
Lower Bounds on Obfuscation
from All-or-Nothing Encryption Primitives

Sanjam Garg1(B), Mohammad Mahmoody2, and Ameer Mohammed2

1 UC Berkeley, Berkeley, USA
sanjamg@berkeley.edu

2 University of Virginia, Charlottesville, USA
{mohammad,ameer}@virginia.edu

Abstract. Indistinguishability obfuscation (IO) enables many hereto-
fore out-of-reach applications in cryptography. However, currently all
known constructions of IO are based on multilinear maps which
are poorly understood. Hence, tremendous research effort has been
put towards basing obfuscation on better-understood computational
assumptions. Recently, another path to IO has emerged through func-
tional encryption [Anath and Jain, CRYPTO 2015; Bitansky and
Vaikuntanathan, FOCS 2015] but such FE schemes currently are still
based on multi-linear maps. In this work, we study whether IO could be
based on other powerful encryption primitives.
Separations for IO. We show that (assuming that the polynomial hier-
archy does not collapse and one-way functions exist) IO cannot be con-
structed in a black-box manner from powerful all-or-nothing encryption
primitives, such as witness encryption (WE), predicate encryption, and
fully homomorphic encryption. What unifies these primitives is that they
are of the “all-or-nothing” form, meaning either someone has the “right
key” in which case they can decrypt the message fully, or they are not
supposed to learn anything.
Stronger Model for Separations. One might argue that fully black-
box uses of the considered encryption primitives limit their power too
much because these primitives can easily lead to non-black-box construc-
tions if the primitive is used in a self-feeding fashion—namely, code of
the subroutines of the considered primitive could easily be fed as input to
the subroutines of the primitive itself. In fact, several important results
(e.g., the construction of IO from functional encryption) follow this very
recipe. In light of this, we prove our impossibility results with respect
to a stronger model than the fully black-box framework of Impagliazzo
and Rudich (STOC’89) and Reingold, Trevisan, and Vadhan (TCC’04)
where the non-black-box technique of self-feeding is actually allowed.

S. Garg—Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397,
AFOSR YIP Award and research grants by the Okawa Foundation and Visa Inc.
The views expressed are those of the author and do not reflect the official policy or
position of the funding agencies.
M. Mahmoody—Supported by NSF CAREER award CCF-1350939.
A. Mohammed—Supported by University of Kuwait.

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 661–695, 2017.
DOI: 10.1007/978-3-319-63688-7 22

662 S. Garg et al.

1 Introduction

Program obfuscation provides an extremely powerful tool to make computer
programs “unintelligible” while preserving their functionality. Barak et al. [11]
formulated this notion in various forms and proved that their strongest for-
mulation, called virtual black-box (VBB) obfuscation, is impossible for general
polynomial size circuits. However, a recent result of Garg et al. [31] presented a
candidate construction for a weaker notion of obfuscation, called indistinguisha-
bility obfuscation (IO). Subsequent work showed that IO, together with one-way
functions, enables numerous cryptographic applications making IO a “crypto-
graphic hub” [63].

Since the original work of [31] many constructions of IO were proposed [3,
5,8,10,18,31,32,53,65]. However, all these constructions are based on computa-
tional hardness assumptions on multilinear maps [27,30,37]. Going a step fur-
ther, recent works of Lin [48] and Lin and Vaikunthanatan [49] showed how
to weaken the required degree of the employed multilinear maps schemes to
be a constant. Another line of work showed how to base IO on compact func-
tional encryption [1,13]. However, the current constructions of compact func-
tional encryption are in turn based on IO (or, multilinear maps). In summary,
all currently known paths to obfuscation start from multilinear maps, which are
poorly understood. In particular, many attacks on the known candidate multi-
linear map constructions have been shown [23,25,26,30,46,54].

In light of this, it is paramount that we base IO on well-studied computa-
tional assumptions. One of the assumptions that has been used in a successful
way for realizing sophisticated cryptographic primitives is the Learning with
Errors (LWE) assumption [61]. LWE is already known to imply attribute-based
encryption [42] (or even predicate encryption [43]), fully homomorphic encryp-
tion [19,20,36,38]1, multi-key [17,24,55,60] and spooky homomorphic encryp-
tion [29]. One thing that all these primitives share is that they are of an “all-
or-nothing” nature. Namely, either someone has the “right” key, in which case
they can decrypt the message fully, or if they do not posses a right key, then
they are not supposed to learn anything about the plaintext.2 In this work, our
main question is:

Main Question: Can IO be based on any powerful ‘all-or-nothing’ encryp-
tion primitive such as predicate encryption or fully homomorphic encryp-
tion?

We show that the answer to the above question is essentially “no.” However,
before stating our results in detail, we stress that we need to be very care-
ful in evaluating impossibility results that relate to such powerful encryption
primitives and the framework they are proved in. For example, such a result
1 Realizing full-fledged fully-homomorphic encryption needs additional circular secu-

rity assumptions.
2 This is in contrast with functional encryption where different keys might leak dif-

ferent information about the plaintext.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 663

if proved in the fully black-box framework of [47,62] has limited value as we
argue below.3 Note that the black-box framework restricts to constructions that
use the primitive and the adversary (in the security reduction) as a black-box.
The reason for being cautious about this framework is that the constructions
of powerful encryption primitive offer for a very natural non-black-box use. In
fact, the construction of IO from compact functional encryption [1,2,13] is non-
black-box in its use of functional encryption. This is not a coincidence (or, just
one example) and many applications of functional encryption (as well as other
powerful encryption schemes) and IO are non-black-box [14,33,34,36,63]. Note
that the difference between these powerful primitives and the likes of one-way
functions, hash functions, etc., is that these powerful primitives include subrou-
tines that take arbitrary circuits as inputs. Therefore, it is very easy to self-feed
the primitive. In other words, it is easy to plant gates of its own subroutines
(or, subroutines of other cryptographic primitives) inside such a circuit that is
then fed to it as input. For example, the construction of IO from FE plants FE’s
encryption subroutine as a gate inside the circuit for which it issues decryption
keys. This makes FE a “special” primitive in that at least one of its subroutines
takes an arbitrary circuit as input and we could plant code of its subroutines in
this circuit. Consequently, the obtained construction would be non-black-box in
the underlying primitive. This special aspect is present in all of the primitives
that we study in this work. For example, one of the subroutines of predicate
encryption takes a circuit as input and this input circuit is used to test whether
the plaintext is revealed during the decryption or not. Along similar lines, eval-
uation subroutine of an FHE scheme is allowed to take as input a circuit that is
executed on an encrypted message.

The above “special” aspects of the encryption functionalities (i.e. that they
take as input general circuits or Turing machines and execute them) is the
main reason that many of the applications of these primitives are non-black-box
constructions. Therefore, any effort to prove a meaningful impossibility result,
should aim for proving the result with respect to a more general framework than
that of [47,62]. In particular, this more general framework should incorporate
the aforementioned non-black-box techniques as part of the framework itself.

The previous works of Brakerski et al. [16] and the more recent works of
Asharov and Segev [6,7] are very relevant to our studies here. All of these works
also deal with proving limitations for primitives that in this work we call special
(i.e. those that take general circuits as input), and prove impossibility results
against constructions that use these special primitives while allowing some form
of oracle gates to be present in the input circuits. A crucial point, however,
is that these works still put some limitation on what oracle gates are allowed,
and some of the subroutines are excluded. The work of [16] proved that the
primitive of Witness Indistinguishable (WI) proofs for NPO statements where
O is a random oracle does not imply key-agreement protocols in a black-box way.
However, the WI subroutines themselves are not allowed inside input circuits.

3 Such results could still have some value for demonstrating efficiency limitations but
not for showing infeasibility, as is the goal of this work.

664 S. Garg et al.

The more recent works of [6,7] showed that by using IO over circuits that are
allowed to have one-way functions gates one cannot obtain collision resistant
hash functions or (certain classes of) one-way permutations families (in a black-
box way). However, not all of the subroutines of the primitive itself are allowed
to be planted as gates inside the input circuits (e.g., the evaluation procedure of
the IO).

In this work, we revisit the models used in [6,7,16] who allowed the use
of one-way function gates inside the given circuits and study a model where
there is no limitation on what type of oracle gates could be used in the circuits
given as input to the special subroutines, and in particular, the primitive’s own
subroutines could be planted as gates in the input circuits. We believe a model
that captures the “gate plantation” technique without putting any limitation on
the types of gates used is worth to be studied directly and at an abstract level,
due to actual positive results that exactly benefit from this “self-feeding” non-
black-box technique. For this goal, here we initiate a formal study of a model
that we call extended black-box, which captures the above-described non-black-
box technique that is commonplace in constructions that use primitives with
subroutines that take arbitrary circuits as input.

More formally, suppose P is a primitive that is special as described above,
namely, at least one of its subroutines might receive a circuit or a Turing machine
C as input and executes C internally in order to obtain the answer to one of
its subroutines. Examples of P are predicate encryption, fully homomorphic
encryption, etc. An extended black-box construction of another primitive Q (e.g.,
IO) from P will be allowed to plant the subroutines of P inside the circuit C as
gates with no further limitations. To be precise, C will be allowed to have oracle
gates that call P itself. Some of major examples of non-black-box constructions
that fall into this extended model are as follows.

– Gentry’s bootstrapping construction [35] plants FHE’s own decryption gates
inside a circuit that is given as input to the evaluation subroutine. This trick
falls into the extended black-box framework since planting gates inside eval-
uation circuits is allowed.

– The bootstrapping of IO for NC1 (along with FHE) to obtain IO for P/poly
[31]. This construction uses P that includes both IO for NC1 and FHE, and
it plants the FHE decryption gates inside the NC1 circuit that is obfuscated
using IO for NC1. Analogously, bootstrapping methods using one-way func-
tions [4,22] also fall in our framework.

– The construction of IO from functional encryption [1,2,13] plants the func-
tional encryption scheme’s encryption subroutine inside the circuits for which
decryption keys are issued. Again, such a non-black-box technique does fall
into our extended black-box framework. We note that the constructions of
obfuscation based on constant degree graded encodings [48] also fit in our
framework.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 665

The above examples show the power of the “fully” extended black-box model in
capturing one of the most commonly used non-black-box techniques in cryptog-
raphy and especially in the context of powerful encryption primitives.

What is not captured by extended black-box model? It is instructive to
understand the kinds of non-black-box techniques not captured by our extension
to the black-box model. This model does not capture non-black-box techniques
that break the computation of a primitives sub-routines into smaller parts—
namely, we do not include techniques that involve partial computation of a sub-
routine, save the intermediate state and complete the computation later. In other
words, the planted sub-routines gates must be executed in one-shot. Therefore,
in our model given just an oracle that implements a one-way function it is not
possible to obtain garbled circuits that evaluate circuits with one-way function
gates planted in them. For example, Beaver’s OT extension construction cannot
be realized given just oracle access to a random function.

However, a slight workaround (though a bit cumbersome) can still be used to
give meaningful impossibility results that use garbled circuits (or, randomized
encodings more generally) in our model. Specifically, garbled circuits must now
be modeled as a special primitive that allows for inputs that can be arbitrary
circuits with OWF gates planted in them. With this change the one-way func-
tion gate planted inside circuit fed to the garbled circuit construction is treated
as a individual unit. With this change we can realize Beaver’s OT extension
construction in our model.

In summary, intuitively, our model provides a way to capture “black-box”
uses of the known non-black-box techniques. While the full power of non-black-
box techniques in cryptography is yet to be understood, virtually every known
use of non-black-box techniques follows essentially the same principles, i.e. by
plating subroutines of one primitive as gates in a circuit that is fed as input to
the same (or, another) primitive. Our model captures any such non-black box
use of the considered primitives.

Our Results. The main result of this paper is that several powerful encryption
primitives such as predicate encryption and fully-homomorphic encryption are
incapable of producing IO via an extended black-box construction as described
above. A summery of our results is presented in Fig. 1. More specifically, we
prove the following theorem.

Theorem 1 (Main Result). Let P be one of the following primitives:
fully-homomorphic encryption, attribute-based encryption, predicate encryption,
multi-key fully homomorphic encryption, or spooky encryption. Then, assum-
ing one-way functions exist and NP �⊆ coAM, there is no construction of IO
from P in the extended black-box model where one is allowed to plant P gates
arbitrarily inside the circuits that are given to P as input.

666 S. Garg et al.

WE

HWE

IHWE �=⇒
�=⇒IO

=
⇒

PE

=⇒ =⇒

Spooky Encryption Attribute-Based FHE=⇒ = ⇒

Multi-Key FHE =⇒ FHE

Fig. 1: Summary of our separation results. IHWE
denotes instance hiding WE and HWE denotes homo-
morphic witness encryption.

All-or-Nothing Aspect.
One common aspect of
all of the primitives
listed in Theorem 1 is
that they have an all-or-
nothing nature. Namely,
either someone has the
right key to decrypt
a message, in which
case they can retrieve
all of the message, or
if they do not have
the right key then they
are supposed to learn
nothing. In contrast, in
a functional encryption
scheme (a primitive that
does imply IO) one can
obtain a key kf for a
function f that allows
them to compute f(x)
from a ciphertext c containing the plaintext x. So, they could legitimately learn
only a “partial” information about x. Even though we do not yet have a general
result that handles such primitives uniformly in one shot, we still expect that
other exotic encryption primitives (that may be developed in the future) that are
of the all-or-nothing flavor will also not be enough for realizing IO. Additionally,
we expect that our techniques will be useful in deriving impossibility results in
such case.

What Does Our Results Say About LWE? Even though our separations
of Theorem 1 covers most of the powerful LWE-based primitives known to date,
it does not imply whether or not we can actually base IO on LWE. In fact, our
result only rules out specific paths from LWE toward IO that would go through
either of the primitives listed in Theorem 1. Whether or not a direct construction
from LWE to IO is possible still remains as a major open problem in this area.

Key Role of Witness Encryption. Witness encryption and its variations play
a key role in the proof or our impossibility results. Specifically, we consider two
(incompatible) variants of WE—namely, instance hiding witness encryption and
homomorphic witness encryption. The first notion boosts the security of WE and
hides the statement while the second enhances the functionality of WE with some
homomorphic properties. We obtain our separation results in two steps. First, we
show that neither of these two primitives extended black-box imply IO. Next, we
show that these two primitives extended black-box imply extended versions of all
the all-or-nothing primitives listed above. The final separations follow from a spe-
cific transitivity lemma that holds in the extended black-box model.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 667

Further Related Work. Now we describe previous work on the complexity
of assumptions behind IO and previous works on generalizing the black-box
framework of [47,62].

Previous Lower Bounds on Complexity of IO. The work of Mahmoody
et al. [52] proved lower bounds on the assumptions that are needed for building
IO in a fully black-box way.4 They showed that, assuming NP �= co-NP, one-
way functions or even collision resistant hash functions do not imply IO in a
fully black-box way.5 Relying on the works of [21,50,58] (in the context of VBB
obfuscation in idealized models) Mahmoody et al. [52] also showed that building
IO from trapdoor permutations or even constant degree graded encoding oracles
(constructively) implies that public-key encryption could be based on one-way
functions (in a non-black-box way). Therefore, building IO from those primitives
would be as hard as basing PKE on OWFs, which is a long standing open
question of its own. Relying on the recent beautiful work of Brakerski et al. [15]
that ruled out the existence of statistically secure approximately correct IO and a
variant of Borel-Cantelli lemma, Mahmoody et al. [51] showed how to extend the
‘hardness of constructing IO’ result of [52] into conditional black-box separations.

Other Non-Black-Box Separations. Proving separations for non-black-box
constructions are usually extremely hard. However, there are a few works in this
area that we shall discuss here. The work of Baecher et al. [9] studied various
generalizations of the black-box framework of [62] that also allow some forms of
non-black-box use of primitives. The work of Pass et al. [59] showed that under
(new) believable assumptions one can rule out non-black-box constructions of
certain cryptographic primitives (e.g., one-way permutations, collision-resistant
hash-functions, constant-round statistically hiding commitments) from one-way
functions, as long as the security reductions are black-box. Pass [57] showed that
the security of some well-known cryptographic protocols and assumptions (e.g.,
the Schnorr identification scheme) cannot be based on any falsifiable assump-
tions [56] as long at the security proof is black-box (even if the construction is
non-black-box). The work of Genry and Wichs [39] showed that black-box secu-
rity reductions (together with arbitrary non-black-box constructions) cannot be
used to prove the security of any SNARG construction based on any falsifi-
able cryptographic assumption. Finally, the recent work of Dachman-Soled [28]
showed that certain classes of constructions with some limitations, but with spe-
cific non-black-box power given to them are not capable of reducing public-key
encryption to one way functions.

4 A previous result of Asharov and Segev [6] proved lower bounds on the complexity
of IO with oracle gates, which is a stronger primitive. (In fact, how this primitive
is stronger is tightly related to how we define extensions of primitives. See Sect. 3
where we formalize the notion of such stronger primitives in a general way.).

5 Note that since statistically secure IO exists if P = NP, therefore we need compu-
tational assumptions for proving lower bounds for assumptions implying IO.

668 S. Garg et al.

Organization. Due to limited space, in this draft we only prove the separation
of IO from witness encryption (in the extended black-box setting) and refer the
reader to the full version of the paper for other separations. In Sect. 2 we review
the needed preliminaries and also review some of the tools that are developed in
previous work for proving lower bounds on IO. In Sect. 3 we discuss the extended
black-box model and its relation to extended primitives in detail and give a
formal definition of extended black-box constructions from witness encryption.
In Sect. 4 we give a full proof of the extended black-box separation of IO from
(even instance-revealing) witness encryption.

2 Preliminaries

Notation. We use “|” to concatenate strings and we use “,” for attaching strings
in a way that they could be retrieved. Namely, one can uniquely identify x and y
from (x, y). For example (00|11) = (0011), but (0, 011) �= (001, 1). When writing
the probabilities, by putting an algorithm A in the subscript of the probability
(e.g., PrA[·]) we mean the probability is over A’s randomness. We will use n or κ
to denote the security parameter. We call an efficient algorithm V a verifier for an
NP relation R if V(w, a) = 1 iff (w, a) ∈ R. We call LR = LV = {a | ∃w, (a,w) ∈
R} the corresponding NP language. By PPT we mean a probabilistic polynomial
time algorithm. By an oracle PPT/algorithm we mean a PPT that might make
oracle calls.

2.1 Primitives

In this subsection we define the primitives that we deal with in this work and
are defined prior to our work. In the subsequent sections we will define variants
of these primitives.

The definition of IO below has a subroutine for evaluating the obfuscated
code. The reason for defining the evaluation as a subroutine of its own is that
when we want to construct IO in oracle/idealized models, we allow the obfuscated
circuit to call the oracle as well. Having an evaluator subroutine to run the
obfuscated code allows to have such oracle calls in the framework of black-
box constructions of [62] where each primitive Q is simply a class of acceptable
functions that we (hope to) efficiently implement given oracle access to functions
that implement another primitive P (see Definition 7).

Definition 2 (Indistinguishability Obfuscation (IO)). An Indistinguisha-
bility Obfuscation (IO) scheme consists of two subroutines:

– Obfuscator iO is a PPT that takes as inputs a circuit C and a security para-
meter 1κ and outputs a “circuit” B.

– Evaluator Ev takes as input (B, x) and outputs y.

The completeness and soundness conditions assert that:

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 669

– Completeness: For every C, with probability 1 over the randomness of iO, we
get B ← iO(C, 1κ) such that: For all x it holds that Ev(B, x) = C(x).

– Security: for every poly-sized distinguisher D there exists a negligible function
μ(·) such that for every two circuits C0, C1 that are of the same size and
compute the same function, we have:

|Pr
iO

[D(iO(C0, 1κ) = 1] − Pr
iO

[D(iO(C1, 1κ) = 1]| ≤ μ(κ)

Definition 3 (Approximate IO). For function 0 < ε(n) ≤ 1, an ε-
approximate IO scheme is defined similarly to an IO scheme with a relaxed
completeness condition:

– ε-approximate completeness. For every C and n we have:

Pr
x,iO

[B = iO(C, 1κ), Ev(B, x) = C(x)] ≥ 1 − ε(κ)

Definition 4 (Witness Encryption (WE) indexed by verifier V). Let L
be an NP language with a corresponding efficient relation verifier V (that takes
instance x and witness w and either accepts or rejects). A witness encryption
scheme for relation defined by V consists of two PPT algorithms (Enc,DecV)
defined as follows:

– Enc(a,m, 1κ): given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– DecV(w, c): given ciphertext c and “witness” string w, it either outputs a
message m ∈ {0, 1}∗ or ⊥.

We also need the following completeness and security properties:

– Completeness: For any security parameter κ, any (a,w) such that V(a,w) =
1, and any m it holds that

Pr
Enc,DecV

[DecV(w,Enc(a,m, 1κ)) = m] = 1

– Security: For any PPT adversary A, there exists a negligible function μ(.)
such that for all a /∈ LV (i.e., that there is no w for which V(a,w) = 1) and
any m0 �= m1 of the same length |m0| = |m1| the following holds:

|Pr[A(Enc(a,m0, 1κ)) = 1] − Pr[A(Enc(a,m1, 1κ)) = 1]| ≤ μ(κ)

When we talk about the witness encryption as a primitive (not an indexed fam-
ily) we refer to the special case of the ‘complete’ verifier V which is a circuit
evaluation algorithm and V(w, a) = 1 if a(w) = 1 where a is a circuit evaluated
on witness w.

The family version of WE in Definition 4 allows the verifier V to be part
of the definition of the primitive. However, the standard notion of WE uses
the “universal” V which allows us to obtain WE for any other efficient relation
verifier V.

The following variant of witness encryption strengthens the functionality.

670 S. Garg et al.

Definition 5 (Instance-revealing Witness Encryption (IRWE)). A wit-
ness encryption scheme is said to be instance-revealing if it satisfies the proper-
ties of Definition 4 and, in addition, includes the following subroutine.

– Instance-Revealing Functionality: Rev(c) given ciphertext c outputs a ∈
{0, 1}s ∪ {⊥}, and for every a,m, κ:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1.

2.2 Black-Box Constructions and Separations

Impagliazzo and Rudich [47] were the first to formally study the power of
“black-box” constructions that relativize to any oracle. Their notion was further
explored in detail by Reingold et al. [62]. The work of Baecher et al. [9] further
studied the black-box framework and studied variants of the definition of black-
box constructions. We first start by recalling the definition of cryptographic
primitives, and then will go over the notion of (fully) black-box constructions.

Definition 6 (Cryptographic Primitives [62]). A primitive P = (F ,R) is
defined as set of functions F and a relation R between functions. A (possibly
inefficient) function F ∈ {0, 1}∗ → {0, 1}∗ is a correct implementation of P if
F ∈ F , and a (possibly inefficient) adversary A breaks an implementation F ∈ F
if (A,F) ∈ R.

Definition 7 (black-box constructions [62]). A black-box construction of
a primitive Q from a primitive P consists of two PPT algorithms (Q,S):

1. Implementation: For any oracle P that implements P, QP implements Q.
2. Security reduction: for any oracle P implementing P and for any (computa-

tionally unbounded) oracle adversary A breaking the security of QP , it holds
that SP,A breaks the security of P .

Definition 8 (Black-box constructions of IO). A fully-black-box construc-
tion of IO from any primitive P could be defined by combining Definitions 7
and 2.

The Issue of Oracles Gates. Note that in any such construction of Defin-
ition 8 the input circuits to the obfuscation subroutine do not have any oracle
gates in them, while the obfuscation algorithm and the evaluation procedure are
allowed to use the oracle implementing P. In Sect. 3 we will see that one can
also define an extended variant of the IO primitive (as it was done in [6,7]) in
which the input circuits have oracle gates.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 671

2.3 Black-Box Separations

In this section we recall lemmas that can be used for proving black-box impos-
sibility results (a.k.a. separations). The arguments described in this section are
borrowed from a collection of recent works [15,21,50–52,58] where a framework
for proving lower bounds for (assumptions behind) IO are laid out. However, the
focus in those works was to prove lower bounds for IO in the (standard) black-box
model rather than the extended model. We will indeed use those tools/lemmas
by relating the extended black-box model to the black-box model.

Idealized Models/Oracles and Probability Measures over Them. An
idealized model I is a randomized oracle that supposedly implements a primitive
(with high probability over the choice of oracle); examples include the random
oracle, random trapdoor permutation oracle, generic group model, graded encod-
ing model, etc. An I ← I can (usually) be represented as a sequence (I1, I2, . . .)
of finite random variables, where In is the description of the prefix of I that
is defined for inputs whose length is parameterized by (a function of) n. The
measure over the actual infinite sample I ← I could be defined through the
given finite distributions Di over Ii.6

Definition 9 (Oracle-fixed constructions in idealized models [52]). We
say a primitive P has an oracle-fixed construction in idealized model I if there
is an oracle-aided algorithm P such that:

– Completeness: P I implements P correctly for every I ← I.
– Black-box security: Let A be an oracle-aided adversary AI where the query

complexity of A is bounded by the specified complexity of the attacks for prim-
itive P. For example if P is polynomially secure (resp., quasi-polynomially
secure), then A only asks a polynomial (resp., quasi-polynomial) number of
queries but is computationally unbounded otherwise. Then, for any such A,
with measure one over the choice of I

$← I, it holds that A does not break
P I .7

Definition 10 (Oracle-mixed constructions in idealized models [52]).
An oracle-mixed construction of a primitive P in idealized model I is defined
similarly to the oracle-fixed definition, but with the difference that the correctness
and soundness conditions of the construction P I hold when the probabilities are
taken over I ← I as well.

Lemma 11 (Composition lemma [52]). Suppose Q is a fully-black-box con-
struction of primitive Q from primitive P, and suppose P is an oracle-fixed
6 Caratheodory’s extension theorem shows that such finite probability distributions

could always be extended consistently to a measure space over the full infinite space
of I ← I. See Theorem 4.6 of [45] for a proof.

7 For breaking a primitive, the adversary needs to ‘win’ with ‘sufficient advantage’
(this depends on what level of security is needed) over an infinite sequence of security
parameters.

672 S. Garg et al.

construction for primitive P relative to I (according to Definition 10). Then QP

is an oracle-fixed implementation of Q relative to the same idealized model I.

Definition 12 (Oracle-mixed constructions in idealized models [51]).
We say a primitive P has an oracle-mixed black-box construction in idealized
model I if there is an oracle-aided algorithm P such that:

– Oracle-Mixed Completeness: P I implements P correctly where the prob-
abilities are also over I ← I.8 For the important case of perfect completeness,
this definition is the same as oracle-fixed completeness.

– Oracle-mixed black-box security: Let A be an oracle-aided algorithm in
idealized model I whose query complexity is bounded by the specified com-
plexity of the attacks defined for primitive P. We say that the oracle-mixed
black-box security holds for P I if for any such A there is a negligible μ(n)
such that the advantage of A breaking P I over the security parameter n is at
most μ(n) where this bound is also over the randomness of I.

Using a variant of the Borel-Cantelli lemma, [51] proved that oracle-mixed
attacks with constant advantage leads to breaking oracle-fixed constructions.

Lemma 13 [51]. If there is an algorithm A that oracle-mixed breaks a construc-
tion P I of P in idealized model I with advantage ε(n) ≥ Ω(1) for an infinite
sequence of security parameters, then the same attacker A oracle-fixed breaks the
same construction P I over a (perhaps more sparse but still) infinite sequence of
security parameters.

The following lemmas follows as a direct corollary to Lemmas 11 and 13.

Lemma 14 (Separation Using Idealized Models). Suppose I is an ideal-
ized model, and the following conditions are satisfied:

– Proving oracle-fixed security of P. There is an oracle fixed black-box
construction of P relative to I.

– Breaking oracle-mixed security of Q with Ω(1) advantage. For any
construction QP of Q relative to I there is a computationally-unbounded
query-efficient attacker A (whose query complexity is bounded by the level
of security demanded by P) such that for an infinite sequence of security
parameters n1 < n2 < . . . the advantage of A in oracle-mixed breaking P I is
at least ε(ni) ≥ Ω(1).

Then there is no fully black-box construction for Q from P.

8 For example, an oracle-mixed construction of an ε-approximate IO only requires
approximate correctness while the probability of approximate correctness is com-
puted also over the probability of the input as well as the oracle.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 673

2.4 Tools for Getting Black-Box Lower Bounds for IO

The specific techniques for proving separations for IO that is developed in [15,
21,51,52] aims at employing Lemma 14 by “compiling” out an idealized oracle
I from an IO construction. Since we know that statistically secure IO does not
exist in the plain model [41] this indicates that perhaps we can compose the
two steps and get a query-efficient attacker against IO in the idealized model
I. The more accurate line of argument is more subtle and needs to work with
approximately correct IO and uses a recent result of Brakerski et al. [15] who
ruled out the existence of statistically secure approximate IO.

To formalize the notion of “compiling out” an oracle in more than one step we
need to formalize the intuitive notion of sub oracles in the idealized/randomized
context.

Definition 15 (Sub-models). We call the idealized model/oracle O a sub-
model of the idealized oracle I with subroutines (I1, . . . , Ik), denoted by O I,
if there is a (possibly empty) S ⊆ {1, . . . , k} such that the idealized oracle O is
sampled as follows:

– First sample I ← I where the subroutines are I = (I1, . . . , Ik).
– Then provide access to subroutine Ii if and only if i ∈ S (and hide the rest of

the subroutines from being called).

If S = ∅ then the oracle O will be empty and we will be back to the plain model.

Definition 16 (Simulatable Compiling Out Procedures for IO). Sup-
pose O � I. We say that there is a simulatable compiler from IO in idealized
model I into idealized model O with correctness error ε if the following holds.
For every implementation PI = (iOP , EvP) of δ-approximate IO in idealized
model I there is a implementation PO = (iOO, EvO) of (δ + ε)-approximate
IO in idealized model O such that the only security requirement for these two
implementations is that they are related as follows:
Simulation: There is an efficient PPT simulator S and a negligible function
μ(·) such that for any C:

Δ(S(iOI(C, 1κ)), iOO(C, 1κ)) ≤ μ(κ)

where Δ(., .) denotes the statistical distance between random variables.

It is easy to see that the existence of the simulator according to Definition 16
implies that PO in idealized model O is “as secure as” PI in the idealized model
I. Namely, any oracle-mixed attacker against the implementation PO in model
O with advantage δ (over an infinite sequence of security parameters) could
be turned in to an attacker against PI in model I that breaks against PI with
advantage δ−negl(κ) over an infinite sequence of security parameters. Therefore
one can compose the compiling out procedures for a constant number of steps
(but not more, because there is a polynomial blow up in the parameters in each
step).

674 S. Garg et al.

By composing a constant number of compilers and relying on the recent result
of Brakerski et al. [15] one can get a general method of breaking IO in idealized
models. We first state the result of [15].

Theorem 17 [15]. Suppose one-way functions exist, NP �⊆ coAM, and
δ, ε : N �→ [0, 1] are such that 2ε(n) + 3δ(n) < 1 − 1/poly(n), then there is
no (ε, δ)-approximate statistically-secure IO for all poly-size circuits.

The above theorem implies that if we get any implementation for IO in the
plain model that is 1/100-approximately correct, then there is a computationally
unbounded adversary that breaks the statistical security of IO with advantage at
least 1/100 over an infinite sequence of security parameters. Using this result, the
following lemma shows a way to obtain attacks against IO in idealized models.

Lemma 18 (Attacking IO Using Nested Oracle Compilers). Suppose
∅ = I0 I1 · · · Ik = I for constant k = O(1) are a sequence of idealized
models. Suppose for every i ∈ [k] there is a simulatable compiler for IO in model
Ii into model Ii−1 with correctness error εi < 1/(100k). Then, assuming one-
way functions exist, NP �⊆ coAM, any implementation P of IO in the idealized
model I could be oracle-mixed broken by a polynomial-query adversary A with a
constant advantage δ > 1/100 for an infinite sequence of security parameters.

Proof. Starting with our initial ideal-model construction PI = PIk
, we itera-

tively apply the simulatable compiler to get PIi−1 from PIi
for i = {k, ..., 1}.

Note that the final correctness error that we get is εI0 < k/(100k) < 1/100,
and thus by Theorem17 there exists a computationally unbounded attacker AI0

against PI0 with constant advantage δ. Now, let Si be the PPT simulator whose
existence is guaranteed by Definition 16 for the compiler that transforms PIi

into
PIi−1 . We inductively construct an adversary AIi

against PIi
from an adver-

sary AIi−1 for PIi−1 starting with AI0 . The construction of AIi
simply takes

its input obfuscation in the Ii ideal-model iOIi , runs Si(iOIi) and feeds the
result to AIi−1 to get its output. Note that, after constant number k, we still
get δ′ < δ − k negl(κ) a constant advantage over infinite sequence of security
parameters against PIk

.

Finally, by putting Lemmas 18 and 14 together we get a lemma for proving
black-box lower bounds for IO.

Lemma 19 (Lower Bounds for IO using Oracle Compilers). Suppose
∅ = I0 I1 · · · Ik = I for constant k = O(1) are a sequence of idealized
models. Suppose for every i ∈ [k] there is a simulatable compiler for IO in model
Ii into model Ii−1 with correctness error εi < 1/(100k). If primitive P can be
oracle-fixed constructed in the idealized model I, then there is no fully black-box
construction of IO from P.

We will indeed use Lemma 19 to derive lower bounds for IO even in the
extended black-box model by relating such constructions to fully black-box
constructions.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 675

3 An Abstract Extension of the Black-Box Model

In what follows, we will gradually develop an extended framework of construc-
tions that includes the fully black-box framework of [62] and allows certain non-
black-box techniques by default. This model uses steps already taken in works of
Brakerski et al. [16] and the more recent works of Asharov and Segev [6,7] and
takes them to the next level by allowing even non-black-box techniques involving
‘self-calls’ [1,2,13]. In a nutshell, this framework applies to ‘special’ primitives
that accept generic circuits as input and run them on other inputs; therefore
one can plant oracle gates to the same primitives inside those circuits. We will
define such constructions using the fully black-box framework by first extending
these primitives and then allowing the extensions to be used in a black-box way.

We will first give an informal discussion by going over examples of primitives
that could be used in an extended black-box way. We then discuss an abstract
model that allows formal definitions. We will finally give concrete and formal
definitions for the case of witness encryption which is the only primitive that we
will formally separate from IO in this draft. For the rest of the separations see
the full version of the paper.

Special Primitives Receiving Circuits as Input. At a very high level, we
call a primitive ‘special’, if it takes circuits as input and run those circuits as part
of the execution of its subroutines, but at the same time, the exact definition
depends on the execution of the input circuit only as a ‘black-box’ while the exact
representation of the input circuits do not matter. In that case one can imagine
an input circuit with oracle gates as well. We will simply call such primitives
special till we give formal definitions that define those primitives as ‘families’ of
primitives indexed by an external universal algorithm.

Here is a list of examples of special primitives.

– Zero-knowledge proofs of circuit satisfiability (ZK-Cir-SAT). A
secure protocol for ZK-Cir-SAT is an interactive protocol between two par-
ties, a prover and a verifier, who take as input a circuit C. Whether or not
the prover can convince the verifier to accept the interaction depends on the
existence of x such that C(x) = 1. This definition of the functionality of
ZK-Cir-SAT does not depend on the specific implementation of C and only
depends on executing C on x ‘as a black-box’.

– Fully homomorphic encryption (FHE). FHE is a semantically secure
public-key encryption where in addition we have an evaluation sub-routine
Eval that takes as input a circuit f and ciphertexts c1, . . . , ck containing
plaintexts m1, . . . ,mk, and it outputs a new ciphertext c = Eval(f, c1, . . . , ck)
such that decrypting c leads to f(m1, . . . ,mk). The correctness definition of
the primitive FHE only uses the input-output behavior of the circuit f , so
FHE is a special primitive.

– Encrypted functionalities. Primitives such as attribute, predicate, and
functional encryption all involve running some generic computation at the

676 S. Garg et al.

decryption phase before deciding what to output. There are two ways that
this generic computation could be fed as input to the system:

• Key policy [44,64]: Here the circuit C is given as input to the key gener-
ation algorithm and then C(m) is computed over plaintext m during the
decryption.

• Ciphertext policy [12]: Here the circuit C is the actual plaintext and the
input m to C is used when issuing the decryption keys.

Both of these approaches lead to special primitives. For example, for the case
of predicate encryption, suppose we use a predicate verification algorithm
P that takes (k, a), interprets k as a circuits and runs k(a) to accept or
reject. Such P would give us the key policy predicate encryption. Another P
algorithm would interpret a as a circuit and runs it on k, and this gives us
the ciphertext policy predicate encryption. In other words, one can think of
the circuit C equivalent to P(k, ·) (with k hard coded in it, and a left out as
the input) being the “input” circuit KGen subroutine, or alternatively one
can think of P(·, a) (with a hardcoded in it, and k left out as the input) to be
the “input” circuit given to the Enc subroutine. In all cases, the correctness
and security definitions of these primitives only depend on the input-output
behavior of the given circuits.

– Witness encryption. The reason that witness encryption is a special prim-
itive is very similar to the reason described above for the case of encrypted
functionalities. Again we can think of V(·, a) as the circuit given to the Enc
algorithm. In this case, the definition of witness encryption (and it security)
only depend on the input-output behavior of these ‘input circuits’ rather their
specific implementations.

– Indistinguishability Obfuscation. An indistinguishability obfuscator
takes as input a circuit C and outputs B that can be used later on the
compute the same function as C does. The security of IO ensures that for
any two different equally-sized and functionally equivalent circuits C0, C1, it is
hard to distinguish between obfuscation of C0 and those of C1. Therefore, the
correctness and security definitions of IO depend solely on the input-output
behavior (and the sizes) of the input circuits.

When a primitive is special, one can talk about “extensions” of the same
primitive in which the circuits that are given as input could have oracle gates
(because the primitive is special and so the definition of the primitive still extends
to such inputs).

3.1 An Abstract Model for Extended Primitives and Constructions

We define special primitives as ‘restrictions’ of a (a family of) primitives indexed
by a subroutine W to the case that W is a universal circuit evaluator. We then
define the extended version to be the case that W accepts oracle-aided circuits.
More formally we start by defining primitives indexed by a class of functions.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 677

Definition 20 (Indexed primitives). Let W be a set of (possibly ineffi-
cient) functions. An W-indexed primitive P[W] is indeed a set of primi-
tives {P[W]}W∈W indexed by W ∈ W where, for each W ∈ W, P[W] =
(F [W],R[W]) is a primitive according to Definition 6.

For the special case of W = {W} we get back the RTV definition for a
primitive.

We will now define variations of indexed primitives that restrict the family
to a smaller class W ′ and, for every W ∈ W ′, it might further restrict the set of
correct implementations to be a subset of F [W]. We first define restricted forms
of indexed primitives then provide various restrictions that will be of interest
to us.

Definition 21 (Restrictions of indexed primitives). For P[W] =
{(F [W],R[W])}W∈W and P ′[W ′] = {(F ′[W],R′[W])}W∈W′ , we say P ′[W ′] is
a restriction of P[W] if the following two holds. (1) W ′ ⊆ W, and (2) for all
W ∈ W ′, F ′[W] ⊆ F [W], and (3) for all W ∈ W ′, R′[W] = R′[W].

Definition 22 (Efficient restrictions). We call a restriction P ′[W ′] of P[W]
an efficient restriction if W ′ = {w} where w is a polynomial time algorithm (with
no oracle calls). In this case, we call P ′[w] simply a w-restriction of P[W].

We are particularly interested in indexed primitives when they are indexed
by the universal algorithm for circuit evaluation. This is the case for all the prim-
itives of witness encryption, predicate encryption,9 fully homomorphic encryp-
tion, and IO. All of the examples of the special primitives discussed in previous
section fall into this category. Finally, the formal notion of what we previously
simply called a ‘special’ primitives is defined as follows.

Definition 23 (The universal variant of indexed primitives). We call
P ′[{w}] the universal variant of P[W] if P ′[{w}] is an efficient restriction of
P[W] for the specific algorithm w(·) that interprets its input as a pair (x,C)
where C is a circuit, and then it simply outputs C(x).

For example, in the case of witness encryption, the relation between witness
w and attribute a is verified by running a as a circuit over w and outputting the
first bit of this computation. In order to define extensions of universal variants
of indexed primitives (i.e., special primitives for short) we need the following
definition.

Definition 24 (w(·)-restrictions). For an oracle algorithm w(·) we call
P ′[W ′]= {(F ′[W],R[W])}W∈W′ the w(·)-restriction of P[W] = {(F [W],
R[W])}W∈W , if P ′[W ′] is constructed as follows. For all W ∈ W and F , we
include W ∈ W ′ and F ∈ F ′[W], if it holds that W = wF and F ∈ F [W].

9 Even in this case, we can imagine that we are running a circuit on another input
and take the first bit of it as the predicate.

678 S. Garg et al.

Definition 25 (The extended variant of indexed primitives). We call
P ′[W ′] the extended variant of P[W] if P ′[W ′] is an w(·)-restriction of P[W]
for the specific w(·) that interprets its input (x,C) as a pair where C(·)(x) is an
oracle-aided circuit, and then w(x,C) outputs C(·)(x) by forwarding all of C’s
oracle queries to its own oracle.

Case of Witness Encryption. Here we show how to derive the definition of
extended witness encryption as a special case. First note that witness encryp-
tion’s decryption is indexed by an algorithm V (w, a) that could be any predicate
function. In fact, it could be any function where we pick its first bit and inter-
pret it as a predicate. So WE is indeed indexed by V ∈ V which the set of all
predicates. Then, the standard definition of witness encryption for circuit satisfi-
ability (which is the most powerful WE among them all) is simply the universal
variant of this indexed primitive WE[V], and the following will be exactly the
definition of the extended universal variant of WE[V], which we simply call the
extended WE.

In the full version of the paper we give similar definitions for other primitives
of predicate encryption, fully homomorphic encrypion, etc.

Definition 26 (Extended Witness Encryption). Let V(Enc,Dec)(w, a) be the
‘universal circuit-evaluator’ Turing machine, which is simply an algorithm with
oracle access to (Enc,Dec) that interprets a as an circuit with possible (Enc,Dec)
gates and runs a on w and forwards any oracle calls made by a to its own orcle
and forwards the answer back to the corresponding gate inside a to continue the
execution. An extended witness encryption scheme (defined by V) consists of
two PPT algorithms (Enc,DecV) defined as follows:

– Enc(a,m, 1κ): is a randomized algorithm that given an instance a ∈ {0, 1}∗

and a message m ∈ {0, 1}∗, and security parameter κ (and randomness as
needed) outputs c ∈ {0, 1}∗.

– DecV(w, c): given ciphertext c and “witness” string w, it either outputs a
message m ∈ {0, 1}∗ or ⊥.

– Correctness and security are defined similarly to Definition 4. But the key
point is that here the relation V(Enc,Dec) is somehow recursively depending on
the (Enc,Dec = DecV) on smaller input lengths (and so it is well defined).

3.2 Extended Black-Box Constructions

We are finally ready to define our extended black-box framework. Here we assume
that for a primitive P we have already defined what its extension ˜P means.

Definition 27 (Extended Black-Box Constructions – General Case).
Suppose Q is a primitive and ˜P is an extended version of the primitive P. Any
fully black-box construction for Q from ˜P (i.e. an extended version of P) is called
an extended black-box construction of Q from P.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 679

Examples. Below are some examples of non-black-box constructions in cryp-
tography that fall into the extended black-box framework of Definition 27.

– Gentry’s bootstrapping construction [35] plants FHE’s own decryption in a
circuit for the evaluation subroutine. This trick falls into the extended black-
box framework since planting gates inside evaluation circuits is allowed.

– The construction of IO from functional encryption by [1,13] uses the encryp-
tion oracle of the functional encryption scheme inside the functions for which
decryption keys are issued. Again, such non-black-box technique does fall into
our extended black-box framework.

Definition 28 (Formal Definition of Extended Black-Box Construc-
tions from Witness Encryption). Let P be witness encryption and ˜P be
extended witness encryption (Definition 26). Then an extended black-box con-
struction using P is a fully black-box construction using ˜P.

The following transitivity lemma (which is a direct corollary to the transi-
tivity of fully black-box constructions) allows us to derive more impossibility
results.

Lemma 29 (Composing extended black-box constructions). Suppose P,

Q,R are cryptographic primitives and Q,P are special primitive and ˜Q is the
extended version of Q. If there is an extended black-box construction of ˜Q from
P and if there is an extended black-box construction of R from Q, then there is
an extended black-box construction of R from P.

Proof. Since there is an extended black-box construction of R from Q, by Def-
inition 27 it means that there is an extension ˜Q of Q such that there is a fully
black-box construction of R from ˜Q. On the other hand, again by Definition 27,
for any extension of Q, and in particular ˜Q, there is a fully black-box construc-
tion of ˜Q from some extension ˜P of P. Therefore, since fully-black-box construc-
tions are transitive under nested compositions, there is a fully construction of
R from ˜P which (by Definition 27) means that we have an extended black-box
construction of R from P.

Getting More Separations. A corollary of Lemma 29 is that if one proves:
(a) There is no extended black-box construction of R from P and (b) there is
an extended black-box construction of any extended version ˜R (of R) from Q,
then these two together imply that: there is no extended black-box construction
of Q from P. We will use this trick to derive our impossibility results from a core
of two separations regarding variants of witness encryption. For example, in the
full version of the paper we will use this lemma to derive separations between
attribute based encryption and IO in the extended black-box model.

680 S. Garg et al.

4 Separating IO from Instance Revealing Witness
Encryption

In this section, we formally prove our first main separation theorem which
states that there is no black-box constructions of IO from WE (under believable
assumptions). It equivalently means that there will be no fully black-box con-
struction of indistinguishability obfuscation from extended witness encryption
scheme.

Theorem 30. Assume the existence of one-way functions and that NP �⊆
coAM. Then there exists no extended black-box construction of indistinguisha-
bility obfuscation (IO) from witness encryption (WE).

In fact, we prove a stronger result by showing a separation of IO from a
stronger (extended) version of witness encryption, which we call extractable
instance-revealing witness encryption. Looking ahead, we require the extractabil-
ity property to construct (extended) attribute-based encryption (ABE) from this
form of witness encryption. By using Lemma29, this would also imply a separa-
tion of IO from extended ABE.

Definition 31 (Extended Extractable Instance-Revealing Witness
Encryption (ex-EIRWE)). Let V be a universal circuit-evaluator Turing
machine as defined in Definition 26. For any given security parameter κ, an
extended extractable instance-revealing witness encryption scheme for V con-
sists of three PPT algorithms P = (Enc,Rev,Dec) defined as follows:

– Enc(a,m, 1κ): given an instance a ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– Rev(c): given ciphertext c outputs a ∈ {0, 1}∗ ∪ {⊥}.
– Dec(w, c): given ciphertext c and “witness” string w, it outputs a message

m′ ∈ {0, 1}∗.

An extended extractable instance-revealing witness encryption scheme satisfies
the following completeness and security properties:

– Decryption Correctness: For any security parameter κ, any (w, a) such
that VP (w, a) = 1, and any m it holds that

Pr
Enc,Dec

[Dec(w,Enc(a,m, 1κ)) = m] = 1

– Instance-Revealing Correctness: For any security parameter κ and any
(a,m) it holds that:

Pr
Enc,Rev

[Rev(Enc(a,m, 1κ)) = a] = 1

Furthermore, for any c for which there is no a,m, κ such that Enc(a,m, 1κ) =
c it holds that Rev(c) = ⊥.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 681

– Extractability: For any PPT adversary A and polynomial p1(.), there exists
a PPT (black-box) straight-line extractor E and a polynomial function p2(.)
such that the following holds. For any security parameter κ, for all a of the
same and any m0 �= m1 of the same length |m0| = |m1|, if:

Pr
[

A(1κ, c) = b | b
$←− {0, 1}, c ← Enc(a,mb, 1κ)

]

≥ 1
2

+ p1(κ)

Then:
Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ p2(κ)

Given the above definition of ex-EIRWE, we prove the following theorem,
which states that there is no fully black-box construction IO from extended
EIRWE.

Theorem 32. Assume the existence of one-way functions and that NP �⊆
coAM. Then there exists no extended black-box construction of indistinguisha-
bility obfuscation from extractable instance-revealing witness encryption for any
PPT verification algorithm V.

Since extended EIRWE implies witness encryption as defined in Definition 4,
Theorem 30 trivially follows from Theorem32, and thus for the remainder of this
section we will focus on proving Theorem 32.

4.1 Overview of Proof Techniques

To prove Theorem 32, we will apply Lemma 19 for the idealized extended IRWE
model Θ (formally defined in Sect. 4.2) to prove that there is no black-box con-
struction of IO from any primitive P that can be oracle-fixed constructed (see
Definition 10) from Θ. In particular, we will do so for P that is the extended
EIRWE primitive. Our task is thus twofold: (1) to prove that P can be oracle-
fixed constructed from Θ and (2) to show a simulatable compilation procedure
that compiles out Θ from any IO construction. The first task is proven in Sect. 4.3
and the second task is proven in Sect. 4.4. By Lemma 19, this would imply the
separation result of IO from P and prove Theorem32.

Our oracle, which is more formally defined in Sect. 4.2, resembles an ideal-
ized version of a witness encryption scheme, which makes the construction of
extended EIRWE straightforward. As a result, the main challenge lies in show-
ing a simulatable compilation procedure for IO that satisfies Definition 16 in this
idealized model.

4.2 The Ideal Model

In this section, we define the distribution of our ideal randomized extended
oracle.

682 S. Garg et al.

Definition 33 (Random Instance-revealing Witness Encryption
Oracle). Let V be a universal circuit-evaluator Turing machine (as defined in
Definition 26) that takes as input (w, x) where x = (a,m) ∈ {0, 1}n and outputs
b ∈ {0, 1}. We define the following random instance-revealing witness encryption
(rIRWE) oracle Θ = (Enc,Rev,DecV) as follows. We specify the sub-oracle Θn

whose inputs are parameterized by n, and the actual oracle will be Θ = {Θn}n∈N.

– Enc: {0, 1}n �→ {0, 1}2n is a random injective function.
– Rev: {0, 1}2n �→ {0, 1}∗ ∪ ⊥ is a function that, given an input c ∈ {0, 1}2n,

would output the corresponding attribute a for which Enc(a,m) = c. If there
is no such attribute then it outputs ⊥ instead.

– DecV : {0, 1}s �→ {0, 1}n ∪ {⊥}: Given (w, c) ∈ {0, 1}s, Dec(w, c) allows us to
decrypt the ciphertext c and get x = (a,m) as long as the predicate test is
satisfied on (w, a). More formally, do as follow:
1. If � x such that Enc(x) = c, output ⊥. Otherwise, continue to the next

step.
2. Find x such that Enc(x) = c.
3. If VΘ(w, a) = 0 output ⊥. Otherwise, output x = (a,m).

We define a query-answer pair resulting from query q to subroutine T ∈
{Enc,Dec,Rev} with some answer β as (q �→ β)T . The oracle Θ provides the
subroutines for all inputs lengths but, for simplicity, and when n is clear from
the context, we use Θ = (Enc,Rev,DecV) to refer to Θn for a fixed n.

Remark 34. We note that since V is a universal circuit-evaluator, the number of
queries that it will ask (when we recursively unwrap all internal queries to Dec)
is at most a polynomial. This is due to the fact that the sizes of the queries that
V asks will be strictly less than the size of the inputs to V. In that respect, we
say that V has the property of being extended poly-query.

4.3 Witness Encryption Exists Relative to Θ

In this section, we show how to construct a semantically-secure extended
extractable IRWE for universal circuit-evaluator V relative to Θ =
(Enc,Rev,DecV). More formally, we will prove the following lemma.

Lemma 35. There exists a correct and subexponentially-secure oracle-fixed
implementation (Definition 10) of extended extractable instance-revealing witness
encryption in the ideal Θ oracle model.

We will in fact show how to construct a primitive (in the Θ oracle model) that
is simpler to prove the existence of and for which we argue that it is sufficient
to get the desired primitive of EIRWE. We give the definition of that primitive
followed by a construction.

Definition 36 (Extended Extractable One-way Witness Encryption
(ex-EOWE)). Let V be a universal circuit-evaluator Turing machine (as
defined in Definition 26) that takes an instance a and witness w and outputs

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 683

a bit b ∈ {0, 1}. For any given security parameter κ, an extended extractable
one-way witness encryption scheme for V consists of the following PPT algo-
rithms P = (Enc,Rev,DecV) defined as follows:

– Enc(a,m, 1κ) : given an instance a ∈ {0, 1}∗, message m ∈ {0, 1}∗, and
security parameter κ (and randomness as needed) it outputs c ∈ {0, 1}∗.

– Rev(c) : given ciphertext c returns the underlying attribute a ∈ {0, 1}∗.
– DecV(w, c) : given ciphertext c and “witness” string w, it outputs a message

m′ ∈ {0, 1}∗.

An extended extractable one-way witness encryption scheme satisfies the same
correctness properties as Definition 31 but the extractability property is replaced
with the following:

– Extractable Inversion: For any PPT adversary A and polynomial p1(.),
there exists a PPT (black-box) straight-line extractor E and a polynomial
function p2(.) such that the following holds. For any security parameter κ,
k = poly(κ), and for all a, if:

Pr
[

A(1κ, c) = m | m
$←− {0, 1}k, c ← Enc(a,m, 1κ)

]

≥ p1(κ)

Then:
Pr[EA(a) = w ∧ VP (w, a) = 1] ≥ p2(κ)

Construction 37 (Extended Extractable One-way Witness Encryp-
tion). For any security parameter κ and oracle Θ sampled according to Def-
inition 33, we will implement an extended EOWE scheme P for the universal
circuit-evaluator V using Θ = (Enc,DecV) as follows:

– WEnc(a,m, 1κ) : Given security parameter 1κ, a ∈ {0, 1}∗, and message m ∈
{0, 1}n/2 where n = 2max(|a|, κ), output Enc(x) where x = (a,m).

– WDec(w, c) : Given witness w and ciphertext c, let x′ = DecV(w, c). If x′ �= ⊥,
parse as x′ = (a′,m′) and output m′. Otherwise, output ⊥.

Remark 38 (From one-wayness to Indistinguishability). We note that the prim-
itive ex-EOWE, which has one-way security, can be used to build an ex-
EIRWE, which is indistinguishability-based, through a simple application of the
Goldreich-Levin thoerem [40]. Namely, to encrypt a one-bit message b under
some attribute a, we would output the ciphertext c = (Enc(a, r1), r2, 〈r1, r2〉⊕b)
where r1, r2 are randomly sampled and 〈r1, r2〉 is the hardcore bit. To decrypt
a ciphertext c = (y1, r2, y3) we would run r1 = Dec(w, y1), find the hardcore bit
p = 〈r1, r2〉 then output b = p ⊕ y3. We obtain the desired indistinguishabil-
ity security since, by the hardcore-bit security of the original scheme, we have
(Enc(a, r1), r2, 〈r1, r2〉 ⊕ 0) ≈ (Enc(a, r1), r2, 〈r1, r2〉 ⊕ 1) for any fixed a.

Lemma 39. Construction 37 is a correct and subexponentially-secure oracle-
fixed implementation (Definition 10) of extended extractable one-way witness
encryption in the ideal Θ oracle model.

684 S. Garg et al.

Proof. To prove the security of this construction, we will show that if there exists
an adversary A against scheme P (in the Θ oracle model) that can invert an
encryption of a random message with non-negligible advantage then there exists
a (fixed) deterministic straight-line (non-rewinding) extractor E with access to
Θ = (Enc,Rev,DecV) that can find the witness for the underlying instance of
the challenge ciphertext.

Suppose A is an adversary in the inversion game with success probability ε.
Then the extractor E would works as follows: given a as input and acting as the
challenger for adversary A, it chooses m

$←− {0, 1}k uniformly at random then
runs AΘ(1κ, c∗) where c∗ ← WEnc(a,m, 1κ) is the challenge. Queries issued by
A are handled by E as follows:

– To answer any query Enc(x) asked by A, it forwards the query to the oracle
Θ and returns some answer c.

– To answer any query Rev(c) asked by A, it forwards the query to the oracle
Θ and returns some answer a.

– To answer any query DecV(w, c) asked by A, the extractor first issues a query
Rev(c) to get some answer a. If a �= ⊥, it would execute VΘ(w, a), forwarding
queries asked by V to Θ similar to how it does for A. Finally, it forwards
the query Dec(w, c) to Θ to get some answer x. If a = ⊥, it returns ⊥ to A
otherwise it returns x.

While handling the queries made by A, if a decryption query DecV(w, c∗) for the
challenge ciphertext is issued by A, the extractor will pass this query to Θ, and
if the result of the decryption is x �= ⊥ then the extractor will halt execution
and output w as the witness for instance x. Otherwise, if after completing the
execution of A, no such query was asked then the extractor outputs ⊥. We prove
the following lemma.

Lemma 40. For any PPT adversary A, instances a, if there exists a non-
negligible function ε(.) such that:

Pr
[

AΘ(1κ, c) = m | m
$←− {0, 1}k, c ← WEnc(a,m, 1κ)

]

≥ ε(κ) (1)

Then there exists a PPT straight-line extractor E such that:

Pr
[

EΘ,A(a) = w ∧ VΘ(w, a) = 1
] ≥ ε(κ) − negl(κ) (2)

Proof. Let A be an adversary satisfying Eq. (1) above and let AdvWin be the
event that A succeeds in the inversion game. Furthermore, let ExtWin be the
event that the extractor succeeds in extracting a witness (as in Eq. (2) above).
Observe that:

Pr
Θ,m

[ExtWin] ≥ Pr
Θ,m

[ExtWin ∧ AdvWin]

= 1 − Pr
Θ,m

[ExtWin ∨ AdvWin]

= 1 − Pr
Θ,m

[ExtWin ∧ AdvWin] − Pr
Θ,m

[AdvWin]

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 685

Since Pr[AdvWin] ≥ ε for some non-negligible function ε, it suffices to show that
Pr[ExtWin ∧ AdvWin] is negligible. Note that, by our construction of extractor
E, this event is equivalent to saying that the adversary succeeds in the inversion
game but never asks a query of the form DecV(w, c∗) for which the answer is
x �= ⊥ and so the extractor fails to recover the witness. For simplicity of notation
define Win := ExtWin ∧ AdvWin.

We will show that, with overwhelming probability over the choice of oracle
Θ, the probability of Win happening is negligible. That is, we will prove the
following claim:

Claim. For any negligible function δ, PrΘ

[

Prm[Win] ≥ √
δ
]

≤ negl(κ).

Proof. Define Bad to be the event that A asks (directly or indirectly) a query
of the form DecV(w, c′) for some c′ �= c∗ for which it has not asked Enc(x) = c
previously. We have that:

Pr
Θ,m

[Win] ≤ Pr
Θ,m

[Win ∧ Bad] + Pr
Θ,m

[Bad]

The probability of Bad over the randomness of Θ is at most 1/2n as it is the
event that A hits an image of a sparse random injective function without asking
the function on the preimage beforehand. Thus, PrΘ,m[Bad] ≤ 1/2n.

It remains to show that PrΘ,m[Win∧Bad] is also negligible. We list all possible
queries that A could ask and argue that these queries do not help A in any way
without also forcing the extractor to win as well. Specifically, we show that for
any such A that satisfies the event (Win ∧ Bad), there exists another adversary
̂A that depends on A and also satisfies the same event but does not ask any
decryption queries (only encryption queries). This would then reduce to the
standard case of inverting a random injective function, which is known to be
hard. We define the adversary ̂A as follows. Upon executing A, it handles the
queries issued by A as follows:

– If A asks a query of the form Enc(x) then ̂A forwards the query to Θ to get
the answer.

– If A asks a query of the form Rev(c) then since Bad does not happen, it must
be the case that c = Enc(a,m) is an encryption that was previously asked by
A and therefore ̂A returns a as the answer.

– If A asks a query of the form Dec(w, c∗) then w must be a string for which
V(w, a∗) = 0 or otherwise the extractor wins, which contradicts that ExtWin

happens. If that is the case, since w is not a witness, ̂A would return ⊥ to A
after running VΘ(w, a∗) and answering its queries appropriately.

– If A asks a query of the form Dec(w, c′) for some c′ �= c∗ then, since Bad
does not happen, it must be the case that A has asked a (direct or indirect)
visible encryption query Enc(x′) = c′. Therefore, ̂A would have observed this
encryption query and can therefore run VΘ(w, a′) and return the appropriate
answer (x or ⊥) depending on the answer of V.

686 S. Garg et al.

Given that ̂A perfectly emulates A’s view, the only possibility that A could
win the inversion game is by asking Enc(x∗) = c∗ and hitting the challenge
ciphertext, which is a negligible probability over the randomness of the oracle.
By a standard averaging argument, we find that since PrΘ,m[Win ∧ Bad] ≤ δ(κ)
for some negligible δ then PrΘ[Prm[Win ∧ Bad] ≤ √

δ] ≥ 1 − √
δ, which yields

the result.

To conclude the proof of Lemma40, we can see that the probability that the
extractor wins is given by Pr[ExtWin] ≥ 1−Pr[ExtWin∧AdvWin]−Pr[AdvWin] ≥
ε(κ) − negl(κ) where ε is the non-negligible advantage of the adversary A.

It is clear that Construction 37 is a correct implementation. Furthermore, by
Lemma 40, it satisfies the extractability property. Thus, this concludes the proof
of Lemma 39.

Proof (of Lemma 35). The existence of extractable instance-revealing witness
encryption in the Θ oracle model follows from Lemma 39 and Remark 38.

4.4 Compiling Out Θ from IO

In this section, we show a simulatable compiler for compiling out Θ. We
adapt the approach outlined in Sect. 4.1 to the extended ideal IRWE oracle
Θ = (Enc,Rev,DecV) while making use of Lemma 18, which allows us to compile
out Θ in two phases: we first compile out part of Θ to get an approximately-
correct obfuscator ̂OR in the random oracle model (that produces an obfuscation
̂BR in the RO-model), and then use the previous result of [21] to compile out
the random oracle R and get an obfuscator O′ in the plain-model. Since we
are applying this lemma only a constant number of times (in fact, just twice),
security should still be preserved. Specifically, we will prove the following claim:

Lemma 41. Let R Θ be a random oracle where “” denotes a sub-model
relationship (see Definition 15). Then the following holds:

– For any IO in the Θ ideal model, there exists a simulatable compiler with
correctness error ε < 1/200 for it that outputs a new obfuscator in the random
oracle R model.

– [21] For any IO in the random oracle R model, there exists a simulatable
compiler with correctness error ε < 1/200 for it that outputs a new obfuscator
in the plain model.

Proof. The second part of Lemma 41 follows directly by [21], and thus we focus
on proving the first part of the claim. Before we start describing the compilation
process, we present the following definition of canonical executions that is a
property of algorithms in this ideal model and dependent on the oracle being
removed.

Definition 42 (Canonical executions). Web define an oracle algorithm AΘ

relative to rIRWE to be in canonical form if before asking any DecV(w, c) query,

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 687

A would first get a ← Rev(c) then run VΘ(w, a) on its own, making sure to
answer any queries of V using Θ. Furthermore, after asking a query DecV(w, c)
for which the returned answer is some message m �= ⊥, it would ask Enc(x)
where x = (a,m). Note that any oracle algorithm A can be easily modified into a
canonical form by increasing its query complexity by at most a polynomial factor
(since V is an extended poly-query algorithm).

Definition 43 (Query Types). For any (not necessarily canonical) oracle
algorithm A with access to a rIRWE oracle Θ, we call the queries that are asked
by A to Θ as direct queries and those queries that are asked by VΘ due to a call
to Dec as indirect queries. Furthermore, we say that a query is visible to A if
this query was issued by A and thus it knows the answer that is returned by Θ.
Conversely, we say a query is hidden from A if it is an indirect query that was
not explicitly issued by A (for example, A would have asked a DecV query which
prompted VΘ to ask its own queries and the answers returned to V will not be
visible to A). Note that, once we canonicalize A, all indirect queries will be made
visible since, by Definition 42, A will run VΘ before asking DecV queries and the
query-answer pairs generated by V will be revealed to A.

We now proceed to present the construction of the random-oracle model
obfuscator that, given an obfuscator in the Θ model, would compile out and emu-
late queries to Dec and Rev while forwarding any Enc queries to R. Throughout
this process, we assume that the obfuscators and the obfuscated circuits are all
canonicalized according to Definition 42.

The New Obfuscator ̂OR in the Random Oracle Model. Let R =
{Rn}n∈N be the (injective) random oracle where Rn : {0, 1}n → {0, 1}2n. Given
a δ-approximate obfuscator O = (iO,Ev) in the rIRWE oracle model, we con-
struct an (δ + ε)-approximate obfuscator ̂O = (̂iO, ̂Ev) in the random oracle
model.

Subroutine ̂iO
R
(C):

1. Emulation phase: Emulate iOΘ(C). Let TO be the transcript of this phase
and initialize QO := Q(TO) = ∅. For every query q asked by iOΘ(C), call
ρq ← EmulateCallR(QO, q) and add ρq to QO.

Note that, since iO is a canonical algorithm, there are no hidden queries
resulting from queries asked by V (via Dec queries) since we will always run
VΘ before asking/emulating a Dec query.

2. Learning phase: Set QB = ∅ to be the set of query-answer pairs learned
during this phase. Set m = 2
O/ε where
O ≤ |iO| represents the number

of queries asked by iO. Choose t
$←− [m] uniformly at random then for i =

{1, ..., t}:

– Choose zi
$←− {0, 1}|C| uniformly at random

– Run EvΘ(B, zi). For every query q asked by EvΘ(B, zi), call and retrieve
ρq ← EmulateCallR(QO ∪ QB , q) then add ρq to QB .

688 S. Garg et al.

Algorithm 1. EmulateCall
Input: Query-answer set Q, query q
Oracle: Random Oracle R
Output: ρq a query-answer pair containing the answer of query q
Begin:
if q is a query of type Enc(x) then

Set ρq = (x �→ R(x))Enc

end
if q is a query of the form Rev(c) then

if ∃ (x �→ c)Enc ∈ Q where x = (a, m) then
Set ρq = (c �→ a)Rev

else
Set ρq = (c �→ ⊥)Rev

end

end
if q is a query of the form DecV(w, c) then

if ∃ (x �→ c)Enc ∈ Q then
Initialize QV = ∅ and emulate b ← VΘ(w, x)
for each query qV asked by V do

ρV ← EmulateCallR(Q ∪ QV, qV)
QV = QV ∪ ρV

end
if b = 1 then

Set ρq = ((w, c) �→ x)Dec

else
Set ρq = ((w, c) �→ ⊥)Dec

end

else
Set ρq = ((w, c) �→ ⊥)Dec

end

end
Return ρq

Similar to Step 1, since Ev is a canonical algorithm and Enc is a injective
function, with overwhelming probability, there will be no hidden queries as a
result of asking any Dec queries.

3. The output of the RO model obfuscation algorithm ̂iO
R
(C) will be ̂B =

(B,QB).

Subroutine ̂Ev
R
(̂B, z): To evaluate ̂B = (B,QB) on a new random input z we

simply emulate EvΘ(B, z). For every query q asked by EvΘ(B, z), run and set
ρq = EmulateCallR(QB , q) then add ρq to QB .

The Running Time of ̂iO. We note that the running time of the new obfusca-
tor ̂iO remains polynomial time since we are emulating the original obfuscation
once followed by a polynomial number m of learning iterations. Furthermore,

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 689

while we are indeed working with an extended oracle where the PPT V can
have oracle gates to subroutines of Θ, we emphasize that since V, which we are
executing during EmulateCall, is a universal circuit evaluator, its effective run-
ning time remains to be a strict polynomial in the size of V and so the issue of
exponential or infinite recursive calls is non-existent.

Proving Approximate Correctness. Consider two separate experiments
(real and ideal) that construct the random oracle model obfuscator exactly as
described above but differ when evaluating ̂B. Specifically, in the real experiment,
̂Ev

R
(̂B, z) emulates EvΘ(B, z) on a random input z and answers any queries by

running QB , whereas in the ideal experiment, we execute ̂Ev
R
(̂B, z) and answer

the queries of EvΘ(B, z) using the actual oracle Θ instead. In essence, in the real
experiment, we can think of the execution as Ev

̂Θ(B, z) where ̂Θ is the oracle
simulated by using QB and oracle R. We will compare the real experiment with
the ideal experiment and show that the statistical distance between these two
executions is at most ε. In order to achieve this, we will identify the events that
differentiate between the executions EvΘ(B, z) and Ev

̂Θ(B, z).
Let q be a new query that is being asked by Ev

̂Θ(B, z) and handled by calling
EmulateCallR(QB , q). The following are the cases that should be handled:

1. If q is a query of type Enc(x), then the answer to q will be distributed the
same in both experiments.

2. If q is a query of type Dec(w, c) or Rev(c) whose answer is determined by QB

in the real experiment then it is also determined by QO ∪ QB ⊇ QB in the
ideal experiment and the answers are distributed the same.

3. If q is of type Dec(w, c) or Rev(c) that is not determined by QO ∪ QB in
the ideal experiment then this means that we are attempting to decrypt
a ciphertext for which we have not encrypted before and we will therefore
answer it with ⊥ with overwhelming probability. In that case, q will also not
be determined by QB in the real experiment and we will answer it with ⊥.

4. Bad Event 1: Suppose q is of type Dec(w, c) that is not determined by QB in
the real experiment and yet is determined by QO∪QB in the ideal experiment
to be some answer x �= ⊥. This implies that the query-answer pair (x �→ c)Enc

is in QO\QB . That is, we are for the first time decrypting a ciphertext that was
encrypted in Step 1 because we failed to learn the underlying x for ciphertext
c during the learning phase of Step 2. In that case, in the real experiment,
the answer would be ⊥ since we do not know the corresponding message x
whereas in the ideal experiment it would use the correct answer from QO∪QB

and output x. However, we will show that this event is unlikely due to the
learning procedure.

5. Bad Event 2: Suppose q is of type Rev(c) that is not determined by QB in
the real experiment and yet is determined by QO∪QB in the ideal experiment.
This implies that the query-answer pair ((a,m) �→ c)Enc is in QO \ QB . That
is, we are for the first time attempting to reveal the attribute of a ciphertext
that was encrypted in Step 1 because we failed to learn the answer of this

690 S. Garg et al.

reveal query during the learning phase of Step 2. In that case, in the real
experiment, the answer would be ⊥ since we do not know the corresponding
attribute a whereas in the ideal experiment it would use the correct answer
from QO ∪QB and output a. However, we will show that this event is unlikely
due to the learning procedure.

For input x, let E(x) be the event that Case 4 or 5 happen. Assuming that
event E(x) does not happen, both experiments will proceed identically the same
and the output distributions of EvΘ(B, x) and Ev

̂Θ(B, x) will be statistically
close. More formally, the probability of correctness for ̂iO is:

Pr
x

[Ev
̂Θ(B, x) �= C(x)] = Pr

x
[Ev

̂Θ(B, x) �= C(x) ∧ ¬E(x)]

+ Pr
x

[Ev
̂Θ(B, x) �= C(x) ∧ E(x)]

≤ Pr
x

[Ev
̂Θ(B, x) �= C(x) ∧ ¬E(x)] + Pr

x
[E(x)]

By the approximate functionality of iO, we have that:

Pr
x

[iOΘ(C)(x) �= C(x)] = Pr
x

[EvΘ(B, x) �= C(x)] ≤ δ(n)

Therefore,

Pr
x

[Ev
̂Θ(B, x) �= C(x) ∧ ¬E(x)] = Pr

x
[EvΘ(B, x) �= C(x) ∧ ¬E(x)] ≤ δ

We are thus left to show that Pr[E(x)] ≤ ε. Since both experiments proceed the
same up until E happens, the probability of E happening is the same in both
worlds and we will thus choose to bound this bad event in the ideal world.

Claim. Prx[E(x)] ≤ ε.

Proof. For all i ∈ [t], let Q′
Bi

= QBi
∩ QO be the set of query-answer pairs gen-

erated by the i’th evaluation EvΘ(B, zi) during the learning phase (Step 2) and
are also generated during the obfuscation emulation phase (Step 1). In particu-
lar, Q′

Bi
would contain the query-answer pairs ((a,m) �→ c)Enc for encryptions

that were generated by the obfuscation and later discovered during the learning
phase. Note that, since the maximum number of learning iterations m >
O

and Q′
Bi

⊆ Q′
Bi+1

, the number of learning iterations that would increase the
size of the set of learned obfuscation queries is at most 2
O since there are at
most
O obfuscation ciphertexts that can be fully discovered during the learning
phase and at most
O obfuscation ciphertexts that can be partially discovered
(just finding out the underlying attribute a) via Rev queries during the learning
phase.

We say t
$←− [m] is bad if it is the case that Q′

Bt
�= Q′

Bt+1
(i.e. t is an index

of a learning iteration that increases the size of the learned obfuscation queries).
This would imply that after t learning iterations in the ideal world, the final
evaluation Q′

̂B
:= Q′

Bt+1
would contain a new unlearned query-answer pair that

was in QO. Thus, given that m = 2
O/ε, the probability (over the selection of t)
that t is bad is at most 2
O/m < ε.

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 691

Proving Security. To show that the resulting obfuscator is secure, it suffices
to show that the compilation process represented as the new obfuscator’s con-
struction is simulatable. We show a simulator S (with access to Θ) that works as
follows: given an obfuscated circuit B in the Θ ideal model, it runs the learning
procedure as shown in Step 2 of the new obfuscator ̂iO to learn the heavy queries
QB then outputs ̂B = (B,QB). Note that this distribution is statistically close
to the output of the real execution of ̂iO and, therefore, security follows.

Acknowledgements. We thank the anonymous reviewers of Crypto 2017 for their
useful comments.

References

1. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 15

2. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730
(2015). http://eprint.iacr.org/2015/730

3. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp.
646–658. ACM Press, November 2014

4. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 162–172.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 9

5. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 21

6. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and
functional encryption. In: 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 191–209. IEEE (2015)

7. Asharov, G., Segev, G.: On constructing one-way permutations from indis-
tinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 512–541. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 19

8. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
the case of evasive circuits. Cryptology ePrint Archive, Report 2015/167 (2015).
http://eprint.iacr.org/2015/167

9. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 296–315.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 16

10. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

11. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://eprint.iacr.org/2015/730
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-662-46497-7_21
http://dx.doi.org/10.1007/978-3-662-49099-0_19
http://dx.doi.org/10.1007/978-3-662-49099-0_19
http://eprint.iacr.org/2015/167
http://dx.doi.org/10.1007/978-3-642-42033-7_16
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1

692 S. Garg et al.

12. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society Press, May 2007

13. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer
Society Press, October 2015

14. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

15. Brakerski, Z., Brzuska, C., Fleischhacker, N.: On statistically secure obfuscation
with approximate correctness. Cryptology ePrint Archive, Report 2016/226 (2016).
http://eprint.iacr.org/

16. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of
zero-knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC
2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19571-6 34

17. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. Cryptology ePrint Archive, Report 2016/339 (2016). http://eprint.
iacr.org/2016/339

18. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 1

19. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

20. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

21. Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. Cryp-
tology ePrint Archive, Report 2015/048 (2015). http://eprint.iacr.org/

22. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 468–497. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 19

23. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

24. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 31

25. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova,
M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP
attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 12

26. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. Cryptology ePrint Archive, Report 2015/1037 (2015). http://eprint.
iacr.org/2015/1037

http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-19571-6_34
http://dx.doi.org/10.1007/978-3-642-19571-6_34
http://eprint.iacr.org/2016/339
http://eprint.iacr.org/2016/339
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2015/1037

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 693

27. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

28. Dachman-Soled, D.: Towards non-black-box separations of public key encryption
and one way function. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986,
pp. 169–191. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5 7

29. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp.
93–122. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3 4

30. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

31. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

32. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. Cryptology ePrint Archive, Report
2016/817 (2016). http://eprint.iacr.org/2016/817

33. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of find-
ing a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 20

34. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. Cryptology ePrint Archive, Report 2016/102 (2016). http://
eprint.iacr.org/2016/102

35. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

36. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

37. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 20

38. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

39. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) STOC. ACM (2011)

40. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC),
pp. 25–32 (1989)

41. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-70936-7 11

42. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

43. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 25

http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-53644-5_7
http://dx.doi.org/10.1007/978-3-662-53015-3_4
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/2016/817
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://eprint.iacr.org/2016/102
http://eprint.iacr.org/2016/102
http://crypto.stanford.edu/craig
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-662-48000-7_25

694 S. Garg et al.

44. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.C. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November 2006.
Cryptology ePrint Archive Report 2006/309

45. Holenstein, T.: Complexity theory (2015). http://www.complexity.ethz.ch/
education/Lectures/ComplexityFS15/skript printable.pdf

46. Yupu, H., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive, Report
2015/301 (2015). http://eprint.iacr.org/2015/301

47. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

48. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 2

49. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. Cryptology ePrint Archive,
Report 2016/795 (2016). http://eprint.iacr.org/2016/795

50. Mahmoody, M., Mohammed, A., Nematihaji, S.: More on impossibility of vir-
tual black-box obfuscation in idealized models. Cryptology ePrint Archive, Report
2015/632 (2015). http://eprint.iacr.org/

51. Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: A note
on black-box separations for indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2016/316 (2016). http://eprint.iacr.org/2016/316

52. Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower
bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 49–66. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 3

53. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
Cryptology ePrint Archive, Report 2014/878 (2014). http://eprint.iacr.org/2014/
878

54. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint
Archive, Report 2016/147 (2016). http://eprint.iacr.org/2016/147

55. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 26

56. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 6

57. Pass, R.: Limits of provable security from standard assumptions. In: Proceedings of
the Forty-Third Annual ACM Symposium on Theory of Computing, pp. 109–118.
ACM (2011)

58. Pass, R., Shelat, A.: Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. Cryptology ePrint Archive, Report 2015/383 (2015). http://
eprint.iacr.org/

59. Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-box sep-
arations in cryptography. In: TCC (2011)

60. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. Cryptology ePrint
Archive, Report 2016/196 (2016). http://eprint.iacr.org/2016/196

61. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

http://www.complexity.ethz.ch/education/Lectures/ComplexityFS15/skript_printable.pdf
http://www.complexity.ethz.ch/education/Lectures/ComplexityFS15/skript_printable.pdf
http://eprint.iacr.org/2015/301
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2016/795
http://eprint.iacr.org/
http://eprint.iacr.org/2016/316
http://dx.doi.org/10.1007/978-3-662-49096-9_3
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2016/147
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2016/196

Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives 695

62. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 1

63. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

64. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

65. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 15

http://dx.doi.org/10.1007/978-3-540-24638-1_1
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-662-46803-6_15

	Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives
	1 Introduction
	2 Preliminaries
	2.1 Primitives
	2.2 Black-Box Constructions and Separations
	2.3 Black-Box Separations
	2.4 Tools for Getting Black-Box Lower Bounds for IO

	3 An Abstract Extension of the Black-Box Model
	3.1 An Abstract Model for Extended Primitives and Constructions
	3.2 Extended Black-Box Constructions

	4 Separating IO from Instance Revealing Witness Encryption
	4.1 Overview of Proof Techniques
	4.2 The Ideal Model
	4.3 Witness Encryption Exists Relative to
	4.4 Compiling Out from IO

	References

