
Factoring N = prq for Large r

Dan Boneh1?, Glenn Durfee1??, and Nick Howgrave-Graham2

1 Computer Science Department, Stanford University, Stanford, CA 94305-9045
{dabo,gdurf}@cs.stanford.edu

2 Mathematical Sciences Department, University of Bath, Bath, BA2 7AY, U.K
nahg@maths.bath.ac.uk

Abstract. We present an algorithm for factoring integers of the form
N = prq for large r. Such integers were previously proposed for various
cryptographic applications. When r ≈ log p our algorithm runs in poly-
nomial time (in log N). Hence, we obtain a new class of integers that can
be efficiently factored. When r ≈ √

log p the algorithm is asymptotically
faster than the Elliptic Curve Method. Our results suggest that integers
of the form N = prq should be used with care. This is especially true
when r is large, namely r greater than

√
log p.

1 Introduction

In recent years moduli of the form N = prq have found many applications in
cryptography. For example, Fujioke et al. [3] use a modulus N = p2q in an
electronic cash scheme. Okamoto and Uchiyama [12] use N = p2q for an elegant
public key system. Last year Takagi [18] observed that RSA decryption can be
performed significantly faster by using a modulus of the form N = prq. In all
of these applications, the factors p and q are approximately the same size. The
security of the system relies on the difficulty of factoring N .

We show that moduli of the form N = prq should be used with care. In
particular, let p and q be primes of a certain length, say 512 bits each. We show
that factoring N = prq becomes easier as r gets bigger. For example, when r is
on the order of log p our algorithm factors N in polynomial time. This is a new
class of moduli that can be factored efficiently. When N = prq with r on the
order of

√
log p our algorithm factors N faster than the current best method —

the elliptic curve algorithm (ECM) [10]. Hence, if p and q are 512 bit primes,
then N = prq with r ≈ 23 can be factored by our algorithm faster than with
ECM. These results suggest that moduli of the form N = prq with large r are
inappropriate for cryptographic purposes. In particular, Takagi’s proposal [18]
should not be used with a large r.

Suppose p and q are k bit primes and N = prq. When r = kε our algorithm
(asymptotically) runs in time T (k) = 2(k1−ε)+O(log k). Hence, when ε = 1 the
modulus N is roughly k2 bits long and the algorithm will factor N in polynomial
? Supported in part by nsf ccr–9732754.

?? Supported by Certicom.

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 326–337, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Factoring N = prq for Large r 327

time in k. Already when ε = 1
2 the algorithm asymptotically performs better than

ECM. The algorithm requires only polynomial space (in log N).
We implemented the algorithm to experiment and compare it to ECM fac-

toring. It is most interesting to compare the algorithms when ε ≈ 1/2, namely
r ≈ √

logp. Unfortunately, since N = prq rapidly becomes to large to handle
we could only experiment with small p’s. Our largest experiment involves 96 bit
primes p and q and r = 9. In this case N is 960 bits long. Our results suggest that
although our algorithm is asymptotically superior, for such small prime factors
the ECM method is better. Our experimental results are described in Section 4.

The problem of factoring N = prq is related to that of factoring moduli of
the form N = p2q. Previous results due to Peralta and Okamato [13] and also
due to Pollard and Bleichenbacher show that ECM factoring can be made more
efficient when applied to N = p2q. Our results for N = p2q are described in
Section 6.

Our approach is based on techniques due to Coppersmith [2]. We use a sim-
plification due to Howgrave-Graham [5,6]. This technique uses results from the
theory of integer lattices. The next section provides a brief introduction to lat-
tices. In Section 3, we describe the factoring algorithm for integers of the form
N = prq for large r. In Section 4 we discuss our implementation of the algorithm
and provide examples of factorizations completed. In Section 5, we compare this
approach to existing methods, and describe classes of integers for which this
algorithm is the best known method.

2 Lattices

Let u1, . . . , ud ∈ Z
n be linearly independent vectors with d ≤ n. A lattice L

spanned by 〈u1, . . . , ud〉 is the set of all integer linear combinations of u1, . . . , ud.
We say that the lattice is full rank if d = n. We state a few basic results about
lattices and refer to [11] for an introduction.

Let L be a lattice spanned by 〈u1, . . . , ud〉. We denote by u∗
1, . . . , u

∗
d the

vectors obtained by applying the Gram-Schmidt orthogonalization process to
the vectors u1, . . . , ud. We define the determinant of the lattice L as

det(L) :=
d∏

i=1

‖u∗
i ‖.

If L is a full rank lattice then the determinant of L is equal to the determinant
of the d × d matrix whose rows are the basis vectors u1, . . . , ud.

Fact 1 (LLL). Let L be a lattice spanned by 〈u1, . . . , ud〉. Then the LLL algo-
rithm, given 〈u1, . . . , ud〉, will produce a vector v satisfying

‖v‖ ≤ 2d/2 det(L)1/d.

The algorithm runs in time quartic in the size of its input.

328 D. Boneh, G. Durfee, N. Howgrave–Graham

3 Factoring N = prq

Our goal in this section is to develop an algorithm to factor integers of the form
N = prq. The main theorem of this section is given below. We use non-standard
notation and write exp(n) = 2n. Similarly, throughout the paper all logarithms
should be interpreted as logarithms to the base 2.

Theorem 2. Let N = prq where q < pc for some c. The factor p can be recov-
ered from N , r, and c by an algorithm with a running time of:

exp
(

c + 1
r + c

· logp

)
· O(γ),

where γ is the time it takes to run LLL on a lattice of dimension O(r2) with
entries of size O(r log N). The algorithm is deterministic, and runs in polynomial
space.

Note that the factor γ is polynomial in logN . It is worthwhile to consider a
few examples using this theorem. For simplicity we assume c = 1, so that both
p and q are roughly the same size. Taking c as any small constant gives similar
results.

– When c = 1 we have that c+1
r+c = O(1

r). Hence, the larger r is, the easier the
factoring problem becomes. When r = ε logp for a fixed ε, the algorithm is
polynomial time.

– When r ≈ log1/2 p, then the running time is approximately exp(log1/2 p).
Thus, the running time is (asymptotically) slightly better than the Ellip-
tic Curve Method (ECM) [10]. A comparison between this algorithm and
existing algorithms is given in Section 5.

– For small r, the algorithm runs in exponential time.
– When c is large (e.g. on the order of r) the algorithm becomes exponential

time. Hence, the algorithm is most effective when p and q are approximately
the same size. All cryptographic applications of N = prq we are aware of use
p and q of approximately the same size.

The proof of Theorem 2 is based on a technique due to Coppersmith [2] and
Howgrave-Graham [5]. The basic idea is to guess a small number of the most
significant bits of p and factor using the guess. As it turns out, we can show that
the larger r is, the fewer bits of p we need to guess.

In [2] Coppersmith shows that given half the bits of p (the most significant
bits) one can factor integers of the form N = pq in polynomial time, provided
p and q are about the same size. To do so Coppersmith proved an elegant re-
sult showing how to find small solutions of bivariate equations over the integers.
Surprisingly, Theorem 2 does not follow from Coppersmith’s results. Copper-
smith’s bivariate theorem does not seem to readily give an efficient algorithm
for factoring N = prq. Recently, Howgrave-Graham [5] showed an alternate way
of deriving Coppersmith’s results for univariate modular polynomials. He then
showed in [6] how the univariate modular results enable one to factor N = pq

Factoring N = prq for Large r 329

given half the most significant bits of p assuming p and q are of the same size.
In the case that p and q are of different size, both Coppersmith’s and Howgrave-
Graham’s results are weaker, in the sense of requiring a higher percentage of the
bits of the smaller factor to be known.

We prove Theorem 2 by extending the univariate modular approach. Our
results are an example in which the modular approach appears to be superior
to the bivariate integer approach.

Note that for simplicity we assume r and c are given to the algorithm of
Theorem 2. Clearly this is not essential since one can try all possible values for
r and c until the correct values are found.

Lattice-based factoring

We are given N = prq. Suppose that in addition, we are also given an integer P
that matches p on a few of p’s most significant bits. In other words, |P − p| < X
for some large X. For now, our objective is to find p given N , r, and P . Consider
the polynomial f(x) = (P + x)r. Then the point x0 = p − P satisfies f(x0) ≡ 0
mod pr. Hence, we are looking for a root of f(x) modulo pr satisfying |x0| < X.
Unfortunately, the modulus pr is unknown. Instead, only a multiple of it, N , is
known.

Given a polynomial h(x) =
∑

i aix
i we define ‖h(x)‖2 =

∑
i |a2

i |. The main
tool we use to find x0 is stated in the following simple fact which was previously
used in [9,4,5].

Fact 3. Let h(x) ∈ Z[x] be a polynomial of degree d. Suppose that

a. h(x0) ≡ 0 mod prm for some positive integers r, m where |x0| < X, and
b. ‖h(xX)‖ < prm/

√
d.

Then h(x0) = 0 holds over the integers.

Proof. Observe that

|h(x0)| =
∣∣∣∑ aix

i
0

∣∣∣ = ∣∣∣∣∑ aiX
i
(x0

X

)i
∣∣∣∣ ≤

∑∣∣∣∣aiX
i
(x0

X

)i
∣∣∣∣ ≤∑∣∣aiX

i
∣∣ ≤ √

d ‖h(xX)‖ < prm,

but since h(x0) ≡ 0 modulo prm we have that h(x0) = 0. �

Fact 3 suggests that we should look for a polynomial h(x) that has x0 as a
root modulo prm, for which h(xX) has norm less than roughly prm. Let m > 0
be an integer to be determined later. For k = 0, . . . , m and any i ≥ 0 define:

gi,k(x) := Nm−kxifk(x).

Observe that x0 is a root of gi,k(x) modulo prm for all i and all k = 0, . . . , m.
We are looking for an integer linear combination of the gi,k of norm less than

330 D. Boneh, G. Durfee, N. Howgrave–Graham

prm. To do so we form a lattice spanned by the gi,k(xX) and use LLL to find a
short vector in this lattice. Once we find a “short enough” vector h(xX) it will
follow from Fact 3 that x0 is a root of h(x) over Z. Then x0 can be found using
standard root finding methods over the reals.

Let L be the lattice spanned by the coefficients vectors of:

(1) gi,k(xX) for k = 0, . . . , m− 1 and i = 0, . . . , r − 1, and
(2) gj,m(xX) for j = 0, . . . , d − mr − 1.

The values of m and d will be determined later. To use Fact 1, we must bound
the determinant of the resulting lattice. Let M be a matrix whose rows are the
basis vectors for L (see Figure 1). Notice that M is a triangular matrix, so the
determinant of L is just the product of the diagonal entries of M . This is given
by

det(M) =

(
m−1∏
k=0

r−1∏
i=0

Nm−k

)d−1∏
j=0

Xj

 < N rm(m+1)/2Xd2/2.

Fact 1 guarantees that the LLL algorithm will find a short vector u in L satisfying

‖u‖d ≤ 2d2/2 det(L) ≤ 2d2/2N rm(m+1)/2Xd2/2. (1)

This vector u is the coefficients vector of some polynomial h(xX) satisfying
‖h(xX)‖ = ‖u‖. Furthermore, since h(xX) is an integer linear combination of
the polynomials gi,k(xX), we may write h(x) as an integer linear combination
of the gi,k(x). Therefore h(x0) ≡ 0 mod prm. To apply Fact 3 to h(x) we require
that

‖h(xX)‖ < prm/
√

d.

1 x x2 x3 x4 x5 x6 x7 x8

g0,0(xX)
g1,0(xX)
g0,1(xX)
g1,1(xX)
g0,2(xX)
g1,2(xX)
g0,3(xX)
g1,3(xX)
g2,3(xX)

2
6666666666664

N3

XN3

∗ ∗ X2N2

∗ ∗ X3N2

∗ ∗ ∗ ∗ X4N
∗ ∗ ∗ ∗ X5N

∗ ∗ ∗ ∗ ∗ ∗ X6

∗ ∗ ∗ ∗ ∗ ∗ X7

∗ ∗ ∗ ∗ ∗ ∗ X8

3
7777777777775

Example lattice for N = p2q when m = 3 and d = 9. The entries marked with ‘*’
correspond to non-zero entries whose value we ignore. The determinant of the lattice
is the product of the elements on the diagonal. Elements on the diagonal are given
explicitly.

Fig. 1. Example of the lattice formed by the vectors gi,k(xX)

Factoring N = prq for Large r 331

The factor of
√

d in the denominator has little effect on the subsequent calcu-
lations, so for simplicity it is omitted. Plugging in the bound on ‖h(xX)‖ from
equation (1) and reordering terms, we see this condition is satisfied when:

(2X)d2/2 < prmdN−rm(m+1)/2.

Suppose q < pc for some c. Then N < pr+c, so we need

(2X)d2/2 < prmd−r(r+c)m(m+1)/2 .

Larger values of X allow us to use weaker approximations P , so we wish to
find the largest X satisfying the bound. The optimal value of m is attained at
m0 = b d

r+c − 1
2c, and we may choose d0 so that d0

r+c − 1
2 is within 1

2r+c of an
integer. Plugging in m = m0 and d = d0 and working through tedious arithmetic
results in the bound:

X <
1
2
p1− c

r+c− r
d (1+δ) where δ =

1
r + c

− r + c

4d
.

Since δ < 1 we obtain the slightly weaker, but more appealing bound:

X < p1− c
r+c−2 r

d (2)

When X satisfies the bound of equation (2), the LLL algorithm will find in L
a vector h(xX) satisfying ‖h(xX)‖ < prm/

√
d. This short vector will give rise

to the polynomial equation h(x), which is an integer linear combination of the
gi,k(x) and thus has x0 as a root modulo prm. But since ‖h(xX)‖ is bounded,
we have by Fact 3 that h(x0) = 0 over Z, and normal root-finding methods can
extract the desired x0. Given x0 the factor p = P + x0 is revealed.

We summarize this result in the following lemma.

Lemma 1. Let N = prq be given, and assume q < pc for some c. Furthermore
assume that P is an integer satisfying:

|P − p| < p1− c
r+c −2 r

d .

Then the factor p may be computed from N , r, c, and P by an algorithm whose
running time is dominated by the time it takes to run LLL on a lattice of di-
mension d.

Note that as d tends to infinity the bound on P becomes |P − p| < p1− c
r+c .

When c = 1 taking d = r2 provides a similar bound and is sufficient for practical
purposes. We can now complete the proof of the main theorem.
Proof of Theorem 2 Suppose N = prq with q < pc for some c. Let d =
2r(r + c). Then, by Lemma 1 we know that given an integer P satisfying

|P − p| < p1− c+1
r+c

the factorization of N can be found in time O((log N)2d4). Let ε = c+1
r+c

. We
proceed as follows:

332 D. Boneh, G. Durfee, N. Howgrave–Graham

a. For all k = 1, . . . , (logN)/r do:
b. For all j = 0, . . . , 2εk do:
c. Set P = 2k + j · 2(1−ε)k.
d. Run the algorithm of Lemma 1 using the approximation P .

The outer most loop on the length of p is not necessary if the size of p is
known. If p is k bits long then one of the P ’s generated in step (c) will sat-
isfy |P −p| < 2(1−ε)k and hence |P −p| < p1−ε as required. Hence, the algorithm
will factor N in the required time. �

4 Implementation and Experiments

We implemented the lattice factoring method (LFM) using Maple version 5.0
and Victor Shoup’s NTL (Number Theory Library) package [17]. The program
operates in two phases. First, it guesses the most significant bits P of the factor
p, then builds the lattice described in Section 3. Using NTL’s implementation
of LLL, it reduces the lattice from Section 3, looking for short vectors. Second,
once a short vector is found, the corresponding polynomial is passed to Maple,
which computes the roots for comparison to the factorization of N .

Several observations were made in the implementation of this algorithm.
First of all, it was found that the order in which the basis vectors appear in
the lattice given to LLL matters. In particular, since the final polynomial is
almost always of degree equal to the dimension of the lattice, this means that a
linear combination which yields a short vector must include those basis vectors
corresponding to the last few gi,k, say k = m/2, . . . , m and i = 0, . . . , r. It turns
out to be beneficial to place them at the “top” of the lattice, where LLL would
perform row reduction first, as these alone would likely be enough to produce a
short vector. We found the optimal ordering for the gi,k to be i = r − 1, . . . , 0,
k = m, m − 1, . . . , 0; this resulted in greatly reduced running time compared to
the natural ordering, in which LLL spent a large amount of time reducing basis
vectors that would ultimately be irrelevant.

The reader may have noticed that in building the lattice in Section 3, we
could have taken powers of (P + x) instead of shifts and powers of (P + x)r.
The reason for performing the latter is mainly for a performance improvement.
Although both methods yield a lattice with the same determinant, using shifts
and powers of (P + x)r produces a matrix that appears “more orthogonal”.
That is, certain submatrices of the matrix from Section 3 are Toeplitz matrices,
and heuristically this should make it easier for LLL to find a good basis. We
compared both methods and found a speedup of about ten percent by working
with (P + x)r .

Lastly, recall that in an LLL-reduced lattice, the shortest vector u satisfies

‖u‖ < 2d/2 det(L)1/d.

Implementations of LLL often try to improve on this “fudge factor” of 2d/2.
However, as the analysis from Section 3 shows, its effect is negligible, requiring

Factoring N = prq for Large r 333

only an extra bit of p to be known. Therefore, the higher-quality reduction
produced with a smaller fudge factor is not necessary, and running times can be
greatly improved by “turning off” improvements such as block Korkin-Zolotarev
reduction.

To test the algorithm, we assumed that an approximation P of the desired
quality was given; we model this by “giving” the appropriate number of bits
to the algorithm before constructing the lattice. In general, these bits would be
exhaustively searched, so k bits given would imply a running time of 2k times
what is shown. We ran several experiments and have listed the results in Figure 2.
Needless to say, the results by themselves are not so impressive; for such small
N , ECM performs much better. However, we expect the running time to scale
polynomially with the size of the input, quickly outpacing the running times of
ECM and NFS, which scale much less favorably.

p N r bits given lattice dimension running time

64 bits 576 bits 8 16 bits 49 20 minutes
80 bits 1280 bits 15 20 bits 72 21 hours
96 bits 768 bits 7 22 bits 60 7 hours
96 bits 960 bits 9 22 bits 65 10 hours
100 bits 600 bits 5 23 bits 69 11 hours

Fig. 2. Example running times on a 400MhZ Pentium running Windows NT

5 Comparison to Other Factoring Methods

We restate Theorem 2 so that it is easier to compare lattice factoring to existing
algorithms. We first introduce some notation. Let Tα(p) be the function defined
by:

Tα(p) = exp ((logp)α)

This function is analogous to the Lα,β(p) function commonly used to describe
the running time of factoring algorithms [8]. Recall that

Lα,β(p) = exp
(
β(log p)α(log log p)1−α

)
One can easily see that Tα(p) is slightly smaller than Lα,1(p). We can now state
a special case of Theorem 2.

Corollary 1. Let N = prq be given where p and q are both k bit integers.
Suppose r = (log p)ε for some ε. Then given N and r, a non-trivial integer
factor of N can be found in time

γ · T1−ε(p) = exp
[
(logp)1−ε

] · γ
where γ is polynomial in logN .

334 D. Boneh, G. Durfee, N. Howgrave–Graham

Asymptotic Comparison

Let p, q be k-bit primes, and suppose we are given N = prq. We study the
running time of various algorithms with respect to k and r, and analyze their
behaviors as r goes to infinity. We write r = (log p)ε. The standard running
times [1,7] of several algorithms are summarized in the following table, ignoring
polynomial factors.

Method Asymptotic running time

Lattice Factoring Method exp
�
(log p)1−ε

�

Elliptic Curve Method exp
�
1.414 · (log p)1/2(log log p)1/2

�

Number Field Sieve exp
�
1.902 · (log N)1/3(log log N)2/3

�

Since N = prq and r = kε, we know that

log N = r log p + log q ≥ rk = k1+ε.

Rewriting the above running times in terms of k yields the following list of
asymptotic running times.

Method Asymptotic running time

Lattice Factoring Method exp
�
k1−ε

�
= T1−ε(p)

Elliptic Curve Method exp
�
1.414 · k1/2(log k)1/2

�
> (T1/2(p))

1.414

Number Field Sieve exp
�
1.902 · k(1+ε)/3((1 + ε) log k)2/3

�

> (T(1+ε)/3(p))
1.902

We are particularly interested in the exponential component of the running
times, which is tracked in Figure 3. Notice that when ε = 1

2 , then all three
algorithms run in time close to T1/2(p).

Practical Comparison to ECM

Of particular interest in Figure 3 is the point at r =
√

log p (i.e. ε = 1
2
), where

ECM, LFM, and NFS have similar asymptotic running times. We refer the reader
to Figure 2 for the sample running times with the lattice factoring method on
similar inputs.

Since some of the larger integers that we are attempting to factor exceed 1000
bits, it is unlikely that current implementations of the Number Field Sieve will
perform efficiently. This leaves only the Elliptic Curve Method for a practical
comparison. Below, we reproduce a table of some example running times [19,15]
for factorizations performed by ECM.

size of p running time with r = 1 predicted run time for large r

64 bits 53 seconds r = 8 : 848 seconds
96 bits 2 hours r = 9 : 50 hours
128 bits 231 hours r = 10 : 7000 hours

Factoring N = prq for Large r 335

value r for which N = prq

running
time

Lattice Factoring Method
Elliptic Curve Method

Number Field Sieve

1
√

log p log p
T0(p)

T1/3(p)

T1/2(p)

T2/3(p)

T1(p)exponential
time

polynomial
time

Comparison of subexponential running times of current factoring methods as a
function of r. Both axes are logarithmic, and polynomial time factors are suppressed.

Fig. 3. Asymptotic comparison the lattice factoring method with ECM and NFS

Clearly, the Elliptic Curve Method easily beats the lattice factoring method for
small integers. However, LFM scales polynomially while ECM scales exponen-
tially. Based on the two tables above we conjecture that the point at which our
method will be faster than ECM in practice is for N = prq where p and q are
somewhere around 400 bits and r ≈ 20.

6 An Application to Integers of the Form N = p2q

Throughout this section we assume that p and q are two primes of the same size.
Lemma 1 can be used to obtain results on “factoring with a hint” for integers of
the form N = prq for small r. Coppersmith’s results [2] show that when N = pq
a hint containing half the bits of p is sufficient to factor N . When r = 1, Lemma 1
reduces to the same result. However, when r = 2, i.e. N = p2q, the lemma shows
that only a third of the bits of p are required to factor N . In other words, the
hint need only be of the size of N1/9. Hence, moduli of the form N = p2q are
more susceptible to attacks (or designs) that leak bits of p.

7 Conclusions

We showed that for cryptographic applications, integers of the form N = prq
should be used with care. In particular, we showed that the problem of factoring
such N becomes easier as r get bigger. For example, when r = ε log p for a fixed
constant ε > 0 the modulus N can be factored in polynomial time. Hence, if p
and q are k bit primes, the modulus N = pkq can be factored by a polynomial
time algorithm. Even when r ≈ √

logp such moduli can be factored in time that

336 D. Boneh, G. Durfee, N. Howgrave–Graham

is asymptotically faster than the best current methods. Our results say very little
about the case of small r, e.g. when N = p2q.

Our experiments show that when the factors p and q are small (e.g. under 100
bits) the algorithm is impractical and cannot compete with the ECM. However,
the algorithm scales better; we conjecture that as soon as p and q exceed 400
bits each, it performs better than ECM when r is sufficiently large.

Surprisingly, our results do not seem to follow directly from Coppersmith’s
results on finding small roots of bivariate polynomials over the integers. Instead,
we extend an alternate technique due to Howgrave-Graham. It is instructive
to compare our results to the case of unbalanced RSA where N = pq is the
product of two primes of different size, say p is much larger than q. Suppose p is
a prime on the order of qs. Then, the larger s is, the more bits of q are needed
to efficiently factor N . In contrast, we showed that when N = prq, the larger r
is, the fewer bits of p are needed.

One drawback of the lattice factoring method is that for each guess of the
most significant bits of p, the LLL algorithm has to be used to reduce the re-
sulting lattice. It is an interesting open problem to devise a method that will
enable us to run LLL once and test multiple guesses for the MSBs of p. This will
significantly improve the algorithm’s running time. A solution will be analogous
to techniques that enable one to try multiple elliptic curves at once in the ECM.
Another question is to generalize the LFM to integers of the form N = prqs

where r and s are approximately the same size.

Acknowledgments

We thank Paul Zimmermann, Peter Montgomery and Bob Silverman for sup-
plying the running times for ECM, and Don Coppersmith for several useful
conversations.

References

1. D. Coppersmith, “Modifications to the number field sieve”, J. of Cryptology,
Vol. 6, pp. 169–180, 1993.

2. D. Coppersmith, “Small solutions to polynomial equations, and low exponent
RSA vulnerabilities”, J. of Cryptology, Vol. 10, pp. 233–260, 1997.

3. A. Fujioke, T. Okamoto, S. Miyaguchi, “ESIGN: an efficient digital signature
implementation for smartcards”, In. proc. Eurocrypt ’91, pp. 446–457, 1991.

4. J. Hastad, “Solving simultaneous modular equations of low degree”, SIAM J.
of Computing, Vol. 17, No. 2, pp. 336–341, 1988.

5. N. Howgrave-Graham, “Finding small roots of univariate modular equations
revisited”, Proc. of Cryptography and Coding, LNCS 1355, Springer-Verlag,
1997, pp. 131–142.

6. N. Howgrave-Graham, “Extending LLL to Gaussian integers”, Unpublished
Manuscript, March 1998. http://www.bath.ac.uk/~mapnahg/pub/gauss.ps

7. A. Lenstra, H.W. Lenstra Jr., “Algorithms in Number Theory”, in Handbook
of Theoretical Computer Science (Volume A: Algorithms and Complexity), ch.
12, pp. 673–715, 1990.

Factoring N = prq for Large r 337

8. A. Lenstra, H.W. Lenstra Jr., “The development of the number field sieve”,
Lecture Notes in Mathematics, Vol. 1554, Springer-Verlag, 1994.

9. A. Lenstra, H.W. Lenstra Jr., and L. Lovasz, “Factoring polynomial with ra-
tional coefficients”, Mathematiche Annalen, 261:515–534, 1982.

10. H.W. Lenstra Jr., “Factoring integers with elliptic curves”, Annuals of Math-
ematics, 126:649-673, 1987.

11. L. Lovasz, “An algorithmic theory of numbers, graphs and convexity”, SIAM
lecture series, Vol. 50, 1986.

12. T. Okamoto, S. Uchiyama, “A new public key cryptosystem as secure as fac-
toring”, in Proc. Eurocrypt ’98, pp. 310–318, 1998.

13. R. Peralta, T. Okamoto, “Faster factoring of integers of special form”, IEICE
Trans. Fundamentals, Vol. E79-A, No. 4, pp. 489–493, 1996.

14. J.J. Quisquater and C. Couvreur, “Fast deciperhment algorithm for RSA
public-key cryptosystem”, Electronic Letters, 18(21), pp. 905–907, 1982.

15. R. Silverman, Wagstaff Jr., “A Practical analysis of the elliptic curve factoring
algorithm”, Math. Comp. Vol 61, 1993.

16. A. Shamir, “RSA for Paranoids”, RSA Laboratories’ CryptoBytes, vol. 1, no.
3, pp. 1–4, 1995.

17. V. Shoup, Number Theory Library (NTL),
http://www.cs.wisc.edu/~shoup/ntl.

18. T. Takagi, “Fast RSA-type cryptosystem modulo pkq”, in Proc. Crypto ’98,
pp. 318–326, 1998.

19. P. Zimmerman, private communications.

	Introduction
	Lattices
	Factoring $N=p^rq$
	Implementation and Experiments
	Comparison to Other Factoring Methods
	An Application to Integers of the Form $N=p^2 q$
	Conclusions

