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ABSTRACT

Formal models and security proofs are especially important
for multisignatures: in contrast to threshold signatures, no
precise definitions were ever provided for such schemes, and
some proposals were subsequently broken.

In this paper, we formalize and implement a variant of
multi-signature schemes, Accountable-Subgroup Multisigna-
tures (ASM). In essence, ASM schemes enable any subgroup,
S, of a given group, G, of potential signers, to sign efficiently
a message M so that the signature provably reveals the iden-
tities of the signers in S to any verifier.

Specifically, we provide:

1. The first formal model of security for multisignature
schemes that explicitly includes key generation (with-
out relying on trusted third parties);

2. A protocol, based on Schnorr’s signature scheme [33],
that is both provable and efficient:

e Only three rounds of communication are required
per signature.

e The signing time per signer is the same as for
the single-signer Schnorr scheme, regardless of the
number of signers.

e The verification time is only slightly greater than
that for the single-signer Schnorr scheme.

e The signature length is the same as for the single-
signer Schnorr scheme, regardless of the number
of signers.

Our proof of security relies on random oracles and the hard-
ness of the Discrete Log Problem.
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1. INTRODUCTION

Since their introduction by Itakura and Nakamura in [19],
multisignatures have been extensively studied, and yet no
formal definition of this notion has been provided to date.
This lack of formalism has led to some confusion as to the
precise meaning of multisignature, as well as to some pro-
posals that have been subsequently broken. We thus wish
to address both problems.

1.1 Defining Multisignatures
1.1.1 The Need for Flexible Accountability

Given a group of potential signers G = Pi,..., Py, mul-
tisignatures allow certain subsets S of signers (henceforth
called subgroups) to sign messages together. A simple case,
explicitly addressed, for example, in [27, 29], envisages S =
G, that is, every signer in G must participate in producing
a multisignature. The case of more general subgroups S has
been, in particular, addressed in [19, 17, 22, 18].

General subgroups of signers are needed in many applica-
tions. (For example, if a certification authority is distributed
on L servers, it would be useful that only a subset of the
servers is needed to issue a valid certificate.) But: what
properties should such general multisignatures satisfy? We
suggest the following two (informally, for now):

o Flexibility. Flexibility means that any subgroup S of
G may easily jointly sign a document. It is then up
to the verifier of the signature to decide whether S
was “sufficient” for the signature to be deemed valid.



This places no restriction on the size of S. In fact, it
allows complex rules about S to be enforced, such as,
for example, the following: “either the CEO is in S, or
three senior VPs are in S.”

e Accountability. Accountability means that, without
use of trusted third parties, individual signers can be
identified from the signed document. This is desirable
in many settings: if an incorrectly issued certificate is
discovered, it is important to identify the corrupted
servers.

Notice that, in the “paper world,” these two properties are
satisfied by the traditional solution in which every member
of S appends his own signature to the document to be jointly
signed.

1.1.2 The Need for a Formal Model

Because of the lack of a formal model of security for
multisignatures, there has been no consensus on the pre-
cise meaning of the term. Even more troublesome is the
fact that few of the previous proposals for multisignature
schemes ever attempted a formal security proof, and some
proposals turned out, in fact, to be insecure. For example,
the proposals of [17] and [22] were subsequently cryptana-
lyzed by [18], [21] and [26].

Absent a complete formal model, even schemes that have
formal proofs of “security” are vulnerable to attacks: the
“Type II” scheme of [29] is subject to a previously known at-
tack on key generation, even though the paper contains for-
mal statements about the scheme’s security (see footnote 3
in Section 3.2 for more details). This is so not because the
theorems of [29] are wrong, but rather because the defini-
tion of security simply does not address adversarial behavior
during key generation.

1.1.3 Our Model

In Section 2, we provide a formal model for multisigna-
tures that requires both flexibility and accountability. To
avoid confusion with other similar notions, we use the term
“accountable-subgroup multisignatures” (ASM) to describe
the schemes in our model. The model is precise enough to
allow for formal security proofs, and, unlike the definition of
[29], encompasses key generation. The adversary allowed in
our model is quite strong, thus ensuring that ASM schemes
are, in fact, secure.

1.1.4 ASM vs. Other Notions

There have been a number other notions proposed for sig-
natures by multiple signers. The terms “multisignature,”
“group signature,” and “threshold signature” are not always
used consistently; moreover, other terms, such as “threshold-
multisignatures” [22] are also sometimes used. We focus here
only on the most commonly used models and terminology.

GROUP SIGNATURES. In a group signature [8, 6]), there
is a total group G of potential signers, but each signature
is produced by any (anonymous) individual member on be-
half of the entire group. Therefore, group signatures are
not flexible: there is no mechanism for enforcing larger than
one-member subgroups. Furthermore, group signatures offer
only partial accountability: the identity of the signing mem-
ber is unknown to a signature verifier, though it is available
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to a trusted party, the group manager, in case problems
s 1
arise.

THRESHOLD SIGNATURES. In a threshold signature scheme
(see, e.g., [10, 13, 14]), a message can be signed only by
a sufficiently large subgroup. Therefore, threshold schemes
are reasonably flexible, but do not offer accountability. In
fact, there is no way of identifying the members of S from a
signature.?

Such anonymity, while desirable in some settings, is dan-
gerous in others. By removing accountability for what is
signed, one may actually encourage cheating. If some senior
officers of a corporation can enrich themselves (e.g., by sign-
ing the sale of certain corporate assets) with a mathemat-
ical guarantee of anonymity, then such enrichments would
become more frequent than desirable.

1.2 Designing Multisignatures

1.2.1 TheKey Generation Problem

Vulnerabilities in the key generation stage are a main
problem in discrete-logarithm-based multisignatures. In par-
ticular, they are the basis for the aforementioned attacks on
[17], [22] and [29]. The problem stems from the fact that
adversarial signers can choose their keys after seeing other
signers’ keys, and can therefore potentially affect the joint
public key of the subgroup S.

Past discrete-logarithm-based multisignatures have there-
fore required a trusted third party for key generation (in
particular, [18] suggests using a trusted third party to fix
the problem in [17]).

Key generation has also been a problem for threshold sig-
natures. In this case, fortunately, the problem has been
resolved, at least for the discrete logarithm case (see, e.g.,
[31], [15]). However, threshold signatures, by design, exclude
accountability, and thus the solutions available for them do
not easily extend to multisignatures (see 2.1).

1.2.2 Our Implementation

In Section 3, we provide an efficient implementation of
ASM schemes, based on the Discrete Logarithm problem
and the Schnorr [33] signature scheme. Our starting point
is a “two-cycle” scheme suggested briefly in Section 6 of [29].
We modify it extensively, however, to obtain a scheme that
is provably secure in our model and does not suffer from
the vulnerabilities during key generation that the original
scheme has.

Our scheme has the following desirable efficiency prop-
erties, when compared to the obvious solution that simply
uses multiple single-signer signatures:

e The signature length does not grow with the number
of signers: it is the same as that of a single-signer
Schnorr signature.

!This reliance on the trusted manager, who could be “elimi-
nated” (at least electronically —e.g., by destroying its com-
puter) to avoid accountability, is a drawback in many set-
tings.

2In essence, in most threshold schemes, signing involves (im-
plicitly) interpolating an (¢ — 1)-degree polynomial from ¢
point-value pairs. Thus, once the polynomial is (implicitly)
reconstructed, there is no way of knowing which ¢ out of
the possible L point-value pairs were actually used in the
interpolation.



o The verification is almost the same as the time needed
to verify a single Schnorr signature.

The cost of these improvements is quite moderate:

e The signing protocol requires only three rounds of com-
munication among the members of S, irrespective of
the size of S.

e The signing time per member of S is almost the same
as the time required to produce a single-signer Schnorr
signature.

e Only the key generation protocol (done once for a group
G ) requires each member of G to perform communica-
tion and computation that is linear in the size of G.

1.2.3 Comparison with Prior Implementations

Implementations based on repeated use of trapdoor per-
mutations (such as [19] and [30]) require as many rounds
of communication as there are signers; the verification time
grows linearly with the number of signers as well. Addi-
tionally, they are not provable in our model (although it is
possible to modify the scheme of [30] to make it provable at
the expense of some efficiency loss).

Implementations based on discrete logarithms or the Fiat-
Shamir scheme (such as, for example, [27, 18, 28, 29], and
the first scheme of [22]) require a trusted third party for key
generation. Implementations that do not require a trusted
party include the second scheme of [22] and the multisig-
nature scheme of [17], both of which, however, have been
successfully attacked (e.g., by [21, 26]). An implementation
that does not require a trusted party and can be proven se-
cure in our model without major modifications is the “Type
IIT” scheme of [28, 29]. However, its security holds only
for logarithmically many signers, and the scheme requires
significantly more verification time per signature.

2. THENOTION OF AN ASM

2.1 Thelnformal Notion

Let us now informally express what an ASM scheme is,
that is, what it means to efficiently allow any subgroup S of a
group G of signers to sign a message, keeping each individual
member of S accountable for what S signs.

Informal Definition An accountable-subgroup multisig-
nature of a subgroup of signers S for a message M pro-
vides, without any trusted managers or third parties, a self-
contained and universally verifiable proof of (1) the compo-
sition of S and (2) the fact that each member of S stood
behind M.

The above definition, due to its informality, is quite vague.
For instance, it does not specify whether S should be chosen
in advance, or whether the members of S are aware of their
co-signers. To remove such ambiguities, ASM schemes are
best defined by specifying a basic solution that may be quite
inefficient, but spells out the rules of the game. The goal of
an ASM scheme will then be achieving the properties of the
basic solution more efficiently.

The Inefficient Solution: Let G be a group of sign-
ers, in which each member P; has his own individual
public key PK; and corresponding secret key SK;. Ar-
bitrarily order the members of the group. Then, the
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signature of subgroup S = (P;,...,P;,) of a mes-
sage M consists of the sequence (o1,...,0m), where
o; is P;;’s individual signature (relative to public key

PK;;) of the pair (M, S).

A formal definition of an ASM scheme is essentially obtained
by adding a proper adversarial model to the basic solution.
We do this in Section 2.2. For now, let us understand better
the properties of our basic solution. To this end, it is im-
portant to realize that the following simple-minded attempt
at adding accountability to existing threshold schemes does
not work.

A Non-Solution: Start with any threshold signature
scheme, and add the requirement that each signed mes-
sage include the list of the members of S who partici-
pated in the signing protocol.

This does not work, because any player P not belonging
to S can be “framed” by the members of S, who can simply
add P’s name to the list. Moreover, the real signers may not
include their own names in the list. In a 3-out-of-6 scheme,
for example, this would be particularly unacceptable: the
signers may be a, b, and ¢, but they may pretend to be d,
e and f instead. Indeed, even if the threshold were to be
higher than half of GG, one could only conclude that one of
the purported signers is genuine, but it is still impossible to
determine which one.

2.1.1 Understanding the informal notion

We take our inefficient basic solution to be the ideal in
terms of the properties we want from ASM schemes. Our
goal is to define a model that captures these properties, and
come up with schemes in this model that are more efficient
than the basic solution (note that the basic solution is quite
inefficient: both the signature size and the verification time
grow linearly with the size of S). We therefore gain better
understanding of the new notion by further examining the
basic solution.

THE ROLE OF S. Specifying S in the signed message en-
sures that each signer know his co-signers in advance: if all
members of S do not individually sign (M, S), the signature
is not deemed legitimate. Thus, each signer knows precisely
with whom he shares responsibility for the signed message.
(In fact, some attacks on previous multisignature schemes
resulted not in forged signatures, but in providing a signer
incorrect information about his co-signers.)

One may envisage a different basic solution in which any
member of G that wishes to sign M does so, sending the
signature to a clerk. The clerk then “constructs” S using the
signatures received. This approach has the advantage of not
requiring any advance agreement on S. The disadvantage,
however, is that the clerk, acting adversarially, can become
a “guardian angel” for some signers. Suppose a member of
G wants to get a document M signed but prefers not to have
to take responsibility for it if possible; that is, if sufficiently
many other signers are willing to sign M, she would like her
signature to be excluded. She can then send her signature to
the clerk, but the clerk will include it in the final output only
if it is absolutely necessary for the document to be deemed
valid.

Of course, both notions are valid and have applications.
In this paper, however, we only consider the first one, in



which S is explicitly specified. It is worth pointing out that
designing a non-trivial provable scheme of the other kind,
where the composition of S can be decided after the signa-
tures are received, is an interesting open problem.

ASM vs. THRESHOLD. ASM schemes are different from
threshold schemes not only because they “add accountabil-
ity”, but also because they empower any subgroup (rather
one of sufficient cardinality) to sign a message. At the same
time, a threshold can be easily added to an ASM scheme:
the verifier simply checks that the cardinality of S exceeds
the threshold.

SECURITY VS. ROBUSTNESS. Notice that the basic solu-
tion is secure, in the sense that the adversary may not forge
the signature of a subgroup S (containing a “good” player).
Notice too, however, that the basic solution is not robust:
if a corrupted player of S “shuts oftf”, then, by definition,
S’s signature of a message M cannot be computed. We are
therefore not seeking robustness in our model. This allows
us to define the model in terms of a very strong adversary
who controls all possible communication lines, and thus can
prevent also the messages from good players to good players
from reaching their destinations. Such extreme adversar-
ial behavior, naturally, prevents robustness. At the same
time, such adversarial ability makes the security properties
of ASM schemes much stronger.

WEAK ROBUSTNESS. One could endow the basic solution
with a weak robustness property. Roughly said, if a subgroup
S fails to produce S’s signature of a message M, then at
least one corrupted player P in S will be exposed. This
way, the players may have the option of trying to sign M
again on behalf of a different subgroup S’ not containing P.
Weak robustness could be achieved in the basic solution if
broadcasting is available. Broadcasting could also be added
(in a simple fashion) to make our ASM scheme in Section 3
weakly robust. (Of course, weak robustness could also be
achieved by using some variant of secure computation [16, 4,
7], but with some efficiency loss.)

2.2 TheFormal Notion

We will assume that the total group G consists of L sign-
ers, and that every signer is a probabilistic polynomial-time
Turing machine that initially knows nothing but its unique
identification number (which is, w.l.o.g., one of the numbers
1,2,...,L) and a unary value 1% called the “security param-
eter.” We will also assume that 1* is the same for all the
signers. As will be explained in more detail later, we will
allow the adversary to control the network connecting the
members of G.

COMPONENTS OF AN ACCOUNTABLE-SUBGROUP MULTISIG-
NATURE. A ASM scheme has three components:

1. A (probabilistic) key generation protocol.

This protocol is performed only once (at the very be-
ginning) by all members of G. Each member receives
as input a description of GG, that is, the list of the iden-
tities of all members of G. (If these identities are the
integers 1 through L, then it suffices to have just the
integer L as an input.)

The key generation protocol produces a local output
for each party P;: a secret key, SK;, and the corre-
sponding public key, PK;.
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If an adversary is present during key generation, it may
provide different inputs “G” to different parties.

2. A (probabilistic) signing protocol.

This protocol is performed by the actual signers in S
for every message being signed. The input of each
signer consists of (a) a description of the subgroup
S; (b) the public keys of the members of S; (c) the
message M; and (d) the signer’s own secret key. The
signature o is generated jointly by the members of S,
and is actually output by one of the parties in S.

If an adversary is present during an execution of the
signing protocol, it may provide different inputs .S and
M to each signer, as well as incorrect public keys for
the other signers.

3. A (deterministic) verification algorithm.

This algorithm is run to verify a given signature by an
individual verifier, possibly not belonging to G. The
inputs of the verification algorithm are: the subgroup
S, the public keys of the members of S, the message
M, and the alleged signature o. The output is “YES”
or “NO”.

We require that these components be “correct.” That is,
suppose the signers in a subgroup S follow the protocols
faithfully, and suppose key generation terminates success-
fully for every party in S. Then, if the signers in S perform
a signing protocol on a message M (with correct inputs),
they will produce a signature o that the verification algo-
rithm will accept (if, again, given correct inputs).

THE ADVERSARIAL MODEL. We consider an adversary F
(for “forger”) with the following capabilities:

e [ fully controls all messages exchanged in the network:
whether the sender or the recipient is good or bad, it
can read any message sent, modify it or prevent its
delivery. In addition, F' can send any message it wants
on behalf of any player. (In a sense, therefore, there
are no private or authenticated channels: all players
communicate via the adversary.)

e F' can corrupt any player at any time, during both key
generation and signing. Upon corrupting a player P,
F learns the entire internal state of P; (including all
secret information and past coin tosses).

e [ controls the input of any uncorrupted player dur-
ing key generation (e.g., it can specify different total
groups G to different players).

e For any uncorrupted player P;, F' can conduct an adap-
tive chosen-message-and-subgroup attack: at any time,
it can request that P; execute the signing protocol on
some specified message with some specified subgroup
of co-signers. (Because the adversary fully controls
the network, it can choose whether the co-signers will
actually be really involved in this execution.)

DEFINITION OF SECURITY. Because the adversary fully
controls the network, it can always prevent the parties from
signing a message. Our security goal, therefore, is to prevent
forgeries of new signatures.



DEFINITION 1. We will say that an ASM scheme is secure
if, for all constants ¢ > 0 and all sufficiently large security
parameters k, no polynomial-time (in k) adversary has better
than k™ chance of outputting a triple (o, M, S) such that:

e o is a valid signature on the message M by the sub-
group S of players

e there exists an uncorrupted player P € S who has
never been asked by F' to execute the signing protocol
on M and S.

Note that, in the above definition, S may not be a sub-
group of the original G. That is, we want also to prevent
the adversary from adding one of more “fictitious” players,
so as to (1) form a different total group G’, and then (2) be
able to forge a signature of (M, S), where S is a subgroup
of G’. (Naturally, the single uncorrupted player P cannot
be fictitious: it should be a member of the original G.)

Of course, as is also the case for the single-signer schemes,
it is assumed that, when verifying an ASM signature of
(M, S), the verifier obtains the proper public keys of the
members of SN G. (The mechanism for enforcing the au-
thenticity and availability of such public keys is, as usual,
outside the scope of our definition.) The public keys of the
fictitious players (S \ S N G) might as well be successfully
faked by the adversary.

THE MEANING OF S IN A SIGNATURE. Given that there are
no authentic channels and the adversary can provide incor-
rect inputs during the signing phase, one can reasonably ask
what exactly it means for signer P to be assured that she
is signing M with a signer named “P,,” when P; doesn’t
even necessarily know who P, is. It means the following.
While P; may not know who P, is, the verifier (necessar-
ily) must know authentically who P is, and must obtain
P>’s authentic public key for verification. Then, assuming
that P> has not been corrupted, P; is assured that the ver-
ifier will deem the signature valid only if the person whom
the verifier knows as P» actually participated in the signing
protocol on M, S.

RANDOM ORACLES. As usual, it is possible to extend the
above definitions to the random oracle model, and the ac-
tual schemes we present will be in that model. To extend the
definitions, we will add a second security parameter k2 and
assume the existence of an oracle H : {0,1}* — {0,1}*2
to which all the parties have access. As is usual in the
random oracle model [3], security will be based on the as-
sumption that the oracle is chosen at random from all func-
tions {0,1}* — {0,1}*2. The adversary is now also allowed
queries to H, which we will call “hash queries.”

EQUIVALENT, BUT SIMPLER ADVERSARY. The adversary
described above is extremely powerful, and provides for a
compelling notion of security. However, in Section A of the
Appendix, we show it equivalent to a different type of ad-
versary, for which proofs of security become much easier.

3. ANIMPLEMENTATION OF ASM

The ASM scheme proposed here has a complex key gen-
eration, but it allows for very efficient signing and verifying.
Namely, a subgroup S signs a message M by means of a 3-
round protocol, where each signer sends/receives a total of
3 messages and performs a single modular exponentiation.
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The main cost of verification is |\S| modular multiplications
(that need be performed only once for a given S), and two
modular exponentiations. The signature length is that of a
single-signer signature, and does not grow with the number
of signers.

We construct our scheme by modifying the “two-cycle”
scheme of Section 6 of [29]. The scheme is based on the
discrete logarithm problem (DLP); more precisely, on the
signature scheme of Schnorr [33], summarized below, which
is known to be equivalent to the DLP in the random oracle
model.

3.1 The Schnorr (Single-Signer)
Signature Scheme

A user U generates two primes p and ¢ such that ¢ divides
p—1, g € Z; of order ¢, and a random s € [0,q — 1].
U’s secret key is s and its public key is (p,q,g,I), where
I = ¢g° mod p. To sign a message M, U does the following:

e picks a random r € [0,¢ — 1];

e computes a commitment X = g" mod p;

queries the random oracle H to compute the challenge
e=H(X,M);

e computes y = es + r mod g;

e outputs (X, y) as the signature of M.

To verify a signature (X',y’) for M, one computes e’
H(X', M) and checks whether g¥" = X’ - I¢ (mod p).

3.2 Informal Description

This subsection provides an introduction to our scheme
by presenting an (underlying) naive scheme (essentially, the
“two-cycle” scheme from [29]), and then pointing out differ-
ent reasons for which it does not work, together with the
corresponding fixes.

THE NAIVE SCHEME. All signers in G know each other and
common parameters p, ¢ and g as in the Schnorr scheme.
Each signer ¢ randomly and independently selects s; € [0, g—
1] and sets I; = ¢°* mod p.

An (unordered) subgroup S = {P;,,..., P;,} signs a mes-
sage M in three rounds: all players ¢ in S select a ran-
dom r; € [0,q — 1], compute individual commitments X; =
g™ mod p, and multiply their X;’s together (modulo p) to
obtain a joint commitment, X. Then, all players i in .S com-
pute the joint challenge e = H()aM, S); the “individual
signatures” y; = es; + r; mod ¢; and finally add (modulo q)
their individual signatures together to obtain gy, and output
(X,7) as S’s signature of M.

One verifies (X', 7') to be S’s signature of M by comput-
ing ¢ = H(X', M, S) and checking whether

e

I1 -

P;es

~7

¢ =X (mod p).

PROBLEMS AND FIXES.

Problem 1: How to generate common p, q and g? Only the
security parameter £ and the random oracle H are assumed
to be common to all players. Thus, common p, ¢ and g can



be individually generated by the players in G using a com-
mon generating subroutine and relying on a canonical use of
H as a (common) source of randomness. Unlike the Schnorr
scheme, however, the adversary now also knows additional
information about p, ¢ and g, namely, the very coin tosses
that generated them. This that may help the adversary
solve the discrete log problem in the g-generated subgroup
modulo p. (For instance, if p and ¢ are found by running
Bach’s algorithm [2], then one also gets the entire factoriza-
tion of p — 1, which may perhaps be useful to a clever DLP
algorithm.)

Fiz 1. The fix simply consists of realizing this weakness and
incorporating the (p,q, g) generation process into the DLP
assumption. To be precise, one needs to incorporate also
the performance of this generation process. (For instance,
starting with a large prime ¢ and searching for a prime p =1
(mod q) is not known to be guaranteed to terminate in ex-
pected poly(]g|) time.) To keep this fix simple, we actually
propose to make ¢ “as big as possible”, that is, we assume
that one can easily find primes p of the form 2¢+1 (though
weaker assumptions, described in more detail in the full ver-
sion of this paper, can be used).

Problem 2: The naive scheme is not secure at all if the ad-
versary attacks key generation. Assume that player L is bad
and generates his public key last by choosing a secret key
s € [0,q — 1] and then setting

L—1 -1
I = <H Ii> -g°  (mod p).
i=1

In this case, player L can sign any message M it wants
on behalf of the entire group G: in fact s ends up being
the “group’s secret key,” corresponding to the “public key”
Hle I; (mod p).2

Fiz 2. We fix this problem by requiring that each player ¢
provides a zero-knowledge proof of knowledge (ZKPoK) of
the secret key relative to I; (i.e., a ZKPoK of the discrete
log of I; in base g). To remove interaction in this ZKPoK,
we use the random oracle 4 la Fiat-Shamir [12].

Problem 3: Fizx 2 is insufficient. Indeed, what is the verifier
that checks the validity of this ZKPoK? Assuming that the
public-key database is implemented via a trusted center (or
certifying authority), this verifier could be the center itself
(this, in fact, was the solution proposed in previous works on
DLP-based multisignatures). However, this is an additional
requirement that also introduces potential weaknesses and
constraints. Indeed, there are ways to implement exchange
of public keys without trusted centers. For instance, each
signer can hand its public key to all potential verifiers at
the next CCS conference. Alternatively, signer i can use its
previously certified public key to sign its current public key
I;. (And, though a trusted center may have been involved in
publicizing the previous key, it may not be around to certify
the current I;.)

Fiz 3. These problems can be solved by having each signer
¢ include in its public key not only I;, but also the (non-
interactive, random-oracle based) ZKPoK. This results in

3 This attack has appeared in the past, in particular, in the
works of [18, 21, 26]. The same attack can be used against
the “Type II” scheme of [28, 29].
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a moderate loss of efficiency: each public key gets slightly
longer, and each verification requires 2|S| 4+ 2 exponentia-
tions rather than just two. (This is so because the verifier
of S’s signature of M also needs to verify the proofs in the
public keys of the members of S, and each verification takes
two exponentiations) . However, each public key of a mem-
ber of G needs to be checked at most once by each verifier
if the verifier keeps careful records.

Problem 4: We cannot prove Fix 3 secure for many signers.
For Fix 3 to work in the security proof, it is necessary that,
for each bad player Pj, a polynomial-time simulator succeeds
in extracting the discrete log of I; from the ZKPoK that
the P; provides. However, for all known proof techniques
in the random-oracle model, if player P; computes I; after
making g queries to oracle H, then the simulator succeeds
in computing the discrete log of I; with probability at most
1/q. Thus, if there are k bad signers, then the simulator will
succeed for all of them with probability at most 1/¢". That
is, for the simulator to be polynomial time, there can be at
most logarithmically many signers.

Fiz 4. All signers i in G after computing their own s; and
I;, exchange the I; values and their commitments X; for the
ZKPoK. Then, each individual signer i proves knowledge of
s; by using the “joint challenge” e = H(X1,I1,..., X1, I1)
and the Schnorr signature relative to I;. The above simula-
tor can now extract the s; for all k bad signers P; with the
total success probability of about 1/(kq) (because there are
kq total queries to the oracle). Notice that the adversary
may cause the key generation protocol to fail (and thus, it
will need to be restarted with a different total group G).
All in all, this is a modest problem, because the same phe-
nomenon occurs during each signature computation, while
key generation is only done once.

Problem 5: The public keys in Fix 4 are too long. In or-
der for the ZKPoK in Fix 4 to be verifiable, each player 4
has to include its signature o; in its public key, as well as
X1,I1,...,X5,Ir on which it was computed. In fact, the
verifier better check that the vector (I1,...,Ir) is the same
for all members of S. Such public keys are too long, be-
cause their length is proportional to G, regardless of how
small S may be. Note that, in the basic solution of Sec-
tion 1, the verifier needs to retrieve only |S| ordinary (and,
thus, short) public keys. Even if the public key database
contains a special entry for (X1, 1I1,..., X1, IL), the verifier
of a single signature by, say, a 3-member subgroup has to
download a vector of length proportional to L.

Fiz 5. After the ZKPoKs, as in Fix 4, are exchanged, each
signer 7 verifies all of them and then computes a Merkle tree
(using the random oracle H as the hash function) with the
leaves I1,...,Ir. (Merkle trees are recalled in Section B of
the Appendix.) This Merkle tree will have depth exactly
log L (for simplicity, assume that L is a power of 2). Then,
signer i includes in its public key PK;, the value I; and the
authenticating path of I; in the Merkle tree. Notice that
PK,; is quite short: it contains one public key and log L
hash values (for instance, if each ordinary public key is 2000
bits long, the length of the hash values is 200, and there are
1000 potential signers, then each PK; is only as long as two
ordinary public keys).

To verify S’s signature of M, for each signer i in S, the
verifier uses I; and the alleged authenticating path for I; to



compute the alleged root value V;, and checks that V; = V;
for all signers 7,5 in S. In a sense, if player i is honest
and puts I; together with its authenticating path into PKj,
it implicitly puts into PK; the root value V;, and claims
that any I; that correctly “Merkle-hashes” to V; has been
checked by i to be part of a valid ZKPoK. (Of course, a
corrupted player j can use V; so as to find some other value
I # I;, also Merkle-hashing to V;, for which it knows no
ZKPoK; but this can be done only by finding a collision for
the random oracle H, which is extremely hard to do.) Thus,
if at least one good signer exists in S, all the other signers
in S are forced to have correct keys.

Problem 6: Concurrent signing. The naive scheme is silent
about the possibility of concurrent signing. That is, a good
player i belonging to two subgroups S and S’, would be per-
mitted to participate simultaneously in signing protocols for
(M, S) and (M’,S"). Our proof of security, however, needs
to use rewinding, for reasons explained in Section 3.5. It is
a well-know fact that rewinding is incompatible with con-
currency (unless the amount of concurrency is very small).

Fiz 6: To prevent concurrency from messing up our security
proof, we do not allow a signer to begin a new signing pro-
tocol until the previous one has been completed or aborted.
This is not a serious loss, given that signing in our DLP-
based scheme is a 3-round protocol. (Note, however, that if
two subgroups are disjoint, then their signing processes can
go on simultaneously.)

3.3 TheDLP Assumption

1. Samplability. The following probabilistic algorithm
Gen(1*) runs in expected polynomial time:
Repeat
Let ¢ be a random k-bit string
Until g is prime and p = 2g + 1 is prime
Output p and q.

2. Hardness. For any algorithm A, denote by pi the
probability that, on inputs

(a) a random k-bit prime ¢ such that p = 2¢ + 1 is
also prime,

(b) a random element g € Z, of order ¢, and

(c) arandom I in the g-generated subgroup of Z,

A outputs s € [0,q — 1] such that I = ¢° (mod p).
Then, V probabilistic polynomial-time A, Ve > 0, and
V sufficiently large k,

pf < k™°.

Remark. If p and q are generated by Gen above, then it is
easy to find a random element g € Z, of order ¢ (by picking
a random element r € Z; until g = r®P=D/4 mod p £ 1).

We note that our scheme continues to be provably secure
based on a more general, but more complex, DLP assump-
tion, described in the full version of this paper.
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3.4 Description

e Preliminaries

Security Parameters. All players are assumed to have,
as a common input, the security parameter k, and the
number L of players is assumed to be polynomial in k.
A second security parameter k' < k is deterministically
computed from k. (Typically, &' = 100.)*

Random Oracles. The players use (in any fixed stan-
dard way) the single random oracle H to implement

five independent random oracles Hi, H2, H3, Hy and
Hs, such that

Hl,HQ : {O, 1}* — {07 1},
Hs, Hs : {0,1}" — {0,1}", and
Hy:{0,1}" — {0,1}**"

Subroutine Gen. Key generation will use the algorithm
Gen of assumption DLP’ (or DLP").

Distinguished Player. In describing the scheme, we
shall use a distinguished player D. This is for conve-
nience only, and does not require changing our model.
In fact, D is a player who knows no secrets and can be
implemented by any one of the players in the subgroup
S, or even collectively by the members of S.

Merkle Trees. We assume some familiarity with the
notion of a Merkle tree [24], whose description is given
in Section B of the Appendix.

e Key generation

Common keys. All players run Gen(1*) using Hy(2%),
Hy(2F+1),..., as the random tape in order to generate
primes p and ¢g. They then generate a random g € Z;
of order q using Ho(2%), H2(2% 4+ 1), ..., as the random
tape.

Individual keys. Each player P; (1 < i < L) does the
following:
1. chooses s; € [0,q — 1] and sets the secret key
SKZ‘ = Si;
2. computes its public value I; = g mod p;

3. chooses a random r; € [0,¢ — 1] and computes a
commitment X; = g"* mod p

4. broadcasts (X, I;) to all the players;

5. upon receipt of (X1,11),...,(Xr,Ir), computes
e = H3(X1,11,. .. ,XL,IL) and Yi = €eS; + 1i;

6. broadcasts y; to all the players;

4As for all Fiat-Shamir-like schemes, including Schnorr’s, k'
controls the security of our scheme in a way that is quite
different and independent of k. Indeed, k should be large
enough so that solving the discreet logarithm problem when
q is a k-bit prime is practically impossible. Parameter k'
should be large enough so that it is practically impossible

to perform 2k steps of computation, and the probability
27" is practically negligible. Of course, we can always set
k' = k—1, but our scheme can be made much more efficient

while maintaining the same level of security by selecting an
appropriately lower value of k'.



7. for each (Xj,y;) received from player P;, verifies
that g% = X; I mod p. If all checks are satisfied,
P; computes the authenticating path, Path;, of
leaf i in the L-leaf binary Merkle tree whose j-th
leaf contains I; and whose hash function is Hy.

8. registers PK; = (p,q,g,IL;, Path;) as its public
key.

(Comment: p,q,g are included in PK; only to save
time for the verifier. Alternatively, p,q and g could
be a special entry in the public key database, if one
exists, or could be re-computed by the verifier.)

e Signing: Suppose the players in a subgroup S =

{Pi,, ..., P, } wish to sign jointly a message M. Then
they perform the following three-round protocol:

1. Each signer P;; € S, if not currently involved in
another signing protocol,
1.1 picks a random r; € [0,q — 1];
1.2 computes its individual commitment X; =
g"7 mod p;
1.3 sends X; to D.

2. D computes the joint commitment as the product
X =[]/, X; mod p and broadcasts it to each
signer P;; € S.

3. Each signer P;; € S
3.1 queries the random oracle Hs to compute the
challenge e = H5(X, M, S)
3.2 computes y; = es; + r; mod g;
3.3 sends y; to D.
4. D computes y = > ", y; mod ¢ and outputs o =
(X,7) as the signature.

(Remark: The role of D in steps 2 and 4 can be per-
formed by P;; or by all players in S, e.g., “arranged in
a circle” by having P;; send []/ _; Xoa —or 327 _ va,
respectively— to P, ,.)

Verification: To verify a signature o = ()Z',ﬂ) of a
message M of a subgroup S = {P;,,...,F;,,} whose
members have public keys PK;,,..., PK;,,, one does
the following;:

im>s

1. Check that all public keys contain the same p, ¢
and g.

2. For each P;; € S, use I;; and Path;; to compute a
candidate root value V;; for that player’s alleged
Merkle tree, and check that all such Vij are equal.

3. Compute Is = H;'l:l I;; mod p.
4. Compute e = Hs()?,M, S).

5. Check that g¥ = XTg (mod p).

(Remark: Steps 1-3 need be performed only once for a
given subgroup S.)
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3.5 Security

THEOREM 1. Under the DLP' assumption, the above is a
secure ASM scheme.

See the full version of this paper for the proof of this
theorem. Below we describe the two main ingredients of the
proof.

1. We use the “forking lemma” [11, 32] technique in order
to violate the DLP’ assumption.

Unlike the usual forking-lemma-based proofs, however,
we need to use the technique twice, because adversar-
ial players can participate in the forgery output by
the adversary. Thus, we use the forking lemma during
key generation to obtain the secret keys of the adver-
sarial players®, and again when the adversary outputs
a forged signature on (M, S) to compute the discrete
logarithm « of ] p,es Li- The secret keys of the adver-
sarial players in S are then subtracted from « to get
the desired discrete logarithm.

2. We use rewinding, not commonly used in similar ran-
dom oracle proofs, for reasons explained below.

In ASM schemes, as in single-signer signatures, the ad-
versary is entitled to a chosen message attack. That
is, it can ask for and receive the signature of any mes-
sage M it wants. However, this capability is much
more powerful and dangerous for ASM schemes than
for single-signer signatures.

In the single-signer Schnorr scheme (as in any other
Fiat-Shamir-like scheme in the random oracle model),
during a signature query the adversary can provide the
(single) signer only with a message M. The signer will
then select its own commitment X relative to which
it produces the signature of M (via the challenge e =
H(X,M)). Assume, however, that, in our DLP-based
ASM scheme, adversary F' wishes that a good player ¢
in S to sign a message M as a member of S. Then, F
will first receive ¢’s individual commitment, X;. Now,
F can give player ¢ a (fake) joint commitment X of its
choice. And it will be relative to this X that player ¢
will provide its own individual signature, y;, of (M, S).

In previous proofs, for single-signer random-oracle sig-
natures, answering signature queries was easy because
the simulator could imitate the oracle so as to produce
commitments and challenges “simultaneously.” In our
security proof, however, the simulator needs to rewind
the adversary (even though the simulator controls the
random oracle). This is so because the simulator must
commit to X; before knowing what the challenge e
(which may be based on a previously asked X) will
actually be.

®Note that our definition does not require adversarial players
to participate in the key generation protocol, or to have any
secret keys at all. Our construction, however, ensures that
they will both participate and know their secret keys: oth-
erwise, their public keys will not be included in the Merkle
tree, and the forgery will not be deemed valid.
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APPENDI X
A. SIMPLIFYING THE ADVERSARY

The adversary F' described in Section 2 is extremely pow-
erful. It can corrupt and attack arbitrary parties at arbi-
trary, adaptively determined times. The resulting notion of
security is, therefore, very compelling, but is also difficult
to work with when analyzing a concrete implementation of
ASM schemes. We will therefore define a weak adversary F’
that operates in a rather simple and easy to analyze manner,
and prove that, despite such simplicity, an ASM scheme is
secure against F” if and only if it is secure against F. In the
sequel, therefore, we shall analyze the security of schemes in
terms of F’ rather than F.

Unlike F, the weak adversary F” does not have the ability
to corrupt players. In fact, it does not even interact with
a network of players: at the outset (before key generation),
it has to pick one player P; that it will be attacking. The
other players then cease to exist, and F’ has to provide all
the inputs and network traffic for P;. It can also see all the
outputs and network traffic coming out of P;.

After P; generates its keys, F’ is allowed to carry out
an adaptive chosen-message-and-subgroup attack on P;, just
like F. The goal of F’ is similar to that of F.

DEFINITION 2. An ASM scheme is called weakly secure
if, for all constants ¢ > 0 and all sufficiently large security
parameters k, no polynomial-time (in k) weak adversary has
better than k= chance of outputing a triple (o, M,S) such
that:

e 0 is a valid signature on the message M by the subgroup
S of players

e PcS,

e P, has not been asked by F' to execute the signing pro-
tocol on M and S.

Because the other players don’t exist, in some sense, they
will now necessarily be “fictitious.”

Note that the weak adversary can also be seen as the
strong adversary that is not allowed to adaptively corrupt
players: rather, it has to pick at the outset the L — 1 play-
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ers it will corrupt. This observation leads to the following
theorem, whose proof will appear in the full version of this
work.

THEOREM 2. Assume that there exists a polynomial Q
such that for any security parameter k, the size L of G 1is
bounded by L < Q(k). Then an ASM signature scheme is
weakly secure if and only if it is (strongly) secure.

B. MERKLE TREES

(The following description is taken almost verbatim from
[25].) Recall that a binary tree is a tree in which every
node has at most two children, hereafter called the 0-child
and the I-child. A collision-free hash function is, informally
speaking, a polynomial-time computable function H map-
ping binary strings of arbitrary length into reasonably short
ones, so that it is computationally infeasible to find any col-
lision (for H ), that is, any two different strings = and y for
which H(z) = H(y).

A Merkle tree [24] then is a binary tree whose nodes store
values, some of which computed by means of a collision-free
hash function H in a special manner. A leaf node can store
any value, but each internal node should store a value that
is the one-way hash of the concatenation of the values in its
children.® Thus, if the collision-free hash function produces
k-bit outputs, each internal node of a Merkle tree, including
the root, stores a k-bit value. Except for the root value,
each value stored in a node of a Merkle tree is said to be
a O-value, if it is stored in a node that is the O-child of its
parent, a 1-value otherwise.

The crucial property of a Merkle tree is that, unless one
succeeds in finding a collision for H, it is computationally
hard to change any value in the tree (and, in particular, a
value stored in a leaf node) without also changing the root
value. This property allows a party A to “commit” to L
values, v1,... ,vr (for simplicity assume that L is a power
of 2 and let d = log L), by means of a single k-bit value.
That is, A stores value v; in the i-th leaf of a full binary tree
of depth d, and uses a collision-free hash function H to build
a Merkle tree, thereby obtaining a k-bit value, V, stored in
the root. This root value V' “implicitly defines” what the
L original values were. Assume in fact that, as some point
in time, A gives V, but not the original values, to another
party B. Then, whenever, at a later point in time, A wants
to “prove” to B what the value of, say, v; was, he may just
reveal all L original values to B, so that B can recompute the
Merkle tree and the verify that the newly computed root-
value indeed equals V. More interestingly, A may “prove”
what v; was by revealing just d + 1 (that is, just 1 + log L)
values: v; together with its authenticating path, that is, the
values stored in the siblings of the nodes along the path from
leaf 4 (included) to the root (excluded), w1, ... ,wq. Party
B verifies the received alleged leaf-value I; and the received
alleged authenticating path w1, ... ,wq as follows. She sets
u1 = v; and, letting 41,... ,44 be the binary expansion of ¢,
computes the values ua, ... ,uq as follows: if i; = 0, she sets
uj+1 = H(wj;u;); else, she sets uj+1 = H(ujw;). Finally, B
checks whether the computed k-bit value ug equals V.

51.e., if an internal node has a 0-child storing the value U
and a 1-child storing a value V', then it stores the value
H(UV).



