PoW-Based Distributed Cryptography
with No Trusted Setup

Marcin Andrychowicz and Stefan Dziembowski(®)

University of Warsaw, Warsaw, Poland
stefan@dziembowski.net

Abstract. Motivated by the recent success of Bitcoin we study the ques-
tion of constructing distributed cryptographic protocols in a fully peer-
to-peer scenario under the assumption that the adversary has limited
computing power and there is no trusted setup (like PKI, or an unpre-
dictable beacon). We propose a formal model for this scenario and then
we construct a broadcast protocol in it. This protocol is secure under
the assumption that the honest parties have computing power that is
some non-negligible fraction of computing power of the adversary (this
fraction can be small, in particular it can be much less than 1/2), and a
(rough) total bound on the computing power in the system is known.

Using our broadcast protocol we construct a protocol for simulating
any trusted functionality. A simple application of the broadcast protocol
is also a scheme for generating an unpredictable beacon (that can later
serve, e.g., as a genesis block for a new cryptocurrency).

Under a stronger assumption that the majority of computing power
is controlled by the honest parties we construct a protocol for simu-
lating any trusted functionality with guaranteed termination (i.e. that
cannot be interrupted by the adversary). This could in principle be used
as a provably-secure substitute of the blockchain technology used in the
cryptocurrencies.

Our main tool for verifying the computing power of the parties are
the Proofs of Work (Dwork and Naor, CRYPTO 92). Our broadcast pro-
tocol is built on top of the classical protocol of Dolev and Strong (SIAM
J. on Comp. 1983).

1 Introduction

Distributed cryptography is a term that refers to cryptographic protocols exe-
cuted by a number of mutually distrusting parties in order to achieve a common
goal. One of the first primitives constructed in this area were the broadcast pro-
tocols [14,24] using which a party P can send a message over a point-to-point
network in such a way that all the other parties will reach consensus about
the value that was sent (even if P is malicious). Another standard example

This work was supported by the Foundation for Polish Science WELCOME/2010-
4/2 grant founded within the framework of the EU Innovative Economy (National
Cohesion Strategy) Operational Programme.

© International Association for Cryptologic Research 2015

R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9216, pp. 379-399, 2015.
DOI: 10.1007/978-3-662-48000-7_19

380 M. Andrychowicz and S. Dziembowski

are the secure multiparty computations (MPCs) [7,11,20,30], where the goal
of the parties is to simulate a trusted functionality. The MPCs turned out to
be a very exciting theoretical topic. They have also found some applications in
practice (in particular they are used to perform the secure on-line auctions [8]).
Despite of this, the MPCs unfortunately still remain out of scope of interest for
most of the security practitioners, who are generally more focused on more basic
cryptographic tools such as encryption, authentication or the digital signature
schemes.

One of very few examples of distributed cryptography techniques that
attracted attention from general public are the cryptographic currencies (also
dubbed the cryptocurrencies), a fascinating recent concept whose popularity
exploded in the past 1-2 years. Historically the first, and the most prominent
of them is the Bitcoin, introduced in 2008 by an anonymous developer using a
pseudonym “Satoshi Nakamoto” [26]. Bitcoin works as a peer-to-peer network
in which the participants jointly emulate the central server that controls the
correctness of transactions, in particular: it ensures that there was no “double
spending”, i.e., a given coin was not spent twice by the same party. Although the
idea of multiple users jointly “emulating a digital currency” sounds like a special
case of the MPCs, the creators of Bitcoin did not directly use the tools developed
in this area, and it is not clear even to which extend they were familiar with
this literature (in particular, Nakamoto [26] did not cite any of MPC papers in
his work). Nevertheless, at the first sight, there are some resemblances between
these areas. In particular: the Bitcoin system works under the assumption that
the majority of computing power in the system is under control of the honest
users, while the classical results from the MPC literature state that in general
constructing MPC protocols is possible when the majority of the users is honest.

At a closer look, however, it becomes clear that there are some important
differences between both areas. In particular the main reason why the MPCs
cannot be used directly to construct the cryptocurrencies is that the scenarios
in which these protocols are used are fundamentally different. The MPCs are
supposed to be executed by a fixed (and known in advance) set of parties, out of
which some may be honestly following the protocol, and some other ones may be
corrupt (i.e. controlled by the adversary). In the most standard case the number
of misbehaving parties is bounded by some threshold parameter ¢. This can be
generalized in several ways. Up to our knowledge, however, until now all these
generalizations use a notion of a “party” as a separate and well-defined entity
that is either corrupt or honest.

The model for the cryptocurrencies is very different, as they are supposed to
work in a purely peer-to-peer environment, and hence the notion of a “party”
becomes less clear. This is because they are constructed with a minimal trusted
setup (as we explain below the only “trusted setup” in Bitcoin was the generation
of an unpredictable “genesis block”), and in particular they do not rely on any
Public Key Infrastructure (PKI), or any type of a trusted authority that would,
e.g., “register” the users. Therefore the adversary can always launch a so-called
Sybil attack [15] by creating a large number k of “virtual” parties that remain
under his control. In this way, even if in reality he is just a single entity, from

PoW-Based Distributed Cryptography with No Trusted Setup 381

the point of view of the other participants he will control a large number of
parties. In some sense the cryptocurrencies lift the “lack of trust” assumption
to a whole new level, by considering the situation when it is not even clear who
is a “party”. The Bitcoin system overcomes this problem in the following way:
the honest majority is defined in terms of the “majority of computing power”.
This is achieved by having all the honest participants to constantly prove that
they devote certain computing power to the system, via the so-called “Proofs of
Work” (PoWs) [16,17].

The high level goal for this work is to bridge the gap between these two
areas. In particular, we propose a formal model for the peer-to-peer commu-
nication and the Proofs of Work concept used in Bitcoin. We also show how
some standard primitives from the distributed computation, like broadcast and
MPCs, can be implemented in this model. Our protocols do not require any
trusted setup assumptions, unlike Bitcoin that assumes a trusted generation of
an unpredictable “genesis block” (see below for more details). Besides of being
of general interest, our work is motivated twofold.

Firstly, recently discovered weaknesses of Bitcoin [5,19] come, in our opinion,
partially from the lack of a formal framework for this system. Our work can be
viewed as a step towards better understanding of this model. We also believe that
the “PoW-based distributed cryptography” can find several other applications
in the peer-to-peer networks (we describe some of them). In particular, as the
Bitcoin example shows, the “lack of trusted setup” can be very attractive to
users'. In fact, there are already some ongoing efforts to use the Bitcoin paradigm
for purposes other than the cryptocurrencies (see full version of this paper [1] for
more on this). We would like to stress however, that this is not the main purpose
of our work, and that we do not provide a full description of a new currency.
Our goal is also not the full analysis of the security of Bitcoin (which would be a
very ambitious project that would also need to take into account the economical
incentives of the participants).

Secondly, what may be considered unsatisfactory in Bitcoin is the fact that
its security relies on the fact that the so-called genesis block By, announced
by Satoshi Nakamoto on January 3, 2009, was generated using heuristic meth-
ods. More concretely, in order to prove that he did not know By earlier, he
included the text The Times 03/Jan/2009 Chancellor on brink of second bailout
for banks in By (taken from the front page of the London Times on that day).
The unpredictability of By is important for Bitcoin to work properly, as other-
wise a “malicious Satoshi Nakamoto” A that knew By beforehand could start
the mining process much earlier, and publish an alternative block chain at some
later point. Since he would have more time to work on his chain, it would be
longer than the “official” chain, even if A4 controls only a small fraction of the
total computing power. Admittedly, its now practically certain that no attack
like this was performed, and that By was generated honestly, as it is highly

! Actually, probably one of the reasons why the MPCs are not widely used in practice
is that the typical users do not see a fundamental difference between assuming a
trusted setup and delegating the whole computation to a trusted third party.

382 M. Andrychowicz and S. Dziembowski

unlikely that any A invested more computing power in Bitcoin mining than all
the other miners combined, even if A started the mining process long before
January 3, 2009.

However, if we want to use the Bitcoin paradigm for some other purpose
(including starting a new currency), it may be desirable to have an automatic
and non-heuristic method of generating unpredictable strings of bits. The prob-
lem of generating such random beacons [27] has been studied in the literature for
a long time. Informally: a random beacon scheme is a method (possibly involv-
ing a trusted party) of generating uniformly random (or indistinguishable from
random) strings that are unknown before the moment of their generation. The
beacons have found a number of applications in cryptography and information
security, including the secure contract signing protocols [18,27], voting schemes
[25], or zero-knowledge protocols [3,21]. Note that a random beacon is a stronger
concept than the common reference string frequently used in cryptography, as
it has to be unpredictable before it was generated (for every instance of the pro-
tocol using it). Notice also that for Bitcoin we actually need something weaker
than uniformity of the By, namely it is enough that By is hard to predict for
the adversary.

Constructing random beacons is generally hard. Known practical solutions
are usually based on a trusted third party (like the servers www.random.org and
beacon.nist.gov). Since we do not want to base the security of our protocols on
trusted third parties thus using such services is not an option for our applica-
tions. Another method is to use public data available on the Internet, e.g. the
financial data [12] (the Bitcoin genesis block generation can also be viewed as
an example of this method). Using publicly-available data makes more sense,
but also this reduces the overall security of the constructed system. For exam-
ple, in any automated solution the financial data would need to come from a
trusted third party that would need to certify that the data was correct. The
same problem applies to most of other data of this type (like using a sentence
from a newspaper article). One could also consider using the Bitcoin blocks as
such beacons (in fact recently some on-line lotteries started using them for this
purpose). We discuss the problems with this approach in the full version of this

paper [1].

Our Contribution. Motivated by the cryptocurrencies we initiate a formal
study of the distributed peer-to-peer cryptography based on the Proofs of Work.
From the theory perspective the first most natural questions in this field is
what is the right model for communication and computation in this scenario?
And then, is it possible to construct in this model some basic primitives from
the distributed cryptography area, like: (a) broadcast, (b) unpredictable beacon
generation, or (c) general secure multiparty computations? We propose such a
model (in Sect. 2). Our model does not assume any trusted setup (in particular:
we do not assume any trusted beacon generation). Then, in Sect. 4 we answer the
questions (a)-(c) positively. To describe our results in more detail let n denote
the number of honest parties, let m be the computing power of each honest party

http://www.random.org/
https://beacon.nist.gov

PoW-Based Distributed Cryptography with No Trusted Setup 383

(for simplicity we assume that all the honest parties have the same computing
power), let Tmax be the maximal computing power of all the participants of the
protocol (the honest parties and the adversary), and let w4 < Tmax — n7 be the
actual computing power of the adversary. We allow the adversary to adaptively
corrupt at most ¢ parties, in which case he takes the full control over them (how-
ever, we do not allow him to use the computing power of the corrupt parties,
or in other words: once he corrupts a party he is also responsible for computing
the Proofs of Work for her). Of course in general it is better to have protocols
depending on 74, not on Tmax. On the other hand, sometimes the dependence
from mmax is unavoidable, as the participants need to have some rough estimate
on the power of the adversary (e.g. clearly it is hard to construct any proto-
col when 7 is negligible compared to mmax). Note that also Bitcoin started with
some arbitrary assumption on the computing power of the participant (this was
reflected by setting the initial “mining difficulty” to 232 hash computations).
Our contribution is as follows. First, we construct a broadcast protocol secure
against any mmax, working in time linear in [mmax/7]. Then, using this broadcast
protocol, we argue how to construct a protocol for executing any functionality in
our model. In case the adversary controls the minority of the computing power
(i.e. n > [ma/7] +t)? that were user ber our protocol cannot be aborted pre-
maturely by her. This could in principle be used as a provably-secure substitute
of the blockchain technology used in the cryptocurrencies. Using the broadcast
protocol as a subroutine we later (in Sect.5) construct a scheme for an unpre-
dictable beacon generation.

One thing that needs to be stressed is that our protocols do not require an
unpredictable trusted beacon to be executed (and actually, as described above,
constructing a protocol that emulates such a beacon is one of our contributions).
This poses a big technical challenge, since we have to prevent the adversary from
launching a “pre-computation” attack, i.e., computing solutions to some puzzles
before the execution of the protocol started.

The only thing that we assume is that the participating parties know a session
identifier (sid), which can be known publicly long time before the protocol starts.
Observe that some sort of mechanism of this type is always needed, as the parties
need to know in advance, e.g., the time when the execution starts.

One technical problem that we need to address is that, since we work in
a purely peer-to-peer model, an adversary can always launch a Denial of Ser-
vice Attack, by “flooding” the honest parties with his messages, hence forcing
them to work forever. Thus, in order for the protocols to terminate in a finite
time we also need some mild upper bound # on the number of messages that
the adversary can send (much greater than what the honest parties will send).

2 The reader might be confused we in this inequality ¢ appears on the righ hand side,
as it may look like contradicting the assumption that the adversary does not take
the control of the computing power of the corrupt parties. The reason for having
this term is the adaptivity: the adversary can corrupt a party at the very end of the
protocol, hence, in some sense taking advantage of her computing resources before
she was corrupted.

384 M. Andrychowicz and S. Dziembowski

We write more on this in Sect. 2. Although our motivation is mostly theoretic,
we believe that our ideas can lead to practical implementations (probably after
some optimizations and simplifications). We discuss some possible applications
of our protocols in Sect. 5.

Independent Work. Recently an interesting paper by Katz, Miller and Shi
[23] with a motivation similar to ours was published on the Eprint archive. While
their high-level goal is similar to ours, there are some important technical dif-
ferences. First of all, their solution essentially assumes existence of a trusted
unpredictable beacon (technically: they assume that the parties have access to
a random oracle that was not available to the adversary before the execution
started). This simplifies the design of the protocols significantly, as it removes
the need for every party to ensure that “her” challenge was used to compute
the Proof-of-Work (that in our work we need to address to deal with the pre-
computation attacks described above). Secondly, they assume that the proof
verification takes zero time (we note that with such an assumption our protocols
would be significantly simpler, and in particular we would not need an addi-
tional paramter 6 that measures the number of messages sent by the adversary).
Thirdly, unlike us, they assume that the number of parties executing the pro-
tocol is known from the beginning. On the other hand, their work covers also
the “sequential puzzles” (see [23]), while in this work we focus on parallelizable
puzzles.

2 Our Model

In this section we present our model for reasoning about computing power and
the peer-to-peer protocols. We first do it informally, and then formalize it using
the universal composability framework of Canetti [9].

Modeling Hashrate. Since in general proving lower bounds on the computa-
tional hardness is very difficult, we make some simplifying assumptions about
our model. In particular, following a long line of previous works both in theory
and in the systems community (see e.g. [4,17,26]), we establish the lower bounds
on computational difficulty by counting the number of times a given algorithm
calls some random oracle H [6]. In our protocols the size of the input of H will
be linear in the security parameter x (usually it will be 2« at most). Hence it is
realistic to assume that each invocation of such a function takes some fixed unit
of time.

Our protocols are executed in real time by a number of devices and attacked
by an adversary A. The exact way in which time is measured is not important,
but it is useful to fix a unit of time A (think of it as 1 minute, say). Each device
D that participates in our protocols will be able to perform some fixed number
mp of queries to H in time A. The parameter mp is called the hashrate of D
(per time A). The hashrate of the adversary is denoted by 7 4. The other steps

PoW-Based Distributed Cryptography with No Trusted Setup 385

of the algorithms do not count as far as the hashrate is considered (they will
count, however, when we measure the efficiency of our protocols, see paragraph
Computational complexity below). Moreover we assume that the parties have
access to a “cheap” random oracle, calls to this oracle do not count as far as the
hashrate is considered. This assumption is made to keep the model as simple as
possible. It should be straightforward that in our protocols we do not abuse this
assumption, and in on any reasonable architecture the time needed for computing
H’s would be the dominating factor during the Proofs of Work. In particular:
any other random oracles will be invoked a much smaller number of times than
H. Note that, even if these numbers were comparable, one could still make H
evaluate much longer than any other hash function F, e.g., by defining H to be
equal to multiple iterations of F.

In this paper we will assume that every party (except of the adversary)
has the same hashrate per time A (denoted 7). This is done only to make the
exposition simpler. Our protocols easily generalize to the case when each party
has a device with hashrate 7; and the 7;’s are distinct. Note that if a party has
a hashrate ¢t (for natural t) then we can as well think about her as of t parties
of hashrate m each. Making it formal would require changing the definition of
the “honest majority” in the MPCs to include also “weights” of the parties.

The Communication Model. Unlike in the traditional MPC settings, in our
case the number of parties executing the protocol is not known in advance to the
parties executing it. Because of this it makes no sense to specify a protocol by a
finite sequence (M, ..., M,,) of Turing machines. Instead, we will simply assume
that there is one Turing machine M whose code will be executed by each party
participating in the protocol (think of it as many independent executions of the
same program). This, of course, does no mean that these parties have identical
behavior, since their actions depend also on their inputs, the party identifier
(pid), and the random coins.

Since we do not assume any trusted set-up (like a PKI or shared private keys)
modeling the communication between the parties is a bit tricky. We assume that
the parties have access to a public channel which allows every party and the
adversary to post a message on it. One can think of this channel as being imple-
mented using some standard (cryptographically insecure) “network broadcast
protocol” like the one in Bitcoin [29]. The contents of the communication chan-
nel is publicly available. The message m sent in time ¢ by some P; is guaranteed
to arrive to P; within time t’ such that t' — ¢t < A. Note that some assumption
of this type needs to be made, as if the messages can be delayed arbitrarily
then there is little hope to measure the hashrate reliably. Also observe that we
have to assume that the messages always reach their destinations, as otherwise
an honest party could be “cut of” the network. Similar assumptions are made
(implicitly) in Bitcoin. Obviously without assumptions like this, Bitcoin would
be easy to attack (e.g. if the miners cannot send messages to each other reliably
then it is easy to make a “fork” in the blockchain).

To keep the model simple we will assume that the parties have perfectly
synchronized clocks. This assumption could be easily relaxed by assuming that

386 M. Andrychowicz and S. Dziembowski

clocks can differ by a small amount of time §, and our model from Sect. 2.1 could
be easily extended to cover also this case, using the techniques, e.g., from [22].
We decided not to do it to in order to keep the exposition as simple as possible.

We give to the adversary full access to the communication between the par-
ties: he learns (without any delay) every message that is sent through the commu-
nication channel, and he can insert messages into it. The adversary may decide
that the messages inserted into the channel by him arrive only to a certain subset
of the parties (he also has a full control over the timing when they arrive). The
only restriction is that he cannot erase or modify the messages that were sent
by the other parties (but he can delay them for time at most A).

Resistance to the Denial of Service Attacks. As already mentioned in the
introduction, in general a complete prevention of the denial of service attacks
against fully distributed peer-to-peer protocols seems very hard. Since we do not
assume any trusted set-up phase, hence from the theoretical point of view the
adversary is indistinguishable from the honest users, and hence he can always
initiate a connection with an honest user forcing it to perform some work. Even
if this work can be done very efficiently, it still costs some effort (e.g. it requires
the user to verify a PoW solution), and hence it allows a powerful (yet poly-
time bounded) adversary to force each party to work for a very long amount
of time, and in particular to exceed some given deadline for communicating with
the other parties. Since any PoW-based protocol inherently needs to have such
deadlines, thus we need to somehow restrict the power of adversary. We do it in
the following way.

First of all, we assume that if a message m sent to P; is longer than the
protocols specifies then P; can discard it without processing it.? Secondly, we
assume that there is a total bound 6 on the number of messages that all the
participants can send during each interval A. Since this includes also the mes-
sages sent by the honest parties, thus the bound on the number of messages
that the adversary A sends will be slightly more restrictive, but from practical
point of view (since the honest parties send very few messages) it is approxi-
mately equal to 6. This bound can be very generous, and, moreover it will be
much larger than the number of messages sent by the honest users*. In practice
such a bound could be enforced using some ad-hoc methods. For example each
party could limit the number of messages it can receive from a given IP address.
Although from the theoretical perspective no heuristic method is fully satisfac-
tory, in practice they seem to work. For example Bitcoin seems to resist pretty
well the DoS attacks thanks to over 30 ad-hoc methods of mitigating them (see
[28]). Hence, we believe that some bound on 6 is reasonable to assume (and,
as argued above, seems necessary). We will use this bound in a weak way, in

3 Discarding incorrect messages is actually a standard assumption in the distributed
cryptography. Here we want to state it explicitly to make it clear that the processing
time of too long messages does not count into the computing steps of the users.

4 This is important, since otherwise we could trivialize the problem by asking each
user to prove that he is honest by sending a large number of messages.

PoW-Based Distributed Cryptography with No Trusted Setup 387

particular the number of messages sent by the honest parties will not depend on
it, and the communication complexity will (for any practical choice of parame-
ters) be linear in 6 for every party (in other words: by sending 6 messages the
adversary can force an honest party to send one long message of length O(9)).
The real time of the execution of the protocol can depend on 6. Formally it is
a linear dependence (again: this seems to be unavoidable, since every message
that is sent to an honest party P; forces P; to do some non-trivial work). Fortu-
nately, the constant of this linear function will be really small. For example, in
the RankedKeys (Fig. 3, Page 16) the time each round takes (in the “key ranking
phase”) will be A+ 6 -timey /7, where timey is small. Observe that, e.q, /7 =1
if the adversary can send the messages at the same speed as the honest party
can compute the H" queries, hence it is reasonable to assume that 6/ < 1.

Communication, Message and Computational Complexity. In the full
version of this paper [1] we define and analyze the communication complexity of
our protocols. We also analyze their computational complexity. We also extend
our model to cover the case of non-authenticated bilateral channels.

2.1 Formal Definition

Formally, a multiparty protocol (in the (w,ma,0) -model) is an ITM (Interactive
Turing Machine) M. It is executed together with an ITM A representing the
adversary, and and I'TM & representing the environment. The real execution of
the system essentially follows that scheme from [9]. Every ITM gets as input a
security parameter 17. Initially, the environment takes some input z € {0,1}*
and then it activates an adversary A and a set P of parties. The adversary
may (actively and adaptively) corrupt some parties. The environment is notified
about these corruptions.

The set P (or even its size) will not be given as input to the honest parties.
In other words: the protocol should work in the same way for any P. On the
other hand: each P € P will get as input her own hashrate = and the upper
bound 7max on the total combined hashrate of all the parties and the adversary
(this will be the paramters of the protocol). The running time of P € P can
depend on these parameters. Note that |P| -7 + 74 < Tmax, but this inequality
may be sharp, and even |P| -7 + T4 < Tmax is possible, as, e.g., the adversary
can use much less hashrate than the maximal amount that he is allowed to®.

Each party P € P runs the code of M. It gets as input its party identifier
(pid) and some random input. We assume that all the pid’s are distinct, which
can be easily obtained by choosing them at random from a large domain ({0, 1},
say). Moreover the environment sends to each P some input zp € {0,1}*, and
at the end of its execution it outputs to £ some value yp € {0,1}*. We assume
that at a given moment only one machine is active. For a detailed description on

5 In particular it is important to stress that the assumption that the majority of the
computing power is honest means that n -7 > w4, and not, as one might think,
n - T > Tmax/2 (assuming the number ¢ of corrupt parties is zero).

388 M. Andrychowicz and S. Dziembowski

.. 0
Functionality F,;,"*’

.7-'57§’n7rA’9 receives a session ID sid € {0,1}*. Moreover we assume that it obtains a list P of
parties that were activated with sid, i.e., those parties among which synchronization is to be
provided and that will issue the random oracle queries.

1. At the first activation, the functionality chooses at random a random oracle H. It then waits
for queries from the adversary A of a form (Hash, w) (where w is from the domain of H).
Each such a query is answered with H (w). This phase ends when A sends a query Next or
when it terminates its operation.

2. Initialize a round counter r := 1, for every party P € P initialize variables hp := 0 and
L} = (. Initialize h4 := 0. Send a public delayed output (Init, sid) to all parties in P.

3. Upon receiving input (Send, sid, m) from a party P € P, for every P’ € P set L, :=

> U {m} and output (sid, P, m,r) to the adversary.

4. Upon receiving input (Send, sid, P’, m) from A (where P’ € P)set L', := L'p, U {m}.

5. Upon receiving (Hash, w) from P’ € P U {A} (note that P’ can either be a party or the
adversary) do
(a) if P’ € P, where P’ is not corrupt and hpr < 7 then reply with H (w) and increment

the counter: hp: := hpr + 1,
(b) if P’ = Aand ha < 7.4 then reply with H and increment the counter: b4 := ha +1,
(c) otherwise do nothing (since P’ has already exceeded the number of allowed queries to
H" in this round).
6. Upon receiving input (Receive, sid, r’) from a party P € P, do:
(a) If 7" = r (i.e., 7’ is the current round), and you have received the Send message from
every non-corrupt party in this round then:
i. Increment the round number: r := r + 1.
ii. Forevery P’ € P U {A} reset the variable hp: := 0.
iii. If the size of L5 ! is at most 6 then output (Received, sid, L}, ") to P, otherwise
output L to P.
(b) If 7" < r and the size of L}/ is at most 6 then output (Received, sid, Lf;l) to P, other-
wise output L to P.
(c) Else (i.e., v’ > r or not all parties in P have sent their messages for round r), output
Round Incomplete to P.

Fig. 1. Functionality Fom 4",

how the control is passed between the machines see [9], but let us only say that
it is done via sending messages (if one party sends a message to the other one
then it “activates it”). The environment £ can communicate with .4 and with the
parties in P. The adversary controls the network. However, we require that every
message sent between two parties is always eventually delivered. Moreover, since
the adversary is poly-time bounded, thus he always eventually terminates. If he
does so without sending any message then the control passed to the environment
(that chooses which party will be activated next).

We assume that all the parties have access to an ideal functionality Fg, ™4
(depicted on Fig. 1) and possibly to some random oracles. The ideal functionality
fg;,;]”f"g is used to formally model the setting described informally above. Since
we assumed that every message is delivered in time A we can think of the whole
execution as divided into rounds (implicitly: of length A). This is essentially the

0

PoW-Based Distributed Cryptography with No Trusted Setup 389

“synchronous communication” model from [9] (see Sect. 6.5 of the Eprint version
of that paper). As it is the case there, the notion of a “round” is controlled by
a counter r, which is initially set to 1 and is increased each time all the honest
parties send all their inputs for a given round to]—';;,fA’e. The messages that are
sent to P in a given round r are “collected” in a buffer denote L', and delivered
to P at the end of the rounds (on P’s request). The fact that every message
sent by an honest party has to arrive to another honest party within a given
round is reflected as follows: the round progresses only if every honest party sent
her message for a given round to the functionality (and this happens only if all
of them received messages from the previous round). Recall also that sending
“delayed output to a P” means that the x is first received by A who can decide
when z is delivered to P.

Compared to [9] there are some important differences though. First of all,
since in our model the set P of the parties participating in the execution is
known to the honest participants, thus we cannot assume that P is a part of
the session identifier. We therefore give it directly to the functionality (note that
this set is anyway known to &£, which can share it with A).

Secondly, we do not assume that the parties can send messages directly to
each other. The only communication that is allowed is through the “public chan-
nel”. This is reflected by the fact that the “Send” messages produced by the
parties do not specify the sender and the receiver (cf. Step 3), and are delivered
to everybody . In contrast, the adversary can send messages to concrete parties
(cf. Step 4).

Thirdly, and probably most importantly, the functionality f;;;f“\’e also keeps
track on how much computational resources (in terms of access to the oracle H)
were used by each participant in each round. To take into account the fact that
the adversary may get access the oracle long before the honest parties started
the execution we first allow him (in Step 1) to query this oracle adaptively (the
number of these queries is bounded only by the running time of the adversary,
and hence it has to be polynomial in the security parameter). Then, in each
round every party P € P can query H. The number of such queries is bounded
by 7.

We use a counter hp (reset to 0 at the beginning of each new round) to track
the number of times the user P queried H. The number of oracle queries that A
can ask is bounded by 74 and controlled by the counter h4. Note that, once a
party P € P gets corrupted by A it looses access the oracle H. This reflects the
fact that from this point the computing power of P does not count anymore as
being controlled by the honest parties, and hence every call to H made by such
a P has to be “performed” by the adversary (and consequently increase h4).
The output of the environment on input z interacting with M, A and the ideal
functionality 2,74 will be denoted execg/’[fri’g (2).

In order to define security of such execution we define an ideal functionality
F that is also an ITM that can interact with the adversary. Its interaction with
the parties is pretty simple: each party simply interacts with F directly (with no
disturbance from the adversary). The adversary may corrupt some of the parties,

390 M. Andrychowicz and S. Dziembowski

in which case he learns their inputs and outputs. The functionality is notified
about each corruption. At the end the environment outputs a value execr 4 ¢(%).

Definition 1. We say that a protocol M securely implements a functionality F
in the (m,74,0)-model if for every polynomial-time adversary A there exists a
polynomial-time simulator S such that for every environment Z the distribution
T, A0
ensemble execy; e and the distribution ensemble execr a.¢ are computationally
indistinguishable (see [9] for the definition of the distribution ensembles and the

computational indistinguishability).

3 The Security Definition of Broadcast

In this section we present the security definitions of our main construction, i.e.,
the broadcast protocol. We first describe its informal properties and then specify
it as an ideal functionality. Let P be the set of parties executing II, each of them
having a device with hashrate m > 0 per time A. Each P € P takes as input
xp € {0,1}", and it produces as output a multiset Yp C {0,1}*. The protocol
is called a Tmax-secure broadcast protocol if it terminates is some finite time
and for any poly-time adversary A whose device has hashrate m4 < Tmax and
who attacks this protocol the following conditions hold except with probability

FI, receives a session ID sid € {0, 1}*. Moreover it obtains a list 7 of parties that were activated
with sid.

1. At the first activation initialize the variables X := () and Xs := (), where X and Xs are
multisets. Send a public delayed output (Init, sid) to all parties in P.
2. Upon receiving input (Broadcast, sid, z) (where z € {0,1}") from P € P (with PID pid)
do the following:
(a) add z to X, i.e.,let X := X U {z}, moreover send (Broadcast, sid, pid, z) to S,
(b) otherwise do nothing.
3. Upon receiving (Broadcast, sid,) from S:
(a) if |Xs| < T thenlet Xs := Xs U {x},
(b) otherwise do nothing.
4. Upon receiving (Remove, sid, pid) from S: if P with PID pid is not corrupt or such a mes-
sage has already been received before then ignore it.
Otherwise look for a string x that was added by a party with PID pid to X" in Step 2. If no
such string exists do nothing. Otherwise: remove z from the multiset X’
5. Upon receiving (Receive, sid) from some P € P:
(a) If there is some non-corrupt party P € P from which no message (Broadcast, sid, x)
has been received yet then ignore this message.
(b) Otherwise:
i. Ifitis the first message (Receive, sid) received then set)V := X U X’s and send Y
to the adversary.
ii. Output (Received, sid, Y) to P.

Fig. 2. Functionality F.-, where T is the bound on the number of “fake identities” that
the adversary can create. Our security definition requires that T' = [74/7].

PoW-Based Distributed Cryptography with No Trusted Setup 391

negligible in x (let H denote the set of parties in P that were not corrupted by
the adversary): (1) Consistency: All the sets Vp are equal for all non-corrupt
P’s, i.e.: there exists a set) such that for every P € H we have Yp = Y,
(2) Validity: For every P € H we have x; € Y, and (3) Bounded creation of
inputs: The number of elements in) that do not come from the honest parties
(i.e:]Y¥\{xzp}pepl|) is at most [m4/7]. This is formally defined by specifying an
ideal functionality .7-"!:““/ ™ see Fig. 2. The formal definition is given below.

Definition 2. An ITM M is a (Tmax, #)-secure broadcast protocol if for any 7
and w4 it securely implements the functionality fg:“ﬂ in the (mw, 74, 0)-model
(see Definition 1 from Sect. 2.1), as long as the number |P| of parties running

the protocol (i.e. invoked by the environment) is such that |P| -7+ 74 < Tmax-

Note that we do not require any lower bound on 7 other than 0. In practice,
however, running this protocol will make sense only for 7 being a noticeable
fraction of 7may, since the running time of our protocol is linear in mmax /7. This
protocol is implemented in the next section.

4 The Construction of the Broadcast Protocol

We are now ready to present the constructions of the protocols specified in
Sect. 3. In our protocols the computational effort will be verified using so-called
Proofs of Work. A Proof-of-Work (PoW) scheme [16], for a fixed security para-
meter k is a pair of randomized algorithms: a prover P and a verifier V, having
access to a random oracle H (in our constructions the typical input to H will
be of size 2k). The algorithm P takes as input a challenge ¢ € {0,1}" and pro-
duces as output a solution s € {0,1}*. The algorithm V takes as input (¢, s) and
outputs true or false. We require that for every ¢ € {0,1}* it is that case that
V(c,P(c)) = true.

We say that a PoW (P, V) has prover complexity t if on every input ¢ € {0, 1}*
the prover P makes at most ¢ queries to the oracle H. We say that (P, V) has
verifier complexity t' if for every ¢ € {0,1}* and s € {0,1}* the verifier V makes
at most t' queries to the oracle H. Defining security is a little bit tricky, since we
need to consider also the malicious provers that can spend considerable amount
of computational effort before they get the challenge ¢. We will therefore have
two parameters: fo, th € N, where to will be the bound on the total time that a
malicious prover has, and #; < o will be the bound on the time that a malicious
prover got after he learned c. Consider the following game between a malicious
prover P and a verifier V: (1) P adaptively queries the oracles H on the inputs of
his choice, (2) P receives ¢ « {0,1}", (3) P again adaptively queries the oracles
H on the inputs of his choice, (4) P sends a value s € {0,1}* to V. We say that
P won if V(c, s) = true. We say that (P, V) is (£, 1) -secure with e -error (in the
H-model) if for a uniformly random ¢ «— {0,1}* and every malicious prover P
that makes in total at most o queries to H in the game above, and at most #;

queries after receiving ¢ we have that P (If’(c) wins the game) < e. It will also

392 M. Andrychowicz and S. Dziembowski

be useful to use the asymptotic variant of this notion (where k is the security
parameter). Consider a family {(P*,V*)}22,. We will say that it is ¢;-secure if
for every polynomial £, there exists a negligible € such that (P*,V*) is (fy(k), 1)-
secure with error e(x). Our protocols will be based on the PoW based on the
Merkle trees combined with the Fiat-Shamir transform. The following lemma is
proved in the full version of this paper [1].

Lemma 1. For every function t : N — N s.t. t(k) > K there exists a family
of PoWs (PTreey,,, VTreey,,) has prover complexity t and verifier complezity
[k log? t]. Moreover the family {(PTreey,., VTreej(,,)) }2Z, is §t-secure for every
constant € € [0,1).

One of the main challenges will be to prevent the adversary from precomputing
the solutions to PoW, as given enough time every puzzle can be solved even by
a device with a very small hashrate. Hence, each honest party P; can accept a
PoW proof only if it is computed on some string that contains a freshly generated
challenge c. Since we work in a completely distributed scenario, and in particular
we do not want to assume existence of a trusted beacon, thus the only way a P;
can be sure that a challenge ¢ was fresh is that she generated it herself at some
recent moment in the past (and, say, sent it to all the other parties).

This problem was already considered in [2], where the following solution was
proposed. At the beginning of the protocol each party P; creates a fresh (public
key, secret key) pair (pk;,sk;) (we will call the public keys identities) and sends
to all other parties a random challenge ¢;. Then, each party computes a Proof
of Work on her public key and all received challenges. Finally, each party sends
her public key with a Proof of Work to all other parties. Moreover, whenever a
party receives a message with a given key for the first time, than it forwards it
to all other parties. An honest party P; accepts only these public keys which:
(1) she received before some agreed deadline, and (2) are accompanied with a
Proof of Work containing her challenge ¢;. It is clear that each honest party
accepts a public key of each other honest party and that after this process an
adversary can not control a higher fraction of all identities that his fraction of
the computational power. Hence, it may seem that the parties can later exe-
cute protocols assuming channels that are authenticated with the secret keys
corresponding to these identities.

Unfortunately there is a problem with this solution. Namely it is easy to
see that the adversary can cause a situation where some of his identities will be
accepted by some honest parties and not accepted by some other honest parties®.
We present a solution to this problem in the next sections.

4.1 Ranked Key Sets

The main idea behind our protocol is that parties assign ranks to the keys they
have received. If a key was received before the deadline and the corresponding

6 This discrepancy can come from two reasons: (1) some messages could be received
by some honest parties before deadline and by some other after it, and (2) a Proof
of Work can containing challenges of some of the honest parties, but not all.

PoW-Based Distributed Cryptography with No Trusted Setup 393

proof contains the appropriate challenge, then the key is assigned a rank 0. In
particular, keys belonging to honest parties are always assigned a rank 0. The
rank bigger than 0 means that the key was received with some discrepancy from
the protocol (e.g. it was received slightly after the deadline) and the bigger the
rank is, the bigger this discrepancy was. More precisely each party P; computes
a function rank; from the set of keys she knows K; into the set {0,...,¢} for
some parameter £. Note that this primitive bares some similarities with the
“proxcast” protocol of Considine et al. [13]. Since we will use this protocol only
as a subroutine for our broadcast protocol, to save space, we present its definition
without using the “ideal functionality” paradigm.

Let 3 = (Gen, Sign, Vrfy) be a signature scheme and let £ € N be an arbitrary
parameter. Consider a multi-party protocol I in the model from Sect.2, i.e.,
having access to an ideal functionality FJ;™, where 7 is interpreted as the
hashrate of each of the parties, and w4 as the hashrate of the adversary.

Each party P takes as input a security parameter 17, and it produces as out-
put a tuple (skp, pkp, Kp,rankp), where (skp, pkp) € {0,1}* x {0,1}* is called
a (private key, public key) pair of P, the finite set p C {0,1}* will be some set
of public keys, and rankp : Kp — {0,..., £} will be called a key-ranking function
(of P). We will say that an identity pk was created during the execution II if
pk € ICp for at least one honest P (regardless of the value of rankp(pk)). The
protohancol II is called a 7 4-secure £-ranked X -key generation protocol if for any
poly-time adversary .4 who attacks this protocol (in the model from Sect. 2) the
following conditions hold: (1) Key-generation: II is a key-generation algorithm
for every P, by which we mean the following. First of all, for every i =1,...,n
and every m € {0,1}* we have that Vrfy(pkp, Sign(skp, m)) = true. Moreover
skp can be securely used for signing messages in the following sense. Suppose
the adversary A learns the entire information received by all the parties except
of some P, and later A engages in the “chosen message attack” against an ora-
cle that signs messages with key skp. Then any such A has negligible (in x)
probability of forging a valid (under key pkp) signature on a fresh message. (2)
Bounded creation of identities: We require that the number of created identities
is at most n + [74/7| except with probability negligible in x. (3) Validity: For
every two honest parties P and P’ we have that rankp(P’) = 0. (4) Consis-
tency: For every two honest parties P and P’ and every key pk € Kp such that
rankp(pk) < ¢ we have that pk € Kp: and moreover rankp(pk) < rankp(pk) + 1.

Our construction of a ranked key generation protocol RankedKeys is presented
on Fig.3. The protocol RankedKeys uses a Proof of Work scheme (P,V) with
prover time timep and verifier time timey. Note that the algorithms P and V
query the oracle H. Technically this is done by sending Hash queries to the F; ™
oracle, in the H*-model (it also uses another hash function F': {0,1}* — {0, 1}*
that is modeled as a random oracle, but its computation does not count into the
hashrate). We can instantiate this PoW scheme with the scheme (PTree, VTree)
described in the full version of this paper [1]. The parameter ¢ will be equal to
[Tmax/7 . The notation < is described below.

Let us present some intuitions behind our protocol. First, recall that the
problem with the protocol from [2] (described at the beginning of this section)

394

M. Andrychowicz and S. Dziembowski

The challenges phase consists of ¢ 4 2 rounds:

— Round 0: Each party P draws a random challenge cp < {0, 1}" and sends his challenge
message of level 0 equal to (Challenge?, ¢%) to all parties (including herself).

— For k = 1to £ + 1 in round k each party P does the following. It waits for the messages
of a form (Challenge® !, a) that were sent in the previous round (note that some of them
might have already arrived earlier, but, by our assumptions they are all guaranteed to arrive
before round k ends). Of course if the adversary does not perform any attack then there will
be exactly n such messages (one from every party), but in general there can be much more
of them. Let (Challenge* ! a1), ..., (Challenge®* !, a,,) be all messages received by P.
Denote A% = (a1,...,am). Then P computes her challenge in round & as cf = F(A%)
and sends (Challenge®, ¢}) to all parties (this is not needed in the last rounds, i.e., when
k=0+1).

In the Proof of Work phase each party P performs the following.

1. Generate a fresh key pair (skp, pkp) < Gen(1*) and compute Solp = P(F(pkp, A5™))
(recall that A% contains all the challenges that P received in the last round of the “chal-
lenges phase™). Note that this phase takes [timep /(7 - A)] rounds.

2. Send to all the other parties a message (Keyo7 pkp, Af;*'l, Solp). This message contains P’s
public key pkp, the sequence Agl of challenges that he received in the last round of the
“challenges phase”, and a Proof of Work Solp. The reason why she sends the entire Af;rl,
instead of F'(pkp, Afj'l), is that in this way every other party will be able check if her
challenge was used as an input to F' when F'(pkp, A%™) was computed (this check will be
performed in the next phase).

The key ranking phase consists of ¢ + 1 steps, each lasting 1 + [(6 - timey) /(7 - A)] rounds.
During these steps each party P constructs a set JCp of ranked keys, together with a ranking
function rankp : Kp — {0,..., ¢} (the later a key is added to KCp the higher will be its rank).
Initially all Cp’s are empty.

— Step 0: Each party P waits for one round for the messages of the form (Key®, pk, BT, Sol)

sent in the PoW phase. Then, for each such message she checks the following conditions:
e Sol is a correct PoW solution for the challenge F(pk, B‘t1), ie., if
V(F(pk, B“), Sol) = true,
e c% appears in B!, ie., cb < B
If both of these conditions hold then P accepts the key pk with rank 0, i.e., P adds pk to the
set Kp and sets rank p(pk) := 0. Moreover P notifies all the other parties about this fact by
sending to every other party a message (Key!, pk, A%, B! Sol).

— For k = 1to £ in step k each party P does the following. She waits for one round for the
messages of a form (Key”, pk, B“*'=% .. B**! Sol). Then she stops listening and for
each received message she checks the following conditions:

o the key pk has not been yet added to Kp, i.e.: pk & Kp,

e Sol is a correct PoW solution for the challenge F(pk, B‘t1), ie., if

V(F(pk, B™), Sol) = true,

o ¢ < B*'=F and forevery i = £ + 1 — k to £ it holds that F(B*) < B*!.
If all of these conditions hold then P accepts the key pk with rank k, i.e., P adds pk to
the set Kp and sets rankp(pk) := k. Moreover if k < ¢ then P notifies all the other
parties about this fact by sending at the end of the round to every other party a message
(Key**1, pk, Af;k, Bk B Sol) (recall that A% is equal to the set of chal-
lenges received by P in the k-th round of the “challenges phase”, and F' (A’fp) =ch).

At the end of the protocol each party P outputs (skp, pkp, Kp, rankp).

Fig. 3. The RankedKeys protocol.

PoW-Based Distributed Cryptography with No Trusted Setup 395

was that some public keys could be recognized only by a subset of the honest
parties. A key could be dropped because: (1) it was received too late; or (2) the
corresponding proof did not contained the appropriate challenge. Informally, the
idea behind the RankedKeys protocol is to make these conditions more granular.
If we forget about the PoWs, and look only at the time constrains then our pro-
tocol could be described as follows: keys received in the first round are assigned
rank 0, keys received in the second round are assigned rank 1, and so on. Since
we instruct every honest party to forward to everybody all the keys that she
receives, hence if a key receives rank k from some honest party, then it receives
rank at most k£ + 1 from all the other honest parties.

If we also consider the PoWs then the description of the protocol becomes
a bit more complicated. The RankedKeys protocol consists of 3 phases. We now
sketch them informally. The “challenges phase” is divided into £ + 2 rounds. At
the beginning of the first round each P generates his challenge ¢% randomly and
sends it to all the other parties. Then, in each k-th round each P collects the
messages ai, ..., 0, sent in the previous round, concatenates then into Ak =
(a1,...,am), hashes them, and sends the result ¢} = F(AY) to all the other
parties.

Let a < (b1,...,b,,) denote the fact that a = b; for some ¢. We say that
the string b dependents on a if there exists a sequence a = vy,...,v, = b, such
that for every 1 < i < m, it holds that F'(v;) < v;41. The idea behind this
notion is that b could not have been predicted before a was revealed, because
b is created using a series of concatenations and queries to the random oracle
starting from the string a. Note that in particular c% depends on cP/ ! for any
honest P, P’ and 1 < k < ¢ and hence c’}_, depends on c%, for any honest P, P’
and an arbitrary 1 < k < ¢+ 1.

Then, during the “Proof of Work” phase each honest party P draws a random
key pair (skp,pkp) and creates a proof of work® P(F(pkp, A5™)). Then, she
sends her public key together with the proof to all the other parties.

Later, during the “key ranking phase” the parties receive the public keys of
the other parties and assign them ranks. To assign the public key pk rank k the
party P requires that she receives it in the k-th round in this phase and that it
is accompanied with a proof P(F(pkp,s)) for some string s, Which depends on

k . Such a proof could not have been precomputed, because cP k¥ depends on
c >, which was drawn randomly by P at the beginning of the protocol and hence
could not been predicted before the execution of the protocol. If those conditions
are met, then P forwards the message with the key to the other parties. This
message will be accepted by other parties, because it will be received by them in
the (k+1)-st round of this phase and because s depends on ¢ . k_ which depends

on cf;,() for any honest P’. In the effect, all other honest parties, which have
not yet assigned pk a rank will assign it a rank k + 1.

" This is because %, ' < A} and F(A%) = cf.
8 The reason why we habh the input before computing a PoW is that the PoW defin-
ition requires that the challenges are random.

396 M. Andrychowicz and S. Dziembowski

Let RankedKeyspt,. denote the RankedKeys scheme instantiated with the
PoW scheme (PTreefj, .., VTreef .) (from Lemma 1), where timep := x% - (£ +
2)A-m and timey := k [log, timep | . We have the following fact (its proof appears
in the full version of this paper [1]).

Lemma 2. Assume the total hashrate of all the participants is at most Tmax,
the hashrate of each honest party if w, and the adversary can not send more
than (6 — [Tmax/7]) messages in every round. Then the RankedKeyspr,e protocol
is a ma-secure L-ranked key generation protocol, for { = [Tmax/7], whose total
execution takes (20 4 3) + [timep/(w - A)] 4+ [(€ 4 1)(8 - timey) /(7 - A)] rounds.

The communication and message complexity of the RankedKeys protocol are
analysed in the full version of this paper [1].

The Broadcast Protocol. The reason why ranked key sets are useful is that
they allow to construct a reliable broadcast protocol, which is secure against an
adversary that has an arbitrary hashrate. The only assumption that we need
to make is that the total hashrate in the system is bounded by some 7y, and
the adversary cannot send more than 6 — n messages in one interval (for some
parameter #). Our protocol, denoted Broadcast, works in time that is linear in
£ = [Tmax/7] plus the execution time of RankedKeys. It is based on a classical
authenticated Byzantine agreement by Dolev and Strong [14] (and is similar

1. Each party P takes as input (Broadcast, sid, zp).

2. The parties run the RankedKeys protocol (attaching sid to every message). Let
(skp, pkp, Kp, rankp) be the output of each P € P.

3. Each party P initializes, for every pk € K p, a variable Z% = ().

4. Each D € P performs the following procedure that consists of £ 4+ 1 rounds (this can be
executed in parallel for every D):

— Round 0: D (we will call him the Dealer) sends to every other party a message
(sid,zp, pkp, Signy,, (D, Pkp))-

— Round k, for 1 < k < ¢: Each party P except of the dealer D waits for the messages
of the form (sid, v, pkp, Signska1 (v,pkp), .-, Signskuk (v, pkp)). Such a message is
accepted by P if: '

(1) all signatures are valid and are corresponding to different public keys,
(2) pk,, = pkp,
3) pkaj € Kp and rankp(pkaj) <kforl <j <k, and
@) v g ZNP and |ZXP| < 2.
If a message 1is accepted then P adds v to her set Z;,kD
and if moreover k < ¢, than she sends a message
(sid,v,ka,Signpkal(v,ka),..A,Signpkak (v, pkp), Signy,, (v, pkp)) to all
other parties.

5. Each party P determines the set Vp as the union over all Zﬁ,k’s that are of size 1, i.e.:

YVp = Upk:‘z?jk‘:l Z}"Dk. It outputs (Received, sid, Vp).

Fig. 4. The Broadcast protocol.

PoW-Based Distributed Cryptography with No Trusted Setup 397

to the technique used to construct broadcast from a proxcast protocol [13]).
The protocol is depicted on Fig.4 and it works as follows. First the parties
execute the RankedKeys protocol with parameters m, mmax and €, built on top
of a signature scheme (Gen, Sign, Vrfy) — Sign, denotes a signatures computed
using a private key corresponding to a public key pk. For convenience assume
that every signature o contains information identifying the public key that was
used to compute it. Let (skp, pkp, Kp,rankp) be the output of each P after this
protocol ends (recall that (skp, pkp) is her key pair, Kp is the set of public keys
that she accepted, rankp is the key ranking function). Then, each party D € P
executes in parallel the procedure from Step 4. During the execution each party
P maintains a set leng initialized with (). The output of each party is equal

to the only elements of this set (if Z;kD is a singleton) or L otherwise. The
following lemma is proven in the full version of this paper [1].

Lemma 3. The Broadcast protocol is a (Tmax, 0)-secure broadcast protocol.

5 Applications

Multiparty Computations. As already mentioned before, the Broadcast pro-
tocol can be used to establish a group of parties that can later perform the MPC
protocols. For the lack of space we only sketch this method here. The main idea
is as follows. First, each party P generates its key pair (skp, pkp). Then, it uses
the broadcast protocol to send to all the other parties the public key pkp. Let
7 4 be the computing power of the adversary, and let ¢ be the number of parties
that he corrupted. From the properties of the broadcast protocol he can make
the honest parties accept at most [m4/7m] keys pkp chosen by the adversary.
Additionally, the adversary knowns up to ¢ secret keys of the parties that she
corrupted. Therefore altogether there are at most [7.4/7] 4+t keys pkp such that
the adversary knows the corresponding secret keys skp. The total number of
keys is [r4/m| + n (where n is the number of the honest parties).

Given such a setup the parties can now simulate the secure channels, even if
initially they did not know each others identities (i.e. in the model from Sect. 2),
by treating the public keys as the identities. More precisely: whenever a party P
wants to send a message to P’ (known to P by her public key pkp/) she would
use the standard method of encryption (note that in the adaptive case this is
secure only if the encryption scheme is non-committing) and digital signatures
to establish a secure channel (via the insecure broadcast channel available in
the model) with P’. Hence the situation is exactly as in the standard MPC
settings with the private channels between [m4/7| + n parties. We can now
use well-known fact that simulating any functionality is possible in this case
[10]. In case we require that the protocol has guaranteed termination we need
an assumption that the majority of the participants is honest [20], i.e., that
[ra/7] +t < (n —t). Suppose we ignore the rounding up (observe that in
practice we can make [m4 /7] arbitrarily close to m4/7 by making 7 small).
Then we obtain the condition w4 + tm < (n — t)m. The left hand side of this

398 M. Andrychowicz and S. Dziembowski

inequality can be interpreted as the “total computing power of the adversary”
(including his own computing power and the one of corrupt parties), and the right
hand side can be interpreted as the total computing power of the honest parties.
Therefore we get that every functionality can he simulated (with guaranteed
termination) as long as the majority of the computing power is controlled by
the honest parties. This argument will be formalized in the full version of this
paper.

Unpredictable Beacon Generation. The Broadcast protocols can also be
used to produce unpredictable beacons even if there is no honest majority of
computing power in the system by letting every party broadcast a random nonce
and then hashing the result. This is described in more detail in the full version
of this paper [1], where we also discuss also the possibility of creating provable
secure currencies using our techniques.

References

1. Andrychowicz, M., Dziembowski, S.: Distributed cryptography based on the proofs
of work. Cryptology ePrint Archive, report 2014/796 (2014)
2. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
byzantine impostors. Department of CS, Yale University, Technical report (2005)
Babai, L.: Trading group theory for randomness. In: STOC (1985)
Back, A.: Hashcash - a denial of service counter-measure, Technical report (2002)
5. Bahack, V.: Theoretical bitcoin attacks with less than half of the computational
power (draft). arXiv preprint arXiv:1312.7013 (2013)
6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS (1993)
7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)
8. Bogetoft, P., Christensen, D.L., Damgard, 1., Geisler, M., Jakobsen, T., Krgigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325-343. Springer, Heidelberg (2009)
9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)
10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)
11. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC (1988)
12. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In: The
International Conference on Electronic Voting Technology /Workshop on Trustwor-
thy Elections (2010)
13. Considine, J., Fitzi, M., Franklin, M.K., Levin, L.A., Maurer, U.M., Metcalf, D.:
Byzantine agreement given partial broadcast. J. Cryptol. 18(3), 191-217 (2005)
14. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656-666 (1983)
15. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251-260. Springer, Heidelberg (2002)

=~ w

http://arxiv.org/abs/1312.7013

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

PoW-Based Distributed Cryptography with No Trusted Setup 399

Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139-147. Springer,
Heidelberg (1993)

Dwork, C., Naor, M., Wee, H.M.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37-54. Springer, Heidelberg (2005)

Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: CRYPTO (1982)

Eyal, 1., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Financial Cryptography (2014)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: STOC (1986)

Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchro-
nous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477-498.
Springer, Heidelberg (2013)

Katz, J., Miller, A., Shi, E.: Pseudonymous secure computation from time-lock
puzzles. Cryptology ePrint Archive, report 2014/857, 2014

Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382-401 (1982)

Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
In: ACM CCS (2007)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). Accessed
http:bitcoin.org/bitcoin.pdf

Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256267 (1983)

Wiki, B.: Denial of service (dos) attacks. en.bitcoin.it/wiki/ Weaknesses, Accessed
on 26.09.2014

Bitcoin Wiki. Network. en.bitcoin.it/wiki/Network. Accessed on 26.09.2014

Yao, A.C-C.: Protocols for secure computations (extended abstract). In: FOCS
(1982)

http://bitcoin.org/bitcoin.pdf
http://en.bitcoin.it/wiki/
http://en.bitcoin.it/wiki/Network

	PoW-Based Distributed Cryptography with No Trusted Setup
	1 Introduction
	2 Our Model
	2.1 Formal Definition

	3 The Security Definition of Broadcast
	4 The Construction of the Broadcast Protocol
	4.1 Ranked Key Sets

	5 Applications
	References

