
To Update or Not to Update: Insights From a
Two-Year Study of Android App Evolution

Vincent F. Taylor
vincent.taylor@cs.ox.ac.uk

Ivan Martinovic
ivan.martinovic@cs.ox.ac.uk

Department of Computer Science
University of Oxford

Oxford, United Kingdom

ABSTRACT
Although there are over 1,900,000 third-party Android apps
in the Google Play Store, little is understood about how
their security and privacy characteristics, such as danger-
ous permission usage and the vulnerabilities they contain,
have evolved over time. Our research is two-fold: we take
quarterly snapshots of the Google Play Store over a two-
year period to understand how permission usage by apps
has changed; and we analyse 30,000 apps to understand how
their security and privacy characteristics have changed over
the same two-year period. Extrapolating our findings, we
estimate that over 35,000 apps in the Google Play Store ask
for additional dangerous permissions every three months.
Our statistically significant observations suggest that free
apps and popular apps are more likely to ask for additional
dangerous permissions when they are updated. Worryingly,
we discover that Android apps are not getting safer as they
are updated. In many cases, app updates serve to increase
the number of distinct vulnerabilities contained within apps,
especially for popular apps. We conclude with recommenda-
tions to stakeholders for improving the security of the An-
droid ecosystem.

1. INTRODUCTION
Android is the most popular mobile operating system

with 87.6% market share as of 2016 Q2, outpacing its
nearest rival, iOS, at 11.7% [9]. This domination is
fuelled by myriad app developers, devices and consumers
existing in a symbiotic relationship known as the Android
ecosystem. Nielson reports that the average consumer uses
over 26 different apps per month, spending more than one
hour per day interacting with their smartphone [24]. This
explosion in smartphone usage has been driven, in part,
by the ease with which end-users can obtain third-party
apps to extend the functionality of their devices. The avail-
ability of Android integrated development environments
(IDEs) makes writing apps a simple task for even novice

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02 - 06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3052990

programmers. Moreover, the existence of app generators
and myriad libraries providing out-of-the-box functionality
further lowers the barrier to entry for anyone wanting to
create their own app.

There is strong competition in the app ecosystem, with
time-to-market for both new apps and app updates playing
a critical role in user engagement, retention and the overall
profitability of an app. Apps are scanned for malicious
behaviour before being published to the official Google
Play Store [18], but it remains unclear whether apps are
thoroughly tested for vulnerabilities by their developers
before the publishing process is initiated. Additionally, it
is not well understood how user privacy erodes as apps
are updated to provide additional features, in many cases
necessitating the use of new dangerous permissions. Our
work fills these gaps in the literature by answering the
following research question:

How have Android apps been evolving with respect to
their permission usage and the vulnerabilities they contain?

To investigate this important issue, we took two main re-
search steps. First, we took snapshots of the Google Play
Store every three months over a two-year period to capture
app metadata such as frequency of app updates and permis-
sion changes that come about from app updates. In doing
this, we aimed to uncover micro- and macro-trends in the
official Android app store, which would motivate and in-
form our research. Prior work (as detailed in Section 7) has
looked at permission evolution on the Android platform it-
self [32], or the evolution of permission usage in Android ad
libraries [13], without looking at changes in permission us-
age at the app level or indeed across the Google Play Store.
Other work has looked at the Google Play Store to under-
stand developer behaviour and pricing [14] but neither at
the breadth of our work nor to understand micro- or macro-
trends in app permission usage. We consider this a critical
gap in the literature and the first of two underlying motiva-
tions for our work.

Second, we analyse a set of 15,000 apps for which we
have versions that are two years apart, for a total of 30,000
apps. In doing this, we gain an understanding of how
app vulnerabilities and other app characteristics have
changed over the period. Several classes of Android app
vulnerabilities (and tools to identify them) have been ex-
emplified by the literature (as detailed in Section 7). Prior
research has looked at vulnerabilities within apps, such as

45

http://dx.doi.org/10.1145/3052973.3052990

improperly handled SSL [16] and confused deputies [22],
but whether developers currently follow best practices or
write safe apps remains unclear. Additionally, it is not
known whether apps are getting more or less secure as they
are updated. Especially considering that many apps are
seeking ever-increasing access to users’ devices in the form
of dangerous permissions, understanding the evolution of
the security posture of apps becomes critical. This is a
gap in the literature and the second underlying motivation
for our work. Using existing and custom-written tools, we
decompile and analyse our sample of apps to identify the
vulnerabilities they contain and understand whether apps
are becoming more or less secure over time.

The contributions made by our paper are two-fold:

1. Permission usage evolution in the Google Play Store:

• We present the first evaluation of permission usage
evolution across the Google Play Store over a two-year
period.

• We report on the number and types of permissions
that are being added to (or removed from) apps, and
how app attributes such as cost or popularity affect
changes in permission usage.

2. Security evolution of Android apps:

• We present the first large-scale report on how Android
apps been evolving with respect to the vulnerabilities
they contain.

• We report on how popular apps compare to random
apps in terms of vulnerability evolution. We further
analyse vulnerabilities to understand whether they
stem from developer-written code or library code.

Roadmap. Section 2 satisfies our first research step by pre-
senting our analysis of permission usage evolution across the
Google Play Store over the last two years; Section 3 begins
our second research step by overviewing the vulnerabilities
that we focus on and the tools used to audit our dataset of
apps; Section 4 describes the dataset of apps and how it was
assembled; Section 5 presents and analyses the results of our
app audits; Section 6 makes recommendations and discusses
the limitations of our work; Section 7 surveys related work;
and finally Section 8 concludes the paper.

2. PERMISSION USAGE EVOLUTION
The first aspect of our analysis is concerned with un-

derstanding how dangerous permission usage by apps has
evolved over the last two years. Specifically, the two-year
period we study is OCT-2014 to SEP-2016. We focus only on
the so-called dangerous permissions as designated by An-
droid, i.e., the 24 system permissions that guard access to
sensitive user data [10]. For this reason we refer to dan-
gerous permissions as simply permissions for the rest of the
paper.

Our long-term analysis of permission evolution requires
data on apps in the Google Play Store. Collecting longi-
tudinal data from a large source, such as the Google Play
Store, is an arduous process. This is perhaps the reason
that very few studies to date have focused on app permis-
sion usage, either at the magnitude or duration that this one

App Data
Repository

Worker 1 Worker 2 Worker n...

Command & Control
Server

List of apps
from GPSC

ProjectApp names (2)

Google Play Store

Web page request for App x (4) Web page response for App x (5)

Name of App x
(3)

App data for App x
(6)

App data (7)

Figure 1: Highly-scalable cloud-based crawler archi-
tecture. The Google Play Store Crawler (GPSC)
Project [23] and Google Play Store [19] itself were
used as external sources of data. Numbers in brack-
ets indicate the sequence of events.

has. The Google Play Store Crawler (GPSC) project [23] is
concerned with collecting app metadata, but, until recently,
did not collect data on permission usage. Thus, we built our
own crawler1 that retrieved complete app metadata from the
Google Play Store, by leveraging the list of apps from the
GPSC project.

Our first snapshot of the Google Play Store using our
crawler was taken in March 2015 with subsequent snap-
shots taken at the same time of the month every three
months after the initial snapshot. Additionally, we extracted
permission usage information from a corpus of apps [11]
obtained using the PlayDrone tool [31], to obtain another
(earlier) snapshot of permission usage in the Google Play
Store as at October 2014. The most recent snapshot used
in our analysis is that of September 2016, for a total of
eight snapshots (OCT-2014, MAR-2015, JUN-2015, SEP-2015,
DEC-2015, MAR-2016, JUN-2016, SEP-2016) covering a two-
year period2. All snapshots are three months apart except
the first two which are five months apart because we ap-
pended the OCT-2014 snapshot generated from the Play-
Drone dataset [11].

2.1 Data Collection
In taking snapshots, our intention is to have the entire

app store3 crawled as quickly as possible. To this end, we
developed a cloud-based crawler, with geographically dis-
tributed worker nodes fetching app data and returning it to
a command and control server. Our architecture is shown
in Fig. 1. Worker nodes make app store queries with ran-
dom, valid User-Agent strings and are rate limited to 3 re-
quests/second each. Using a small-scale deployment with 3-4
workers, we can retrieve complete app metadata from the

1It is possible to obtain the data we require from the Google
Play Store website without crawling any directories that are
disallowed by the site’s robots.txt file.
2For the remainder of the paper, any reference to a two-
year period (or a studied period) is describing OCT-2014 to
SEP-2016.
3For brevity, we use the terms app store and Google Play
Store interchangeably.

46

Table 1: Mean permission usage (and percentage
change) across apps over the two-year period.

Downloads OCT-2014 SEP-2016 Change

1-1K 3.13 3.16 +0.96%

1K-1M 2.37 2.45 +3.38%

1M-5B 3.40 3.58 +5.29%

app store in less than 48 hours. Our most recent snapshot4

of the app store, at the time of writing, contains 31.2GiB of
data on 1,918,833 apps available for download, and 813,421
apps that are no longer present in the app store.

With each new snapshot of the app store that we prepare
to take, we carry over the entire list of apps from the previous
snapshot, and append any new apps that have been added
to the store. Our system is informed of new additions to
the app store from the GPSC project. Apps that have been
removed from the app store remain in our database, with an
indicator that they are no longer available. Thus the number
of apps in each of our snapshots monotonically increases over
time.

2.2 Changes in Permission Usage
We analysed permission usage based on the number of

downloads of an app. Apps were divided into three cate-
gories based on their total number of downloads: 1-1K (low
downloads), 1K-1M (medium downloads), and 1M-5B (high
downloads). Apps are frequently added to and removed from
the app store, so we considered only those apps that were in
all snapshots for the entire period (n = 380, 843).

Table 1 shows how permission usage changed across the
app store over the two-year period. Across all snapshots,
every category of app had an increase in the mean number
of permissions used. Overall, we found that apps with 1M-

5B downloads had the highest increase in mean permission
usage and percentage change, going from 3.40 to 3.58 per-
missions, an increase of 5.29%. Apps with 1K-1M downloads
went from using 2.37 to 2.45 permissions on average. Apps
with 1-1K downloads had the lowest increase in permission
usage, going from 3.13 to 3.16 over the studied period. It
is interesting to note that apps with 1-1K downloads used
more permissions on average than apps with 1K-1M down-
loads. Two possible reasons are that apps with low down-
loads are using permissions unnecessarily, i.e., they are over-
privileged, or they are trying to provide additional features
(necessitating additional permissions) to gain market share.
While the overall change in mean permission usage across
our sample is small, we remind the reader that these num-
bers reflect the aggregate permission change across a large
number of apps, including many apps that were not up-
dated at all. Indeed, at the granularity of individual apps,
the addition of several permissions between snapshots is not
uncommon, as we show later in this section.

We analysed permission increase/decrease at the app level
to understand how many permissions individual apps were
adding or removing over each quarter. Table 2 shows this
breakdown of permission change. In the table, each date
shows how the number of permissions used per app changed
between that snapshot and the previous snapshot. Note that
we omit the OCT-2014 snapshot in this analysis because there
was a five month gap between it and its subsequent snapshot.

4Our Google Play Store data is available upon request.

W
R

IT
E
_C

A
LE

N
D

A
R

R
E
A

D
_E

X
T
E
R

N
A

L_
S
T
O

R
A

G
E

W
R

IT
E
_E

X
T
E
R

N
A

L_
S
T
O

R
A

G
E

G
E
T
_A

C
C

O
U

N
T
S

A
C

C
E
S
S
_C

O
A

R
S
E
_L

O
C

A
T
IO

N

R
E
A

D
_P

H
O

N
E
_S

T
A

T
E

A
C

C
E
S
S
_F

IN
E
_L

O
C

A
T
IO

N

C
A

M
E
R

A

R
E
C

O
R

D
_A

U
D

IO

C
A

LL
_P

H
O

N
E

R
E
A

D
_C

O
N

T
A

C
T
S

R
E
A

D
_C

A
LE

N
D

A
R

R
E
C

E
IV

E
_S

M
S

Permissions

0

5

10

15

20

25

30

%
 o

f
a
d
d
it

io
n
s

1-1K downloads

1K-1M downloads

1M-5B downloads

Figure 2: Breakdown of the most commonly added
permissions. For clarity, we omit permissions that
accounted for less than 2% of additions.

From the table, the majority of apps (on average 96.72%)
did not have any change in the number of permissions used
between snapshots. For apps that did have changes, the
most likely change (1.15% of apps on average) was to add
one new permission (+1). Averaging quarterly permission
changes across our dataset, 1.87% of apps added one or more
new permissions every three months, while only 1.42% of
apps removed one or more permissions. In an app store
of 1,900,000 apps, 1.87% would correspond to 35,530 apps
adding one or more new permissions every three months.

2.3 Which Permissions Changed
We analysed the permissions that were added to

apps when they were updated, to understand the
potential erosion in privacy caused. Fig. 2 presents
the most commonly added permissions, broken down
by the popularity of the app adding the permission.
From the figure, the Top 5 permissions (by aggre-
gate total) that were added were WRITE_CALENDAR,
WRITE_EXTERNAL_STORAGE, READ_EXTERNAL_STORAGE,
GET_ACCOUNTS and ACCESS_COARSE_LOCATION. The
WRITE_CALENDAR permission stands out for apps with
1-1K downloads. Manual analysis suggests that this
permission is predominantly added by apps automatically
generated using the Appcelerator [5] and PhoneGap [1]
frameworks.

Fig. 3 shows which permissions were removed the most.
The most commonly removed permission (by aggregate to-
tal) was WRITE_CALENDAR, covering approximately 40% of
the incidents of permission removal from apps. Note that
WRITE_CALENDAR was by far the most frequently added and
removed permission for apps with 1-1K downloads. We
postulate that inexperienced Android app developers are
more likely to use app generators and app building frame-
works. We further postulate that these inexperienced de-
velopers usually build apps with low numbers of downloads.
Thus, the rapid addition and removal of permissions, such
as WRITE_CALENDAR, may be explained by developer confu-
sion or the ease with which these fledgling developers can
turn on and off app features when using app generators. We

47

Table 2: How permission usage changed between quarters for the apps in our dataset.
JUN-2015 SEP-2015 DEC-2015 MAR-2016 JUN-2016 SEP-2016

Total Increase 2.15% 2.67% 1.86% 1.34% 2.03% 1.15%

+3 or More 0.29% 0.43% 0.27% 0.20% 0.21% 0.23%

+2 0.44% 0.86% 0.51% 0.26% 0.34% 0.27%

+1 1.42% 1.38% 1.08% 0.88% 1.48% 0.65%

No Change 96.81% 96.07% 96.69% 97.15% 96.50% 97.08%

-1 0.63% 0.88% 1.08% 1.03% 0.92% 1.33%

-2 0.25% 0.20% 0.19% 0.30% 0.34% 0.23%

-3 or Less 0.16% 0.18% 0.18% 0.18% 0.21% 0.21%

Total Decrease 1.04% 1.26% 1.45% 1.51% 1.47% 1.77%

W
R

IT
E
_C

A
LE

N
D

A
R

R
E
A

D
_P

H
O

N
E
_S

T
A

T
E

G
E
T
_A

C
C

O
U

N
T
S

A
C

C
E
S
S
_C

O
A

R
S
E
_L

O
C

A
T
IO

N

W
R

IT
E
_E

X
T
E
R

N
A

L_
S
T
O

R
A

G
E

R
E
A

D
_E

X
T
E
R

N
A

L_
S
T
O

R
A

G
E

A
C

C
E
S
S
_F

IN
E
_L

O
C

A
T
IO

N

C
A

LL
_P

H
O

N
E

S
E
N

D
_S

M
S

R
E
A

D
_C

A
LE

N
D

A
R

C
A

M
E
R

A

R
E
C

O
R

D
_A

U
D

IO

R
E
A

D
_C

O
N

T
A

C
T
S

Permissions

0
5

10
15
20
25
30
35
40

%
 o

f
re

m
o
v
a
ls

1-1K downloads

1K-1M downloads

1M-5B downloads

Figure 3: Breakdown of the most commonly re-
moved permissions. For clarity, we omit permissions
that accounted for less than 2% of removals.

leave further investigation into the privacy and security im-
plications of using mobile app generator frameworks as an
interesting area of future work.

2.4 Hypothesis Testing
On one hand, apps adding new permissions opens the door

to added or improved functionality for users. On the other
hand, new permissions may put user security and privacy at
risk if they are abused, whether intentionally or unintention-
ally. To understand the phenomena of permission additions,
we conducted hypothesis testing to understand what types
of apps were adding permissions.

2.4.1 Hypothesis 1: Free apps are more likely to add
new permissions than paid apps.

Free apps typically earn revenue for their developers
through embedded ad libraries which display advertise-
ments. Libraries, as we show in Section 4, leverage available
permissions, ostensibly for better advertisement targeting
through user profiling. This typically leads to undesirable
privacy erosion since permissions granted to an app are
leveraged by their bundled libraries. We want to determine
whether there is a statistically significant difference between
free apps and paid apps in terms of their likelihood of
adding new permissions. We evaluated our hypothesis using
a two-proportion z-test with a sample of 20,000 apps that

added permissions. Specifically, it is our null hypothesis
that the cost (free or paid) of an app is independent of its
likelihood to add permissions. Our test returns p < 0.01,
rejecting the null hypothesis at the 99% significance level.
Thus free apps were statistically significantly more likely
than paid apps to add new permissions.

Given that free apps enjoy much more5 downloads than
paid apps, this is cause for concern since a large proportion of
smartphone users are affected. We add our voice to the call
for privilege separation between apps and their libraries [29].

2.4.2 Hypothesis 2: Popular apps are more likely to
add new permissions than unpopular apps.

Popular apps are installed by a large majority of smart-
phone users. Thus, popular apps adding new permissions
leads to greater access to user data across a large cross-
section of the smartphone ecosystem. As in Section 2.2, we
consider apps having 1M-5B downloads as being in the high
downloads, i.e., popular apps category. We evaluate our hy-
pothesis that popular apps are more likely than unpopu-
lar apps to add new permissions using a 2-proportion z-test
with a sample size of 20,000. Our result showed p < 0.01,
thus rejecting the null hypothesis that permission additions
are equally distributed among popular and unpopular apps.
That is, we confirmed that popular apps are indeed more
likely to add permissions than unpopular apps.

It is somewhat concerning that popular apps are adding
new permissions to a greater extent than less popular apps.
Popular apps becoming more highly-privileged make them
even more attractive targets to attackers. Additionally, if
popular apps are the ones that are most likely to add new
permissions, a large cross-section of users face the risk of
being conditioned to automatically accept new permission
requests.

2.5 Summary
Our analysis of permission changes across the Google Play

Store over the last two years has finally confirmed several
widely held beliefs:

1. Apps are becoming more permission-hungry over time.

2. Free apps and popular apps are more likely (than their
respective counterparts) to add new permissions over
time.

The addition of new permissions magnifies the risk of us-
ing apps if these apps contain vulnerabilities. This moti-
5At the time of writing, no paid app in the Google Play
Store has more than five million downloads.

48

vates the second step of our research, where we study how
the vulnerabilities contained within apps have changed over
time and whether popular apps contain more vulnerabilities
than unpopular apps. If popular apps contain more vulner-
abilities, they are very attractive targets for attackers since
they are more highly-privileged and have a larger userbase.
If less popular apps contain more vulnerabilities, it suggests
that less experienced developers are making mistakes that
increase the attack surface of their app. Along similar lines,
if the number of vulnerabilities within apps increases as time
progresses, it highlights a worrying trend, in that app devel-
opers are not paying enough attention to the quality of their
product as it relates to security.

3. VULNERABILITY ANALYSIS
In the previous section, we showed that apps are getting

more permission-hungry over time. However, added access
to user data amplifies the risks coming from vulnerabilities
contained within apps. Thus, the second aspect of our anal-
ysis is concerned with understanding how user security and
privacy is impacted by the evolution of app vulnerabilities
as apps are updated. To understand this, we selected sev-
eral classes of vulnerabilities and audited a dataset of apps
containing current versions of apps and their corresponding
versions from two years ago. We call these the NEW versions
and OLD versions of apps, respectively. In comparing NEW and
OLD versions of apps, we achieve a greater understanding of
how vulnerabilities contained within apps have changed over
time, i.e., whether vulnerabilities are still present, fixed, or
new vulnerabilities have arisen from updates.

The Open Web Application Security Project (OWASP)
systematised a Top 10 list of vulnerabilities affecting the
mobile app ecosystem [26]. The vulnerabilities relevant to
our study are those that come from improper or inadequate
code implementation within the binary of the (client-side)
app itself, i.e., vulnerabilities contained within the .apk file6

of an app. Please see Appendix A for the complete OWASP
Top 10. Vulnerabilities that do not arise from insecure cod-
ing practices on the client-side are outside of the scope of
this study.

In the remainder of this section, we detail the vulnerabil-
ities that we analyse and outline the tools (open-source and
custom-written) that are used to scan our dataset of apps
for these vulnerabilities. We elaborate on how we assemble
our dataset of apps in Section 4.

3.1 Vulnerabilities Considered
There are a variety of vulnerabilities that affect Android

apps. In doing our vulnerability analysis, we focus mainly on
those vulnerabilities that stem from poor app coding prac-
tices in general, rather than those caused by idiosyncrasies
of specific Android versions. Table 3 summarises the vulner-
abilities we consider and the tools we use to check for each.
Note that OWASP M2/M4 and M7/M8 are combined due
to similarity, while M1, M5 and M9 are out of scope for this
analysis.

3.1.1 Information disclosure (M2/M4)

Some apps contain weaknesses in program logic or
access control that may allow the undesired leakage of

6The .apk format is the file format used by Android to pack-
age and distribute apps.

sensitive information. We focus on apps creating world
readable/writeable files (INF-DISC-WRLRD), Content-
Providers that are exported but not properly secured
(INF-DISC-PRVDR) and keystores that are not protected by
passwords (INF-DISC-KSNPW).

3.1.2 Insecure network communication (M3)

Many apps rely on SSL/TLS to provide a secure com-
munication channel when sending data to web services
and/or fetching resources. Fahl et al. [16] observed that
many apps fail to properly validate SSL certificates and
thus are vulnerable to man-in-the-middle (MITM) attacks.
We focus on apps that fail to use transport layer security
at all, i.e., communicate over HTTP (SSL-TLSX-PLAIN),
verify SSL certificates in an insecure way (SSL-TLSX-INVLD)
and also improper certificate validation in WebViews
(SSL-TLSX-WVIEW).

3.1.3 Broken cryptography (M6)

Some apps use available cryptographic protocols in a
weak or insecure way. We check for apps using the weak
ECB mode of encryption (BRK-CRYP-ECBMD) since ECB
is known to not be semantically secure. Additionally, we
check for apps using insecure random number generators
(BRK-CRYP-RANDG). Insecure random number generators (or
pseudo-random number generators) are not resilient against
cryptographic attacks since they produce predictable values.

3.1.4 Miscellaneous (M7/M8)

Android allows apps to communicate with each other us-
ing components such as Intents, BroadcastReceivers and
ContentProviders. Vulnerabilities may arise from apps im-
properly handling untrusted input that may allow an at-
tacker to read/write data from/to a target app or trick the
target app into performing tasks or behaving in ways that
are unexpected. We focus on apps starting services with
implicit Intents (OTH-MISC-INTNT) and apps that are debug-
gable (OTH-MISC-DEBUG).

3.1.5 Binary Protection (M10)

Apps that lack binary protection are susceptible to modi-
fication (typically repackaging and redistributing) by an ad-
versary. No binary protection mechanism is perfect, thus
best efforts only serve to slow an adversary down. Com-
mon binary protection methods include rooted device de-
tection, validating app checksums and debug detection. We
focus on whether apps contain root detection mechanisms
(BIN-ROOT-DTECT).

3.2 Library Empowerment
Third-party libraries embedded within apps enjoy the

privileges that have been granted to the host app. As apps
evolve to request more permissions from users, bundled
libraries now have access to sensitive data previously
unavailable to them. We call this library empowerment.
While not a vulnerability in strict terms, we consider
library empowerment to be an interesting property to
capture during our analysis. This is because many libraries
are delivered as black-boxes, and since they inherit the
privileges of the host app, it is important to understand the
(potentially malicious) access that they have to sensitive
user data.

49

Table 3: List of vulnerabilities that are considered.
OWASP ID Type Identifier Description Tool Used

M2/M4 Information disclosure

INF-DISC-WRLRD App leverages world readable/writeable files

AndroBugsINF-DISC-PRVDR ContentProvider exported but not secured

INF-DISC-KSNPW Keystores not protected by a password

M3 Insecure network communication

SSL-TLSX-PLAIN Sending data over plain HTTP

AndroBugsSSL-TLSX-INVLD Invalid certificate verification

SSL-TLSX-WVIEW Improper WebView certificate validation

M6 Cryptography
BRK-CRYP-ECBMD Use of the ECB cryptographic mode

MobSF
BRK-CRYP-RANDG Use of insecure random number generators

M7/M8 Miscellaneous
OTH-MISC-INTNT Starting services with implicit Intents

AndroBugs
OTH-MISC-DEBUG App is debuggable

M10 Lack of Binary Protections BIN-ROOT-DTECT App does not seem to have root detection MobSF

We define two different forms of library empowerment as
follows:

1. OLD-LIBRARY-EMPOWERMENT - This form of library em-
powerment happens when the older version of an app
contains a library that has code that calls a permission-
protected API. However, the library cannot access this
permission-protected API because the host app itself
has not declared the relevant permission in its mani-
fest. However, the newer version of the app now de-
clares additional permissions which enable the library
to access the APIs it did not have access to before.

2. NEW-LIBRARY-EMPOWERMENT - This form of empower-
ment is similar to the previous one, except it allows for
the library to have been updated between older and
newer versions of the app. That is, the older version
of the app contained the library, but the library itself
did not contain calls to unpermitted APIs. However,
the newer version of the app contains an updated
version of the library that accesses new APIs, and
the app itself now declares additional permissions
which enable the library to access these additional
permission-protected APIs.

3.3 Tools
To perform the vulnerability analysis of the apps in our

dataset, we use a combination of open-source vulnerability
detection tools and custom-written tools. We now describe
the tools we use and give a brief description of their features.

3.3.1 AndroGuard

AndroGuard [3] is a powerful open-source app analysis
framework that boasts a variety of features such as APK
disassembly/decompilation and analysis. AndroGuard does
static code analysis of APKs and can be easily extended to
do custom app analysis.

3.3.2 AndroBugs

The AndroBugs Framework [2], hereafter called An-
droBugs, is an open-source vulnerability scanning suite
that leverages AndroGuard. AndroBugs is lightweight
and highly-scalable and performs scanning for a variety of
known Android vulnerabilities. AndroBugs categorises its
results into severity levels. We focus on those vulnerabilities
that have a corresponding mapping in the OWASP Top 10.

3.3.3 Mobile Security Framework

The Mobile Security Framework [7], MobSF, is a penetra-
tion testing framework that can perform static or dynamic
analysis of APK files. Like AndroBugs, it is lightweight
and highly-scalable. We use the additional vulnerabilities
detected by MobSF to supplement AndroBugs.

3.3.4 QARK

QARK [8] is a vulnerability scanning tool that scans An-
droid apps for several vulnerabilities. In addition to de-
tecting vulnerabilities, QARK is able to generate “proof-of-
concept” APKs or ADB commands that exploit the vulner-
abilities it finds. We use QUARK to validate the results of
AndroBugs and MobSF.

3.3.5 Mallodroid

Mallodroid [6] is a tool built on the AndroGuard frame-
work and focuses specifically on detecting broken SSL vali-
dation in Android apps. We use Mallodroid to validate the
relevant results of AndroBugs and MobSF.

3.3.6 PermFinder

PermFinder is a tool written by the authors that identifies
method calls that are guarded by permissions. PermFinder
first decompiles .apk files to smali code and extracts
the APIs that are called. Using PScout [12] permission
mappings (improvements over Stowaway [17]), PermFinder
derives the permissions needed to access these APIs.
PermFinder is used to measure library empowerment.

3.4 Limitations
We do not aim to analyse an exhaustive list of Android

app vulnerabilities. Rather, we focus on several popular
categories of app vulnerabilities that are well-known and
have received treatment in the literature. We assume that
these types of vulnerabilities will be the easiest to fix since
they are widely known and thus more documented. Thus,
we believe that our observations will represent a reasonable
estimate of the upper bound of the likelihood that other (less
studied) vulnerabilities are fixed.

For scalability, we use several lightweight static analysis
tools to analyse apps. Static analysis tools suffer from their
inherent reduced ability to handle dynamic programming
artefacts such as dynamic code loading and execution of na-
tive code. Thus, the output from static analysis tools may
be incomplete. However, barring false positives, the vul-
nerabilities detected by static analysis tools will represent a

50

Table 4: Datasets used in the analysis.
Dataset # of APKs Source Date

TOP-OLD 5,000 PlayDrone Oct-2014

TOP-NEW 5,000 Google Play Sep-2016

RANDOM-OLD 10,000 PlayDrone Oct-2014

RANDOM-NEW 10,000 Google Play Sep-2016

lower bound of the set of all vulnerabilities present within
an app.

To mitigate false positives, we validate the output of the
tools used using a combination of manual analysis and cross-
referencing their output with output from the other tools
that detect the same vulnerability. We emphasise that our
aim is not to extend the state-of-the-art relating to static
analysis techniques. Rather, we use existing tools (except in
the case of library empowerment where we write our own)
to aid app analysis. We leave additional static and dynamic
analysis as an interesting area of future work.

4. DATASET OVERVIEW
In this section, we describe how our datasets were assem-

bled and report on additional non-vulnerability characteris-
tics such as app update frequency, library usage and library
empowerment.

4.1 Data description
Our main analysis is concerned with seeing how apps

have evolved over the two-year period. Thus we needed
to collect NEW versions of apps and their corresponding
OLD versions from two years ago. To get OLD versions of
apps, we leveraged the archive that was built from the
PlayDrone project [31]. To obtain the NEW versions of
apps, we used actual Android devices to download apps
through the Google Play Store app, i.e., without violating
the Google Play Store’s Terms of Service. In addition to
measuring how apps changed over time, we wanted to do a
comparative analysis of the changes between TOP apps (the
most popular apps in the Google Play Store) and RANDOM

apps (apps randomly chosen from the Google Play Store).
We assembled a dataset of apps for which we have OLD and

NEW versions of their .apk files. Specifically, we downloaded
the current versions of 5,000 TOP apps, hereafter called TOP-

NEW and their corresponding older versions, hereafter called
TOP-OLD. We also downloaded the current versions of 10,000
random apps, hereafter called RANDOM-NEW and their corre-
sponding older versions, hereafter called RANDOM-OLD. These
four datasets contain a total of 30,000 apps and are sum-
marised in Table 4.

Our dataset of TOP apps contains the 5,000 most popular
apps (by number of downloads at the time of writing) in the
Google Play Store for which there exists an older version
of the .apk in the PlayDrone dataset. The Google Play
Store has a long tail of apps with fewer than 100 downloads.
To prevent bias towards these unrepresentative7 apps, our
dataset of RANDOM apps was assembled by selecting apps at
random from a list of apps in the Google Play Store with
more than 100 downloads. Overall, the dataset of TOP apps
gives insight on the characteristics of the most common apps

7Unrepresentative insofar as they would not be installed on
many devices.

Table 5: File size statistics across datasets.
TOP-OLD TOP-NEW RANDOM-OLD RANDOM-NEW

mean 12.9MB 17.5MB 6.4MB 7.4MB

std 13.0MB 16.9MB 8.7MB 9.8MB

med 8.0MB 11.7MB 3.1MB 3.8MB

min 21.2KB 22.2KB 15.6KB 15.6KB

max 52.4MB 104.6MB 52.4MB 86.0MB

in the Android ecosystem, while the dataset of RANDOM apps
is a useful representation of the ecosystem as a whole.

Table 5 shows statistics of file sizes within our four
datasets. In general, TOP apps were larger than RANDOM

apps. This confirms intuitive expectations, since TOP apps
are more popular and thus may contain more functionality,
better user-interface design, and the like. Also, newer
versions of apps were bigger than older versions. This is
also expected, since one would suspect that newer versions
of apps would contain “improvements” and additional
features, necessitating larger file sizes.

4.2 Update frequency
The update frequency of an app is a double-edged sword

as it concerns app vulnerabilities. On one hand, a high up-
date frequency may mean that vulnerabilities in an app get
fixed more quickly. On the other hand, new updates may in-
troduce new vulnerabilities into the app without necessarily
fixing old ones. Conversely, an app with a low update fre-
quency may contain vulnerabilities for longer, or they may
go for longer without containing vulnerabilities.

We leverage an app’s updated date, version number and
file size from our snapshots of the Google Play Store (see
Section 2) to understand how TOP apps compared to RAN-

DOM apps in terms of their update frequency. Because our
snapshots are three months apart, we may miss multiple
updates that happen between snapshots. Thus, the number
of updates we measure is a lower bound on the total num-
ber of updates that apps received. Using our snapshots of
the Google Play Store, we observed that 45% of TOP apps
had four or more updates over the two year period, while
only 5% of RANDOM apps had four or more updates. This is
in line with our expectations, since TOP apps have a larger
userbase than RANDOM apps and, consequently, developers
of TOP apps have a financial interest in ensuring that their
apps are continuously being improved. From a security per-
spective, however, more frequent updates are not necessarily
better unless vulnerabilities are actually patched by an up-
date. Worryingly, as we discuss in Section 5, app updates
tend to introduce, as opposed to rectify, app vulnerabilities.

4.3 Library usage
Understanding library usage as Android apps evolve is

important, since libraries are able to access sensitive de-
vice resources that are granted to the host app. Thus li-
braries contribute privacy concerns in and of themselves.
Moreover, libraries may contain vulnerabilities and thus con-
tribute their own security concerns. Given that many apps
may use the same library, vulnerable libraries, if popular, are
a significant concern to the security of the Android ecosys-
tem. We statically analysed the .apk files in our dataset
to understand how the number of libraries used by apps
changed as apps were updated. We decompiled .apk files

51

Table 6: Number of libraries used in apps across the
datasets.

TOP-OLD TOP-NEW RANDOM-OLD RANDOM-NEW

mean 6.6 6.4 4.1 4.1

std 5.2 4.6 4.9 4.6

med 6 6 2 3

min 0 0 0 0

max 31 30 34 34

Table 7: Prevalence of library empowerment.
TOP RANDOM

OLD-LIBRARY-EMPOWERMENT 9.8% 2.8%

NEW-LIBRARY-EMPOWERMENT 14.3% 4.5%

using apktool [4] to convert the .dex files they contain to
smali code. Libraries were identified using a whitelist of li-
brary signatures provided by the authors of FlexDroid [28].
In case of .apk obfuscation, library identification may fail
and thus our statistics of library usage should be considered
a lower bound on the actual total.

The library analysis results are shown in Table 6. From
the table, there is no significant change in the number of
libraries used between OLD and NEW versions of apps. A note-
worthy result (which is perhaps expected) is that TOP apps
use more libraries than RANDOM apps. TOP apps, on average,
used approximately 6.5 libraries while RANDOM apps used ap-
proximately 4.1 libraries. Interestingly, a RANDOM app had
the highest total number of detected libraries at 34 while
the highest number of libraries for a TOP app was 31.

4.4 Library Empowerment
Given that apps use several libraries, understanding the

prevalence of library empowerment is critical. As elabo-
rated in Section 3.2, library empowerment occurs when apps
begin to use new permissions that their bundled libraries
are now able to use. Library empowerment is an impor-
tant characteristic to capture, since library developers can
gratuitously include permission-protected method calls in
libraries, and later take advantage of them surreptitiously
once the app has been granted the relevant permission. Ta-
ble 7 shows the prevalence of library empowerment across
our datasets. Some 9.8% of TOP apps suffered from OLD-

LIBRARY-EMPOWERMENT. A somewhat higher 14.3% of TOP

apps suffered from NEW-LIBRARY-EMPOWERMENT. RANDOM apps
had lower rates of library empowerment, with 2.8% and 4.5%
respectively. This finding may seem unsurprising since TOP

apps contain more libraries to begin with. However, after
correcting for the number of libraries per type of app, TOP
apps were approximately twice as likely as RANDOM apps to
suffer from library empowerment. Worryingly, this suggests
that TOP apps typically use libraries and add permissions in
such a way that fosters library empowerment.

Fig. 4 shows the new permissions that libraries were em-
powered to use. For TOP apps, in approximately 50% of
cases, libraries were now able to read from a device’s exter-
nal storage. To a lesser extent, libraries in TOP apps were em-
powered to get the device’s location, the list of accounts on
the device, use the camera, read the contacts list and record
audio. RANDOM apps were also most frequently empowered
to read a device’s external storage, but in less cases.

R
E
A

D
_E

X
T
E
R

N
A

L_
S
T
O

R
A

G
E

W
R

IT
E
_E

X
T
E
R

N
A

L_
S
T
O

R
A

G
E

A
C

C
E
S
S
_C

O
A

R
S
E
_L

O
C

A
T
IO

N

A
C

C
E
S
S
_F

IN
E
_L

O
C

A
T
IO

N

C
A

M
E
R

A

G
E
T
_A

C
C

O
U

N
T
S

R
E
A

D
_C

O
N

T
A

C
T
S

R
E
A

D
_P

H
O

N
E
_S

T
A

T
E

R
E
C

O
R

D
_A

U
D

IO

W
R

IT
E
_C

O
N

T
A

C
T
S

R
E
A

D
_C

A
LE

N
D

A
R

Permission

0

10

20

30

40

50

P
e
rc

e
n
ta

g
e
 (

%
) TOP apps

RANDOM apps

Figure 4: Additional permissions that libraries were
empowered to use.

5. EVALUATION
Table 8 shows the fraction of apps within each dataset

that contained one or more of the studied vulnerabilities8.
The two most common vulnerabilities were SSL-TLSX-

PLAIN (where apps sent data in plaintext using HTTP)
and BRK-CRYP-RANDG (where apps used insecure random
number generators). Almost all TOP apps sent some data
in plaintext, while approximately 80% of RANDOM apps
did so. Other common vulnerabilities are more serious
and include failing to validate SSL certificates properly
(SSL-TLSX-VERIF and SSL-TLSX-WVIEW), using ECB mode
for encryption (BRK-CRYP-ECBMD) and starting services
using implicit Intents (OTH-MISC-INTNT).

In all cases, except when an app was debuggable (OTH-
MISC-DEBUG) or did not contain checks for rooted devices
(BIN-ROOT-DTECT), a greater proportion of TOP apps were
vulnerable than RANDOM apps. One explanation for this is
the fact that TOP apps contain more functionality and thus
have a larger codebase where vulnerabilities can be present.
Regardless of the exact reason, this is alarming, since TOP

apps are most popular with the general public and are thus
the most attractive targets for adversaries in the first place.

Worryingly, for almost all the considered vulnerabilities,
the fraction of apps containing each vulnerability increased
between OLD and NEW versions. To make matters worse,
for some vulnerabilities (INF-DISC-WRLRD, INF-DISC-PRVDR
and OTH-MISC-INTNT), newer versions of apps were approxi-
mately twice as likely to be vulnerable as older apps. These
substantial increases are highlighted in bold in Table 8. This
suggests that app developers are not getting better at writ-
ing safer apps, and in many cases, leave users at even more
risk as they update their apps.

The vulnerabilities OTH-MISC-DEBUG and BIN-ROOT-

DTECT) were the only ones where TOP apps were less
vulnerable than RANDOM apps. These two vulnerabilities
are also among the few vulnerabilities that seem to be
improving over time. We suspect that this is because these
two vulnerabilities are more easily fixed. Turning off app
debugging is a simple configuration change, while checking

8In line with vulnerability disclosure best practices, we are
in the process of reporting the identified vulnerabilities to
affected developers.

52

Table 8: Percentage of apps within each dataset containing one or more of each studied vulnerability. Numbers
in brackets are the results when considering only those apps that were updated between OLD and NEW datasets.

Vulnerability TOP-OLD (%) TOP-NEW (%) RANDOM-OLD (%) RANDOM-NEW (%)

INF-DISC-WRLRD 32.7 (34.1) 62.6 (69.1) 16.4 (19.6) 24.8 (42.6)

INF-DISC-PRVDR 5.02 (5.44) 11.2 (12.6) 2.36 (2.87) 3.14 (5.01)

INF-DISC-KSNPW 3.06 (3.42) 2.90 (3.24) 2.27 (3.33) 2.25 (3.28)

SSL-TLSX-PLAIN 94.2 (95.8) 95.3 (97.0) 79.4 (87.1) 80.3 (89.5)

SSL-TLSX-VERIF 30.1 (31.4) 31.7 (33.2) 14.5 (20.0) 14.3 (19.3)

SSL-TLSX-WVIEW 18.4 (20.4) 20.7 (23.0) 9.87 (13.3) 9.35 (11.9)

BRK-CRYP-ECBMD 30.2 (27.5) 29.2 (26.3) 12.3 (6.61) 12.5 (6.61)

BRK-CRYP-RANDG 83.7 (73.7) 91.1 (80.7) 59.1 (26.3) 63.6 (30.6)

OTH-MISC-INTNT 12.0 (13.1) 22.3 (25.0) 3.07 (3.76) 5.02 (9.04)

OTH-MISC-DEBUG 0.46 (0.19) 0.30 (0.33) 2.21 (0.76) 1.93 (n/a)

BIN-ROOT-DTECT* 83.7 (84.4) 70.6 (71.5) 95.6 (97.3) 93.3 (97.3)

*An app may implement this in many ways, thus our results may contain false positives, so we consider this an upper bound.
Numbers in bold represent those percentages that approximately doubled between OLD and NEW versions of apps.

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7
0

10

20

30

40

50

P
e
rc

e
n
t

o
f

a
p
p
s

(%
)

TOP Apps

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7
Change in the number of distinct vulnerabilities

0

10

20

30

40

50

P
e
rc

e
n
t

o
f

a
p
p
s

(%
)

RANDOM Apps

Figure 5: Histograms showing how the number of
distinct vulnerabilities in apps changed between ver-
sions of apps. A larger percentage of TOP apps had
an increase in the number of distinct vulnerabilities
between OLD and NEW versions.

if a device is rooted can be as simple as checking for the
presence of the su binary.

To better understand the impact of app updates, we ex-
amined how the number of distinct vulnerabilities contained
within apps changed between older and newer versions of
apps (for those apps that had an update). More specifically,
for each app, we counted the number of distinct vulnera-
bilities in the new version of the app and subtracted the
number of distinct vulnerabilities in the old version of the
app. The result of this measurement is shown in Fig. 5.
Worryingly, both TOP apps and RANDOM apps had an increase
in the number of distinct vulnerabilities they contained as
they got updated. Comparatively, RANDOM apps were more
likely than TOP apps to have no change in the number of dis-
tinct vulnerabilities contained. We remind the reader here
that Fig. 5 only summarises the change in the number of dis-
tinct vulnerabilities contained within each app. Thus, apps

with no change, represented by zero, may still contain one
or more vulnerabilities; this was usually the case. As an
interesting observation from our dataset, 7.6% of TOP apps
gained four or more new distinct vulnerabilities across ver-
sions. In contrast, only 3.3% of RANDOM apps gained four or
more new distinct vulnerabilities across versions.

5.1 Origin of Vulnerabilities
The location of a vulnerability in an app will help to ap-

portion liability to the appropriate party. We divided the lo-
cation of vulnerabilities in apps into two parts: library code
(LIB) and developer-written code (NON-LIB). We identified
libraries as described in Section 4.3. If vulnerabilities are
introduced by NON-LIB code, that points to errors in writing
secure code on the part of the app developer. These vul-
nerabilities can be addressed with developer education and
releasing updated apps. On the other hand, if vulnerabili-
ties are introduced by LIB code, the responsibility lies with
the library authors to fix their code. However, there is no
straightforward way to automatically update libraries bun-
dled within apps. Moreover, many app developers unknow-
ingly use outdated libraries in their apps, and unwittingly
introduce additional vulnerabilities to or fail to remove ex-
isting vulnerabilities from their apps.

Fig. 6 presents the results of our analysis of whether LIB

or NON-LIB code was responsible for the introduction of vul-
nerabilities. In the figure, textured areas represent the con-
tribution of LIB code and non-textured areas represent the
contribution of NON-LIB code. Note that the vulnerabili-
ties OTH-MISC-DEBUG and BIN-ROOT-DTECT are omitted since
they are typically found in NON-LIB code.

Several vulnerabilities, such as INF-DISC-PRVDR, SSL-

TLSX-VERIF and SSL-TLSX-WVIEW are more common in
LIB code than in NON-LIB code. Other vulnerabilities,
such as INF-DISC-WRLRD and OTH-MISC-INTNT, are almost
exclusive to NON-LIB code. Other vulnerabilities, such
as SSL-TLSX-PLAIN and BRK-CRYP-ECBMD, were more
pronounced in TOP apps than in RANDOM apps. Along similar
lines, the most “stable” vulnerability was INF-DISC-KSNPW

that had approximately the same prevalence between OLD

and NEW apps as well as TOP and RANDOM apps.

53

IN
F
-D

IS
C

-W
R

LR
D

IN
F
-D

IS
C

-P
R

V
D

R

IN
F
-D

IS
C

-K
S
N

P
W

S
S
L-

T
LS

X
-P

LA
IN

S
S
L-

T
LS

X
-V

E
R

IF

S
S
L-

T
LS

X
-W

V
IE

W

B
R

K
-C

R
Y
P
-E

C
B

M
D

B
R

K
-C

R
Y
P
-R

A
N

D
G

O
T
H

-M
IS

C
-I

N
T
N

T

Vulnerabilities

0

20

40

60

80

100
P
e
rc

e
n
ta

g
e
 (

%
) TOP-OLD NON-LIB

TOP-OLD LIB

TOP-NEW NON-LIB

TOP-NEW LIB

RANDOM-OLD NON-LIB

RANDOM-OLD LIB

RANDOM-NEW NON-LIB

RANDOM-NEW LIB

Figure 6: How vulnerabilities changed over the two-year period for the four datasets. Areas with texture
indicate the fraction of vulnerabilities that come from library code (LIB) and vice-versa.

5.1.1 Older App Versions vs. Newer App Versions
Apps in the TOP-OLD dataset had more instances of the

vulnerability INF-DISC-PRVDR within NON-LIB code than
apps in the TOP-NEW dataset. Manual analysis reveals that
the increase in this vulnerability coming from LIB code
stems from updates to a handful of third-party libraries.
This highlights the fact that libraries have the potential
to greatly impact the attack surface of many apps, and
that care must be taken by library developers when
implementing libraries and by app developers in ensuring
that libraries are updated with more secure versions.

5.1.2 Top Apps vs. Random Apps
For the vulnerability BRK-CRYP-ECBMD, NON-LIB code was

a greater contributor in TOP apps than in RANDOM apps, when
compared to other vulnerabilities. Further analysis indicates
that TOP apps have more instances of this vulnerability per
app than for RANDOM apps. This is presumably because TOP

apps typically contain more functionality (and thus code),
which naturally enlarges the attack surface, especially if de-
velopers are unaware of how to write code that mitigates the
vulnerability in the first place.

5.1.3 LIB Code vs. NON-LIB Code
For the vulnerability OTH-MISC-INTNT, NON-LIB code was

the main culprit, accounting for 94.8% of the occurrences on
average. This vulnerability has to do with the insecure use
of Intents to start services. On Android, an Intent is an ab-
stract entity that passes messages describing some operation
to be performed. Typically, libraries (i.e. LIB code), provide
helper functions to apps and do not themselves interact with
low-level entities such as services. This is one explanation as
to why the majority of this vulnerability exists in NON-LIB

code.

6. DISCUSSION
We direct our recommendations to those stakeholders that

we deem to be able to make the greatest impact in fixing the
problems identified.

Both app developers and library developers should famil-
iarise themselves with the OWASP Top 10 [26] and Android
security in general and strictly adhere to their best prac-
tices. Android IDE developers can reduce the likelihood of
app vulnerabilities by triggering warnings during app devel-
opment. Many app vulnerabilities stem from lack of devel-
oper understanding and the subsequent misconfigurations
that are made at development-time. IDEs can easily warn
(or prevent compilation) if insecure practices are detected,
such as using pseudo-random number generators or choosing
insecure options when declaring app components in an app’s
manifest. Android IDE developers can separate themselves
from their competition by offering the feature of comprehen-
sive security checking for apps at development time.

App stores have great power over the app ecosystem, since
they can incentivise the building of safer apps by making app
security a search ranking signal. Apps are already vetted
for malicious activity before being admitted to the Google
Play Store, thus it would be straightforward to also analyse
apps using any of the static analysis tools we use, and give
feedback to developers at the time of app submission. Better
yet, well-funded app stores, such as the Google Play Store,
could develop and contribute more robust static/dynamic
vulnerability analysis tools to the community. This would be
useful to security researchers and app developers alike, since
existing static analysis tools sometimes yield false positive
results. App stores employing vulnerability scanning stand
to improve their reputation and market share, as consumers
would be more confident about the security of the apps they
download.

6.1 Limitations

6.1.1 Permission Usage Evolution
Our first aim was to understand how permission usage

by apps in the Android ecosystem evolves over time. Due to
storage limitations, snapshots of the Google Play Store were
taken at three-month intervals. While this is useful for get-
ting an overall picture of the Store, it is not granular enough
to capture short-term phenomena when they happen.

54

We focused only on the so-called dangerous permissions,
since normal permissions, if abused, only cause minor an-
noyance to a user, as opposed to putting their personal data
at risk. We note that the addition of new permissions is
not inherently bad, as many apps have legitimate reasons
to request additional access to user data. However, many
apps and libraries are also known to abuse their granted
permissions for the purposes of profiling users or stealing
their data. Thus apps becoming more permission-hungry
remains an important phenomenon to understand.

6.1.2 App Vulnerability Evolution
Our second aim was to understand how the vulnerabili-

ties contained within apps changed as apps were updated.
We leveraged static analysis tools to perform vulnerability
checking. As alluded to in Section 3.4, static analysis tools
fail to understand aspects of code that are determined at
run-time. Thus static analysis tools may yield output that
does not paint the full picture. This is a limitation of all ap-
proaches that rely on static analysis. To mitigate the effect
of false positives, the output from one tool was validated
with that of other tools that scanned for the same vulner-
ability. In cases where there was a single tool checking for
a particular vulnerability, manual analysis was used to val-
idate the results. For future work, we plan to bolster our
vulnerability analysis by leveraging dynamic analysis.

Old versions of .apk files were obtained from a repos-
itory built using app store crawling techniques described
by the authors of PlayDrone [31]. The original tool ap-
peared as a T-Mobile Galaxy Nexus device to the Google
Play Store and thus apps were limited to those that would
be accessible on such a device. In downloading new ver-
sions of apps, we use real devices (to comply with the Terms
of Service) and thus are unable to guarantee that the .apk

files obtained would perfectly match9 what the PlayDrone
T-Mobile Galaxy Nexus would have gotten at the time of
fetching. From observation however, few apps in our dataset
maintain multiple versions of apps for different devices, so
we consider this threat to validity minimal.

7. RELATED WORK

7.1 Permission Usage
Viennot et al. performed the first large scale analysis of

the Google Play Store using a tool they call PlayDrone to
index and analyse over 1.1 million apps [31]. Our work is
similar in that we take snapshots of the entire Google Play
store as well, but differs in that our analysis is longitudi-
nal and is concerned with gaining a greater understanding
of how app permission usage and the vulnerabilities apps
contain evolve over time and the potential impact of these
phenomena on smartphone privacy and security.

Book et al. do a longitudinal analysis of Android ad li-
brary permissions [13]. The authors investigate a sample
of 114,000 apps to build a chronological map of permission
usage in Android ad libraries. This work is a step in our
direction, but since ad libraries may only leverage a subset
of the permissions used by an app, it fails to capture the full
picture of the risk to devices that comes from app permis-
sion usage evolution as a whole. We complement this work

9Developers can target different versions of the same app to
different devices.

by measuring the increased access obtained by libraries, a
phenomenon we call library empowerment.

Wei et al. go in a tangential direction and characterise
permission evolution on the Android platform itself [32].
They look at changes in the Android permission model since
its first commercial release for smartphones in 2008. They
find that permission growth is aimed towards offering ac-
cess to new hardware features and not towards offering more
fine-grained control to the user. The authors focus mainly
on permission evolution within the Android platform itself,
while our work focuses on looking at permission evolution
across third-party apps in the official Android app mar-
ket. Along similar lines, Vidas et al. [30] propose a tool
to help mitigate permission creep by assisting developers
to enforce the principle of least privilege [27]. Building on
this, our work takes a look at whether there is a systematic
permission-creep across apps in the Google Play Store.

Carbunar and Potharaju [14] analyse the Google Play
Store to understand developer publishing and pricing be-
haviour. They found that developers are more likely to in-
crease the price of apps when they are updated. This impor-
tant work captures developer behaviour at a high level, i.e.,
publishing approaches, pricing, and app popularity. Com-
plementary to this, we examine developer behaviour at a
technical level, by analysing the security/privacy impact of
app updates on the app ecosystem once they do happen.

7.2 Vulnerability Checking
Many authors have identified vulnerabilities and/or pro-

posed tools to scan for vulnerabilities in Android apps. For
brevity, we list a few of the most related ones. Fahl et al. [16]
develop a tool called MalloDroid and use it to identify apps
that are vulnerable to MITM attacks. Other authors present
approaches that check for unprotected components [20–22].
Octeau and McDaniel [25] provide an approach to test the
security characteristics of the interfaces exported by apps.
Egele et al. [15] develop a program analysis approach to
check whether apps use cryptographic APIs securely. Our
work complements the efforts of these authors by assessing
whether app developers are now writing safe code, how vul-
nerabilities in apps have evolved over time, and identifying
the offending parties (whether library developers or app de-
velopers) when vulnerabilities are found.

8. CONCLUSION
In this paper, we performed a two-year study of Android

app evolution in terms of permission usage and app vulner-
abilities. Our analysis showed that apps are getting more
permission hungry over time, with free apps and popular
apps having greater increases. We measured the increase
in access that libraries obtain by virtue of increased permis-
sion usage, a phenomenon we call library empowerment. We
used static analysis techniques to identify how vulnerabili-
ties contained within apps changed over the studied period.
Worryingly, apps are seen to become more vulnerable over
time, with popular apps more likely than random apps to
become more vulnerable. We uncovered that some vulnera-
bilities predominantly come from different types of code, i.e.,
developer code or library code. By drawing these trends to
the attention of the research community, we hope to gener-
ate additional interest, so that appropriate strategies can be
developed to keep sensitive user data safe, as smartphones
continue their explosive growth to ubiquity.

55

Acknowledgement
Vincent F. Taylor is supported by a Rhodes Scholarship and
the UK EPSRC.

9. REFERENCES
[1] Adobe PhoneGap. http://phonegap.com/.
[2] AndroBugs Framework.

https://github.com/AndroBugs/AndroBugs Framework.
[3] Androguard.

https://github.com/androguard/androguard.
[4] Apktool - A tool for reverse engineering Android apk

files. https://ibotpeaches.github.io/Apktool/.
[5] Appcelerator Open Source.

http://www.appcelerator.org/.
[6] Mallodroid: Find broken SSL certificate validation in

Android Apps. https://github.com/sfahl/mallodroid.
[7] Mobile Security Framework.

https://github.com/ajinabraham/Mobile-Security-
Framework-MobSF.

[8] QARK: Tool to look for several security related
Android application vulnerabilities.
https://github.com/linkedin/qark.

[9] Smartphone OS Market Share, 2016 Q2.
http://www.idc.com/prodserv/smartphone-os-market-
share.jsp.

[10] System Permissions.
http://developer.android.com/guide/topics/
security/permissions.html.

[11] Archive.org. Android Apps.
https://archive.org/details/android apps.

[12] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.
PScout: Analyzing the Android Permission
Specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, CCS ’12, pages 217–228, New York, NY,
USA, 2012. ACM.

[13] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal
analysis of Android ad library permissions. arXiv
preprint arXiv:1303.0857, 2013.

[14] B. Carbunar and R. Potharaju. A Longitudinal Study
of the Google App Market. In Proceedings of the 2015
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2015, ASONAM
’15, pages 242–249, New York, NY, USA, 2015. ACM.

[15] M. Egele, D. Brumley, Y. Fratantonio, and
C. Kruegel. An Empirical Study of Cryptographic
Misuse in Android Applications. In Proceedings of the
2013 ACM Conference on Computer and
Communications Security, CCS ’13, pages 73–84, New
York, NY, USA, 2013. ACM.

[16] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why Eve and Mallory
Love Android: An Analysis of Android SSL
(in)Security. In Proceedings of the 2012 ACM
Conference on Computer and Communications
Security, CCS ’12, pages 50–61, New York, NY, USA,
2012. ACM.

[17] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android Permissions Demystified. In
Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS ’11, pages
627–638, New York, NY, USA, 2011. ACM.

[18] Google Inc. Android and Security.
http://googlemobile.blogspot.co.uk/2012/02/android-
and-security.html.

[19] Google Inc. Android Apps on Google Play.
https://play.google.com/store/apps.

[20] Y. Jiang and Z. Xuxian. Detecting passive content
leaks and pollution in android applications. In
Proceedings of the 2013 Network and Distributed
System Security Symposium (NDSS), 2013.

[21] L. Li, A. Bartel, T. F. Bissyandé, J. Klein,
Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel. IccTA: Detecting
Inter-component Privacy Leaks in Android Apps. In
Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, pages
280–291, Piscataway, NJ, USA, 2015. IEEE Press.

[22] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX:
Statically Vetting Android Apps for Component
Hijacking Vulnerabilities. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12, pages 229–240, New York, NY,
USA, 2012. ACM.

[23] Marcello Lins. GooglePlayAppsCrawler
https://github.com/MarcelloLins/
GooglePlayAppsCrawler.

[24] Nielson. Smartphones: So Many Apps, So Much Time.
http://www.nielsen.com/us/en/insights/news/2014/
smartphones-so-many-apps–so-much-time.html, July
2014.

[25] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. L. Traon. Effective Inter-Component
Communication Mapping in Android: An Essential
Step Towards Holistic Security Analysis. In
Proceedings of the 22nd USENIX Security Symposium,
pages 543–558, Washington, D.C., 2013. USENIX.

[26] OWASP. Projects/OWASP Mobile Security Project -
Top Ten Mobile Risks.
https://www.owasp.org/index.php/Projects/OWASP
Mobile Security Project - Top Ten Mobile Risks.

[27] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[28] J. Seo, D. Kim, D. Cho, T. Kim, and I. Shin.
FLEXDROID: Enforcing In-App Privilege Separation
in Android. In Proceedings of the 2016 Network and
Distributed System Security Symposium (NDSS), 2016.

[29] S. Shekhar, M. Dietz, and D. S. Wallach. AdSplit:
Separating Smartphone Advertising from
Applications. In Proceedings of the 21st USENIX
Security Symposium, pages 553–567. USENIX, 2012.

[30] T. Vidas, N. Christin, and L. Cranor. Curbing
Android permission creep. In Proceedings of Web 2.0
Security & Privacy, volume 2, 2011.

[31] N. Viennot, E. Garcia, and J. Nieh. A Measurement
Study of Google Play. In Proceedings of the 2014
ACM International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’14,
pages 221–233, New York, NY, USA, 2014. ACM.

[32] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
Permission evolution in the android ecosystem. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 31–40. ACM, 2012.

56

APPENDIX
A. OWASP TOP 10 MOBILE RISKS

Table 9 details the Top 10 Mobile Risks according to
OWASP [26]. The vulnerabilities M1, M5 and M9 do not
stem directly from inadequate or improper code implemen-
tation in the mobile app and are thus considered out of the
scope of our analysis.

Table 9: OWASP Top 10 Mobile Risks
ID Description Relevant?

M1 Weak Server Side Controls No

M2 Insecure Data Storage Yes

M3 Insufficient Transport Layer Protection Yes

M4 Unintended Data Leakage Yes

M5 Poor Authorization and Authentication No

M6 Broken Cryptography Yes

M7 Client Side Injection Yes

M8 Security Decisions Via Untrusted Inputs Yes

M9 Improper Session Handling No

M10 Lack of Binary Protections Yes

57

	Introduction
	Permission Usage Evolution
	Data Collection
	Changes in Permission Usage
	Which Permissions Changed
	Hypothesis Testing
	Hypothesis 1: Free apps are more likely to add new permissions than paid apps.
	Hypothesis 2: Popular apps are more likely to add new permissions than unpopular apps.

	Summary

	Vulnerability Analysis
	Vulnerabilities Considered
	Information disclosure (M2/M4)
	Insecure network communication (M3)
	Broken cryptography (M6)
	Miscellaneous (M7/M8)
	Binary Protection (M10)

	Library Empowerment
	Tools
	AndroGuard
	AndroBugs
	Mobile Security Framework
	QARK
	Mallodroid
	PermFinder

	Limitations

	Dataset Overview
	Data description
	Update frequency
	Library usage
	Library Empowerment

	Evaluation
	Origin of Vulnerabilities
	Older App Versions vs. Newer App Versions
	Top Apps vs. Random Apps
	LIB Code vs. NON-LIB Code

	Discussion
	Limitations
	Permission Usage Evolution
	App Vulnerability Evolution

	Related Work
	Permission Usage
	Vulnerability Checking

	Conclusion
	References
	OWASP Top 10 Mobile Risks

