for communication with the system as many manager
classes are Binder proxies connected to the middleware. For
those cases, taint information is lost unless the system is
modified to also include taint-aware code.

2.5 Generalization
The approach described in this work is suited towards inject-
ing taint tracking code into applications in a non-invasive
and stable way. The idea however can be generalized to
support arbitrary instrumentation at the compiler level. We
plan to extend our compiler additions to an instrumentation
framework, comparable to dexlib [5]. Approaches like inline
reference monitoring [6] that often rely on rewriting or hook-
ing may for instance benefit from the flexibility and robust-
ness of a compiler-based code injection framework that can
potentially also expose parts of the backend’s optimization
infrastructure.

2.6 Deployment
Currently, our implementation solely instruments the com-
piler suite residing in libart-compiler.so while the runtime
environment libart.so remains unmodified. This allows us
to ship our instrumented dex2oat binary and its dependen-
cies to the device using a regular application. Given an
arbitrary third-party application that we want to make self-
taint tracking, we first install it, which will result in Android

compiling it using its unmodified on-device compiler. Sec-
ond, we run our own custom compiler on the app’s APK file
to create the native version, which now includes the taint
tracking code. Third, we replace the native version gener-
ated by Android with our recompiled one. Fourth, we start
the app using an Intent. The (unmodified) Android runtime
will now load our version of the compiled app. All we need
is the app APK, which for installed apps is stored on the de-
vice or otherwise can be obtained from an app market, and
root rights to successfully execute steps one and three. Our
prototype runs on a rooted Android compiled from AOSP
master branch (checked out June 2015) and successfully cre-
ates and installs self-taint tracking apps without involving
the developer and without changing the system. In addi-
tion, a virtualization technique like Boxify [7] could allow for
achieving app instrumentation and execution without root
privileges.

3. CONCLUSIONS
We presented our current work-in-progress for app taint
tracking on Android, moving towards overcoming the caveats
ART introduced in this field. Our system instruments the
Optimizing backend, which is designed for supporting state-
of-the-art compiler optimizations and will be default in fu-
ture versions of Android. Our prototype comes as a regular
Android application and can recompile arbitrary third-party
apps to be self-taint tracking on rooted devices. Apps com-
piled with our approach are executed as usual with Android
being completely agnostic about their taint tracking abili-
ties. The approach can be generalized to an instrumentation
framework that may ease further research which depends on
analysis, rewriting or hooking techniques.

4. REFERENCES
[1] W. Enck, P. Gilbert, B. Chun, L.P. Cox, J. Jung,

P. McDaniel, and A.N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In USENIX OSDI 2010.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
FlowDroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
ACM SIGPLAN PLDI 2014.

[3] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: Automatically detecting potential
privacy leaks in android applications on a large scale.
In Trust and Trustworthy Computing 2012.

[4] L. Li, A. Bartel, T.F.D.A. Bissyande, J. Klein,
Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel. Iccta: detecting
inter-component privacy leaks in android apps. In
IEEE/ACM ICSE 2015.

[5] Gruver B. Smali: A assembler/disassembler for
android’s dex format.
http://code.google.com/p/smali. [Online; accessed
8-July-2015].

[6] Ú. Erlingsson. The Inlined Reference Monitor Approach
to Security Policy Enforcement. PhD thesis, 2004.

[7] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and
P. von Styp-Rekowsky. Boxify: Full-fledged app
sandboxing for stock android. In USENIX Security
2015.

1631

http://code.google.com/p/smali

	Motivation
	Design Decisions
	Target Compiler
	Instrumentation Points
	Performance
	Accuracy
	Generalization
	Deployment

	Conclusions
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150813104621
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 12
 AllDoc
 12

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 2
 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150813104621
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 12
 AllDoc
 12

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 2
 3
 2
 3

 1

 HistoryList_V1
 qi2base

