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s-rg 
An important area of research in cryptography is the design of protocols for cawing on certain 

uansactions in a communications network, such as playing poker or holding an election. Many of the 
pr~tocols proposed in this area have required the expensive on-line generation of a large number of new 
keys. On the other hand, fundamental research in the traditional problems of cryptography, such as 
encryption and authentication, has developed the public-key model, in which each user has a single 
validated public key. This model is appropriate to those situations in which generation and validation of 
new keys is very costly or is othewise limited. Procedures proposed for this model must preserve the 
d t y  of the keys. An important question is whether flexible protocol design for a wide variety of 
problems is possible within the public-key model, so that the expense of generating new keys can be 
minimized. 

We identify a broad class of multi-party cryptographic computation prob lem,  including problems 
subject to the partial-information constraints of the "mental games" of Goldreich, Micali, and Wigderson 
[24]. In order to solve any cryptographic computation problem, we develop new techniques that can be 

implemented efficiently in the public-key model. By contrast, the constructions of [42] and [241. which 
wen the first to realize general protocol design in the sense of this paper, require on-line generation of 
many cryptographic keys. We also consider the the temporal constraint that certain computations occur 
simultaneously. We formalize this as the problem of multi-party synchronous computation and give a 
solution; it was only recently solved by Yao for the case of two parties[42]. Our tools are 
minimwn-hauledge protocols, assuring not only the privacy and synchrony of their computational results 
but also the security of the users' cryptographic keys. 

Much current research has been devoted to fault-tolerance in distributed computation, especially in the 
cryptographic context. None of the fault-tolerance models presented so far has adequately captured the 
tradeoff between fault-recovery capabilities and maintenance of security; nor do they describe 
cornputation in an unreliable communications environment. We introduce a new fault model that allows a 
more realistic analysis of faulty behavior. We show how to automatically augment any protocol with 
pmcedures for recovery from different kinds of faults. These fault-recovery procedures are implemented 
in the public-key model, and they enable secure recovery from violation failures in such a way as to 
preserve the security and privacy of all users, including failing processors. 
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1. Introduction 
Recent work in theoretical cryptography has made great progress toward devising general procedures 

for solving protocol problems [40,23,42.24]. On the other hand, fundamental research in the traditional 
problems of cryptography, such as encryption and authentication, has developed the public-key model, in 
which each user has a validated public encryption key and a wrresponding private decryption key. In 
designing a public-key system, the cryptographer must be concerned with the security of encrypted 
messages, as well as the security of users' keys. For example, recent work on probabilistic encryption 
schemes [25,7], as well as the work of Goldwasser, M i d ,  and Rackoff on "zero-knowledge" 
interactions [26], were motivated by these security issues. In the public-key model, there is an 
initialization stage during which each user generates a pair of encryption and decryption keys, announces 
his public key, and validates it by proving that it was properly chosen. Thereafter, as many cryptographic 
procedures as possible should be carried out using these keys; the procedures performed by the system 
must guarantee the security of these keys throughout its lifetime. 

It can be quite expensive to generate and validate cryptographic keys. First, if good keys occur 
sparsely in the set of smngs of each length, then generating one at random takes a long time. Second, in 
certain situations it may not be desirable or possible for every processor in a network to have to generate 
its own key; for example, some of the processors may be independent robots that are provided with 
built-in keys. Third, as shown recently by Chor and Rabin [12], the process by which a group of users 
validate their public keys can be the bottleneck in a multi-party protocol. In light of this, it is 
inconvenient that recent developments in cryptographic techniques for general design of protocols have 
made extensive use of on-line generation of encryption keys; over and over again, 'few keys are 
generated, used once, and then discarded [13.23,42,24]. While this method allows one to prove the 
cryptographic security of the proposed procedures, it is wasteful of computational resources. Therefore, 
for both the theoretical and the practical cryptographer, it is important to h o w  how much can be achieved 
employing only the users' public keys, and exactly when it is necessary to generate new cryptographic 
keys. The present work identifies a broad class of multi-party cryptographic problems that can be solved 
within the public-key model, minimizing the cryptographic resources used in solving them. 

Cryptographic protocols are used to solve problems that involve hiding information 
[37,25, 14,5,20, 19,40,24] and forcing certain computations to occur simultaneously 
[32,9,39,28,4, 17,421. The requirements that individual votes in an election protocol remain private, 

or that cards drawn from the deck in a poker protocol remain private, are examples of pardal-information 
constraints, while exchange of secrets and signing of contracts are examples of problems subject to 
temporal constraints. We identify a broad class of multi-party problems called cryptographic 
computation problems. This class includes the "mental games" of Goldreich, Micali, and Wigderson [24l, 
which are computations subject to certain partial-information constraints, as well as problems subject to 
temporal constraints of synchrony. We define multi-party synchronous computation and give a general 
solution for any computational problem; it was recently solved by Yao for the case of two parties [421. 

By a "general solution'' to a class of cryptographic computation problems, we mean the following. 
Given a formal specification of one of these problems, we provide an automatic translation into a multi- 
party protocol which is correct, and which satisfies the given partial-information and temporal constraints. 
In order to do this efficiently, we develop new encryption-based techniques. Our mnsmctions are 
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minimum-knowledge protocols that can be implemented efficiently in the public-key model, using public 
keys that may be based on any family of one-way trapdoor functions. For certain synchronous 
cornputation problems, the uses may need to cooperate to generate a single additional cryptographic key; 
for all other cryptographic computation problems, our constructions use only the originally announced 
public keys of the system. Our minimum-knowledge procedures assure not only the privacy and 
synchrony of their computational results but also the security of the users’ public keys, even after the 
execution of polynomially many protocols. 

If we assume that the Diffie-Hellman key-exchange protocol (based on the discrete logarithm) is secure 
1161, then we can implement our constructions by simulating the public-key model with only one key in 
the entire network 

Here is an example of the sort of problem for which our techniques can construct a promo1 solution (a 
variation on Yao’s millionaires problem [40]): Suppose that a large group of millionaires wish to 

compute the subset consisting of the one hundred wealthiest among them; the one hundred names that 
make up this club should only be known to its members and not to the others, and the actual worth of 
each millionaire should remain secret to everyone. Furthermore, the members of this secret club also 
wish to generate a common Secret encryption key while keeping the anonymity of its owners. 

Continuing our study of cryptographic computation, we investigate fudt-tolerance in the context of 
cryptographic protocol design. We begin by examining recent work in this area, and observe that none Of 

the models presented so far adequately captures the consequences of users’ faulty behavior [13,23,241. 
The difficulty seems to be- that previous models use the notion of faulty behavior that arose in research on 
the problem of Byzantine agreement. In that domain, a faulty user may attempt to frustrate correct 
performance by sending different messages to different users, while remaining undetected. In 
C~ptographic protocols, on the other hand, encrypted messages are assumed to be available to all parties. 
New developments of cryptographic techniques, such as the fact that every NP language has a zero- 
knowledge interactive proof-system [23], make it possible to design validated protocols in which each 
message is accompanied by an interactive proof that it has indeed been computed correctly. During the 
execution of a validated protocol, “Byzantine” behavior will te detected (with overwhelming probability) 
if it is present; thus, it is no longer necessarily the major concern of the protocol designer. 

The previous models assumed that all violations, including stop failures, are performed by a malicious 
adversary; thus the fault-recovery procedures were designed so as to compromise the security of the 
(presumed) violator --- in fact, to make him give up his identity entirely. This has the paradoxical effect 
of turning the honest participants into compromisers. One objection to modeling protocols with such a 
tradeoff between user security and fault-recovery procedures is that these procedures may encourage a 
real-world adversary, who desires to compromise another user’s security, to do this by forcing him to 
commit a fault (for example by cutting his communication lines, causing a stop-failure). A related 
objection is that this approach is unsuitable for describing an unreliable communications environment. 

We introduce a new fault model for cryptographic protocols. Our model allows a more realistic 
analysis of faulty behavior, by introducing the cryptographic adversary as a combination of a 
compromiser and a violator. We show how to automatically augment any protocol with procedures for 
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recovery from faults. These fault-recovery procedures make it possible to continue a protocol in the 
presence of faults as long as there is an honest majority, without changing either the distribution of mults  
computed by the protocol, their privacy, or their synchrony. Furthermore, they enable secure recovery 
from failures in such a way as to preserve the security and privacy of all users, including failing 
 processor^. An important contribution of our new recovery procedures is that they eliminate the security- 
recovery tradeoff of previous work. 

In addition, we present a recovery procedure that enables a violator that stops for a while in the middle 
of a protocol execution to rejoin the protocol later, without disturbing the protocol's computational results 
or their privacy or synchrony constraints. All of our fault-recovery procedures are implemented in the 
public-key model. 

The multi-party computation problems that we discuss in this paper would all be easy to solve if there 
were a trusted party among the users. This pany could receive each user's inputs (encrypted, if 
necessary), compute the outputs according to the problem specification. and distribute the outputs (once 
again encrypted, if necessary) to the appropriate users in such a way as to satisfy the given cryptographic 
constraints, exactly as desired. Because all the computation would be performed by the ideal trusted 
party, it would be easy to handle faulty processors. Our god here, both in our work on techniques for 
cryptographic computation and in our work on fault-tolerance, is to use the complexity-theoretic approach 
to knowledge in order to design protocols that achieve the same ends in a distributed fashion, in the 
absence of such a reliable centralized computer. 

To summarize, the combination of the results presented here gives a general technique for solving a 
large class of distributed problems subject to any combination of partial-information and synchrony 
COnStraints, using as few cryptographic resources as possible, and with a secure mechanism for recovery 
from faults. This suggests what might be called the "trusted-piury methodology" of cryptographic 
protocol design: First design a protocol for the idealized situation in which a single trusted party can 
easily satisfy all the constraints of the problem, and then replace the uusted party with a cryptographic 
computation that simulates it as efficiently as possible. The work of [42,24] can also be viewed in this 
way. 

In the next section, we give the definitions we will use. In section 3 we describe our constructions for 
solving cryptographic computation problems, and in section 4 we present our new fault model and 
describe our fault-recovery procedures. Some of the technical details of our constructions are in the 
appendix. 

2. Background and Definitions 

2.1. The Public-Key Model 
In order to study multi-party protocols, we formalize the inreracting parties as a system of 

communicating probubilisric Turing machines [26,20, 14, 13,5, 241. Every machine has a private input 
tape and a private output tape, a tape of random bits, a working tape. and one public communicauon tape 
for each of the other machines. In addition, in order to model the fact that the system is not memory-less, 
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we assume that each machine has a private history tape on which it records its computation and its 
communication activities. There is a global clock, and the protocol proceeds in rounds; during each 
round every machine reads its communication tapes, performs some polynomial-time computation, 
perhaps using some random bits, and then may write messages on the communication tapes. There is also 
a global parameter giving the size of the computations to be performed and the size of cryptographic keys 
(i.e., the security parameter). We note that the communication scenario described here is a design model 
that can be implemented (using an agreement protocol) on more general point-to-point networks. 

The system has an initialization stage during which each machine Mi (i=l . . . n) announces its 
probabilistic encryption key E,; it  is able to decrypt messages encoded using this key. (This is the setting 
for the original public-key cryptosystems of [16,35,341, which used deterministic encryption functions, 
and of [25], which introduced probabilistic encryption.) We assume that the keys are based on one-way 
trapdoor functions drawn from the same distribution, and that these functions are uniformly intractable to 
inven. In addition, the initialization protocol includes a validation of the keys 1121. We will call th is  the 
public-key model; the model can be implemented under the general assumption that one-way trapdoor 
functions exist. Protocols for this model should preserve the security of the cryptographic keys 
throughout the lifetime of the system. 

By an n-party protocol we will mean an n-tuple M = ( M l ,  . . . ,MJ of such machines. Given the set of 
keys E l , .  . . ,En, the global input and its local inpuc each machine halts in time polynomial in the global 
parameter with an output smng on its output tape, and a string of global output. 

For certain applications we extend the model, and specify that the n machines cooperate in order to 
generate an additional probabilistic encryption key E, in such a way that no machine (in fact, no colluding 
collection of n-1 of the machines) knows the corresponding trapdoor information that enables decryption. 
(In Section 3.2 below we explain how this is done). 

2.2. Computationat Problems 
We are concerned with computational problems as formalized by Yao [42] in the following way. Let 

Z- {O,  1). If k is the global parameter, then we will have inputs (io, i,, . . . , in) distributed according to a 
probability distribution fk over (Z*)n+'. A problem is specified by requiring that the outputs 
(oo,ol, . . . ;on) be distributed according t~ another probability dismbution Ok(io,il, . . . ,in). For example, 
the special case in which oj -f;(io, i,, , . . , in) with probability 1 describes in this framework the problem of 
computing n+l specified functions of the inputs. Since we are interested in feasible computation, we 
assume that both the input distributions { Ik} and the output distributions { Ok} form polynomial-time 
computable ensembles [41]. Briefly, we will speak of the computational problem [Ik,O0,]. Wirhout loss 
Of generality (see [33]), the computational problems are given in the form of a probabilistic circuit that 
computes the desired input-output distribution. 
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2.3. Protocols and Their Properties 
Our aim is to design an n-party protocol M - ( M I ,  . . , ,Me)  for a computational problem [I,,O,], where 

El ,  .... E,, are the given cryptographic keys. The protocol realizes [Ik, OJ in a distributed fashion. where i,, 
is the public input, f. is tht input of Mj, and similarly oo is the public output and oj is the output computed 
by My The protocols we design must preserve the security of the keys. 

Distributed solutions to a given problem may be subject to cryptographic constraints. For example, we 
may require that the computation be performed in such a way that certain information remain hidden. 
Golh ich ,  Micali, and Wigderson called such problems partial-i$ormarion games (or "mental games") 
[24]. In particular, we may i n d u c e  privacy constraints on inputs, outputs, and intermediate 

computational results. For example, this may take the form of an anonymity constraint on the identity of 
the intended recipient of a computed result. Below we formalize these constraints by defining 
minimum-knowledge protocols. 

Another constraint we may impose is that of synchrony, the requirement that different parries' outputs 
be computed simultaneously. We remark that the mathematical study of synchrony was initiated in 
computer science, particularly in the field of distributed computing. Any multi-party computation can be 
viewed as a competition in which each participant &ies to obtain a result significantly earlier than the 
others; a synchronous protocol is one that prevents anyone from winning. Yao recently proposed a 
careful definition of the problem of synchronous computation in the case of two parties (calling it the 
"fairness" constraint), and gave a general solution. Below we give the first solution for the multi-party 
case. 

We define a cryptographic computation problem as a composition of one or more computational 
problems (of the form [I,OJ), subject to any combination of partial-information and synchrony 
constraints. The problem described above in the introduction is one example. Here arc two more: 

1. Assume that the users of a cryptographic system, each with a private- source of randomness, 
wish to draw public encryption keys at random from a common distribution, one key per 
user. The parties must somehow combine their private random bits in order to choose their 
respective keys; however, each trapdoor decryption key chosen should be known only to its 
owner. 

2. suppose in addition that each of these n usem is the representative of a mUln-MtiOMl 
corporation, and possesses as input data the annual sales and annual income of the company 
that he or she represents. While desiring to keep their companies' figures secret, the 
representatives wish to make a certain economic calculation using the data from all n 
companies. In order to prevent any one representative from computing this output before 
the others (and then using it in the stock market), they want everybody to learn the result at 
the same time. 

The first problem combines a privacy constraint on the inputs with a privacy constraint on the n-tuple 
of private decryption keys; the public output is the list of n encryption keys. The second problem is an 
example of a sychronous computation with input privacy constraints. The problem in the introduction is 
an example of a computation with an anonymity constraint. 

Next, we sketch our definitions that a protocol is correct, and that it satisfies privacy and synchrony 
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constraints. We will formalize these definitions in the full version of this paper. 

The definition of correctness is fairly straightforward. A protocol M is a correcf solution for the 
problem [ I ,  O,] if with very high probability its outputs are indeed dismbuted according to 0, when the 
input dismbution is I f  It is helpful to think of this as an n-party simulation of the situation in which there 
is a trusted party that can compute the desired output distribution 0, in a centralized fashion. 

During the execution of a protocol M, we will say that a message p sent by party j is admissible if it 
appears to be appropriate to the specified protocol, i.e. if it seems to be that of the specified machine M,. 
(We will formalize this notion of "admissibility" in the full paper.) Temporarily, until we deal with 
fault-tolerant issues, we assume that a non-admissible message stops the protocol. 

Goldreich, Micali, and Wigderson proved that, under the assumption that one-way functions exist, 
every language in NP has a zero-knowledge protocol for proving membership. This fact has important 
consequences for the design of protocols [23]. It enables on-line validation that a protocol is being 
executed correctly. Each message transmission is followed by an interactive proof to all parties that it is 
indeed a correct message; an incorrect message will be caught with very high probability. This validation 
can be most efficiently performed by a direct minimum-knowledge simulation of the computation that 
produced the message, following the construction of [29]. We call such a protocol a validared protocol. 
Our protocols will be validated ones. 

A correct validated protocol is one that achieves the computational task that is its goal. Next we deal 
with controlling the knowledge revealed to the participants in a protocol; we give our definitions that 
capture those protocols that achieve only the specified task and nothing more. 

In order to describe the cryptographic constraints precisely, one might ny to give a formal definition of 
u s e d  changing "knowledge states" during the course of a protocol execution [15]. Instead, we take a 
computational approach to knowledge and consider certain objects that are theoretically more tractable 
than knowledge states, namely the sets of strings that may appear on the various tapes of the n Turing 
machines [26,20,42,23]. We assume that the reader is familiar with the notion of polynomial-time 
indistinguishable ensembles of strings [25,41,26]. 

In order to define the minimum-knowledge and synchrony properties of a protocol M = ( M , ,  . . . ,Mn), 
we must consider the possibility that several of the n parties may collude with each other. Colluding 
parties jl, . . . ,jc are able to communicate with each other through private channels --- in particular, they 
can share their inputs i. i .  and their decryption keys. They may follow any (feasible) programs 

M .  ', . . . ,M. ', and the protocol continues as long as the messages they send are admissible. Groups of 

colluding parties may be created dynamically. 

J l '  . . . ' I ,  

Jl JC 

Given a protocol M ,  consider a set of c colluding parties j l ,  . . . , j,. We desire that they should gain no 
more information from the messages sent during an execution of the protocol --- e.g. information that can 
confer a computational advantage in guessing the input or output or compromising the encryption key of 
another machine that is following the protocol --- than they would learn simply by consulting a result 
orucle (which knows all the inputs i,, . . . ,in and has access to the colluding machines) to obtain their 
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output values oil,. . . ,o. . We call a protocol minimum-knowledge with respect to c(n)-subsets if it 

satisfies this requirement with respect to every possible dynamically chosen subset containing as many as 
c(n) of the machines. Of c o m e ,  the strongest possible requirement is that c(n)- n-I. 

' c  

We formalize the definition of the minimum-knowledge property by stipulating that for any subset of 
possibly colluding machines, there should exist a probabilistic polymmial-time simulator S. as follows. 
Given access to the internal state and all the tapes of the colluders, and allowed queries to the result oracle 
for the colluding machines' outputs, S produces a simulation of the colludes' views of an actual 
execution of the protocol. (Each machine's view, recorded on its history tape, includes all messages sent 
during the execution and rfie random-tape bits it has used in its own computation, as well as any privately 
computed outputs.) The simulation should be indistinguishable, by any feasible computation that may 
use the colluders as subroutines, from a transcript of the colludes' views of an actual execution. This 
definition generalizes the notions of "minimum-knowledge" and "result-indistinguishable" protocols that 
transfer computational knowledge [26,20] to the case of n-party dism3uted computation. 

It is a consequence of this definition that if a protocol M is minimum-knowledge, then the security (in 
the sense of [25]) of the key Ej of any non-colluding machine M, is not compromised by the protocol. 

AS in the case of two-party minimum-knowledge protocols [20], it is crucial to our proofs of the 
theorems in this paper that if two multi-party protocols are both minimum-knowledge, then so is their 
concatenation. We will give a proof of this concatenation lemma in the full paper. 

Next we define synchrony for a protocol M. Once again, consider a set of c colluding parties. We 
desire that at any moment the colluders can gain no more computational advantage over any other 
machine in computing the outputs than they already have simply by knowing their inputs. A protocol will 
be called synchronous with respecr to c(n)-subsers if it satisfies this requirement with respect to every 
subset containing as many as c(n) of the machines. 

More precisely, at any fixed time during the protocol execution, consider the problem of distinguishing 
which of two given strings (drawn from the space of possible computed outputs defined according to a 
priori knowledge of the inputs) will turn out to be the actual result of the computation. The protocol 
achieves synchrony if the colluders' best distinguishing probability ktween two different smngs in their 
result-space is essentially the same as the best distinguishing probability for any non-colluding user. 

3. General Protocol Design 
In this section we present a general technique for constructing a protocol solution to any cryptographic 

computation problem in the public-key model. Given a circuit for the computational problem [I,, U,] and 
a set of cryptographic constraints that the solution must satisfy, we construct a protocol solution. The 
technical tool we introduce is an encryption-based circuit simulation, motivated by the recent work of 
Yao [42] and Goldreich, Mcali, and Wigderson [24] on protocol design, and by the security provided by 
probabilistic cryptosystems [25,41, 8,71. 

We state here the main result of this section. 
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Theorem 1: Given a set of polynomially many n-party cryptographic computational 
problems, there is a correct polynomial-size minimum-knowledge protocol solution. The 
protocol uses only the public keys E ,  ,...,En, if there are no synchrony constraints among the 
given computational problems. 

Our proof is a constructive one, automatically translating the given problems to a solution protocol. 
Below we present our techniques. 

3.1. Two-Party Computation 
First we consider the case of two parties, A and B. We are given a circuit that has output distribution 

Ok(iA,iB) when its input (iA&) is distributed according to I, For simplicity, suppose that 0, is the desired 
o u t p t  for B. We describe here a minimum-knowledge two-party protocol that simulates the given 
circuit. We contrast our solution for the public-key model with the protocol solution of Yao [42], which 
required the on-line generation of O(C) cryptographic keys for a circuit of size C. 

Our construction uses probabilistic encryption and cryptographically secure pseudo-random bit 
generators based on the users' public keys [6,41,31]. (See also [30,10,8,2,7,38,21].) If we make the 
special assumption that the Diffie-Hellman key-exchange protocol (based on the discrete logarithm) is 
secure [16], then we can also implement all of our constructions by simulating the public-key model with 
only one key in the entire network. 

"he protocol has several stages. During the first stage one of the parties, the circuit-constructor A, 
prepares an encryption-based circuit-simulation for the use of the oher  party, the circuit-evaluator B. B 
then verifies that A's construction is as specified in the computation problem. Next, A and B combine 
their inputs in such a way that they remain secret, and finally B evaluates the output. 

A uses his probabilistic encryption key to construct the circuit-simulation, and uses a minimum- 
knowledge proof to validate the construction. The simulation protocol proceeds by simulating the gates 
of the given circuit. The protocol consists of three kinds of (simulated) gates: input gates, intermediate 
gates and output gates. Each gate has entries for input and output, and a "truth table" that maps the values 
of the input envies to the output entries. An entq, representing a bit in the computation, consists of two 
random bit-string cleanexts, one for each possible value of the bit; the entry is presented to B as the pair 
of encoded ciphertexrs of the two cleartexts. A valued entry is one whose cleartexts have low-order bit 
(for example) equal to the bit represented. An entry may be either ordered, in which case the two 
cleartexts represent 0, 1 (in that order), or unordered, in which case they represent either 0, 1 or 1, 0 (at 
random). An entry may also be marked each of the ciphertexts is tagged with a probabilistic encryption 
of the bit that it represents. 

The inputs to the simulation are the input entries of the input gates. A's input enmes, corresponding to 
the bits of iA, are unordered and marked, while those of 5, corresponding to the bits of iB, are ordered and 
unmarked. The truth table of every gate consists of "rows", each of which enables the evaluator to 
combine one cleartext of each of the gate's input enmes in order to obtain the cleartext of an output enny; 
the rows of the tmth table are permuted at random. The output of each input or intermediate gate 
"connects" to the input of the next gate in the circuit, because the first gate's output entry enables 5 to 
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decrypt one of the inputentry ciphertexts of the next gate. These intermediate enmes of the circuit are 
unmarked and unordered. The output gates of the circuit have output enmes that are valued. 

B uses the circuit-simulation in three stages: an input stage, a computation stage, and an output stage. 
During the input stage B gets his input --- is . ,  receives from A the cleanext corresponding to each of his 
input bits --- by the generalized oblivious transfer protocol [24]. (This is an extension of the oblivious 
trunsfer [27,191 that can be implemented in the public-key model. It provably assures that B receives just 
one of the two cleartexts, according to his choice, while A does not learn which one is transferred). In 
case an encryption of the input bit is publicized by B in advance, B also interactively proves that he has 
received the correct cleartext. Then A does the following for each of his (unordered) input enmes: 
without revealing its tag, he sends B the cleartext that represents the value of his input bit. (Thus B does 
not learn what this value is.) In case an encryption of the input bit is known, A also proves to B tha: he 
sent the correct cleartext 

Once he has a cleartext for each of a gate’s input entries, B computes a cleartext for that gate’s output 
entry according to the truth table. (We sketch the details of the rmth table in appendix I.) Since this 
output entry is not ordered, B cannot tell what bit-value this cleartext represents. Using the “connections” 
between gates, B then continues through the circuit, computing output cleartexts for the intermediate gates 
and, finally, for the output gates of the circuit. Since these, the output entries of the circuit, are valued, B 
learns the values of the output bits, i.e. the result of the required computation. If desired --- i.e. if 0, is 
the desired output for A as well as for B --- B can now tell the result to A, and convince him of the value 
of each output bit by revealing the corresponding cleartext he computed. The entire interaction is 
minimum-howledge: neither A nor B learns more about the other’s inputs, or about the others’ 
decryption key, than they would if an oracle simply told them the output. (More formally, in the actual 
computation each party “learns” only random values; given the output by an oracle, each of them could 
generate a simulated protocol transcript that is polynomial-time indistinguishable from an actual one.) 

Further technical details of our construction are described in appendix I. 

3.2. Multi-Party Computation 
Now we consider the general case of n parties. Given a circuit for an n-party computational problem, 

the above construction for two parties can be used as a basic step in order to give an n-party minimum- 
knowledge protocol that simulates the circuit. We contrast our solution for the public-key model with the 
protocol solution of 1241, which required the on-line generation of O ( d C )  cryptographic keys for a 
circuit of size C. 

At any point during the course of the circuit-simulation, each bit b in the simulated computation is 
shared by the n parties: each party holds a secret share of the global bit, but this share is random and 
gives no information about the global value. Each gate of the simulated circuit is replaced by an n - p q  
computation whose inputs are the n-tuples of shares of the gate’s inputs, and whose outputs form a similar 
distribution of n shares of the gate’s output. This n-party computation consists of ~(n-1) tw0-p- 
interactions as above. 

The construction of [24] uses Bamngton’s encoding of circuits with elements of the permutation group 
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S, [3]. Each user's share of a globally distributed bit is a permutation, and two-party circuits of YaO 
[42] are used in order to "compute" with these permutations. In joint work with Silvio Mcali, we 

simplify the representation and manipulation of distributed shares. The simplification is that each user's 

share of b is simply a random bit bj satisfying b - xTm1 bj (mod 2). We show how to compute with these 
shares, by making some simple bitcomputations, in appendix II. . 

Continuing the work described above, several authors have recently proposed protocols for different 
sorts of circuit simulation, basing their cryptographic securicy on certain complexity-theoretic 
assumptions [22, 1, 111. 

3.3. Synchronous Computations 

synchrony constraint. 
Given a circuit C for an n-party computational problem, we give a protocol solution that satisfies the 

YaO gave a protocol for synchronous two-party computation [42]. As in the construction of section 3.1 
(which was motivated by his work), the two parties have asymmetric roles in his protocol; one party 
" c o n s ~ ~ c t s "  the. circuit simulation, while the other party "evaluates" it. In order that the computation be 
synchronous, Yao proposes the following: first, the two parties together generate a trapdoor function 
whose secret trapdoor they do not know; next, they use this function to encrypt their computational 
results; and finally, they cooperate to recover the trapdoor simultaneously. 

In order to implement multi-party synchronous computation, the n parties jointly generate a random 
cryptographic key E, that will be used in order to hide the computational results, in such a way that all n 
parties must cooperate in order to recover them. At any point in the recovery process, all parties have 
equal computational advantage in computing the desired result. We describe the details of our solution in 
the full paper. 

4. Fault-Tolerance 
When we introduce faults to our model of computation we complicate the protocol-designer's task: 

users may not follow.their instructions, they may try to extract additional information from the messages 
sent during the execution, or they may completely stop functioning. Up to this point, we have assumed 
that all parties behave admissibly, and otherwise the protocol stops; thus the correct completion of the 
protocols we have described depends on this assumption. Where it is possible, we would like to augment 
our protocols with the capability to detect and recover from faulty behavior. Recent work [13,23,241 has 
dealt with this problem. In this section we give a careful analysis of faulty behavior in the context of 
cryptographic protocols, and present new protocols procedures for recovery from faults. 

An important tool for fault-tolerant protocol design is that of verifiable secret-sharing [13, 361. A 
verifiable secret-sharing protocol with parameters (m,r) is a procedure by which a sender can distribute to 

each of rn receivers a share of a given secret s, in such a way that it is easy to verify that each share is 
indeed a proper share, it is infeasible to obtain any information about s from any 1 of the shares, as long as 
l<t, and it is easy to compute s from any t of the shares. A protocol that achieves this can be given (for 
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any t S n ) .  

Using verifiable secret sharing, Goldreich, Micali, and Wigderson devised a procedure that transforms 
any given protocol into a validated protocol tolerating up to r(n) faults, where r=L(n-1)/21 Faulty 
processors may deviate from their specified algorithms in any arbitmy but feasibly computable way. 
Here we sketch their transformation. Let h-n-r. The transformed protocol begins with a set-up phase 
during which each processor (n-1.h)-verifiably secret-shares its input and its random tape. Until this 
phase is over, the protocol is vulnerable to faults; the only way to continue the protocol is by r e s t a d g  
the set-up procedure. When a fault is detected during the execution of the transformed protocol, the 
faulty processor loses its identity completely: the honest usem use their secret-shares to reconstruct its 
input and random tape, and then simulate its role throughout the rest of the protocol. The transformation 
is Correcfness-preseTving, in that honest parties compute the same outputs as in the original protocol; and 
it is privacy-preserving, in that whatever a t(n)-bounded adversary can compute in the transformed 
protocol, he could also have computed in the original one [23,24]. If the original protocol is minimum- 
knowledge with respect to c-subsets, for any c c h ,  then so is the transformed protocol. 

Notice that in the procedure just outlined, a faulty user is always severely punished; its input is 
compromised, even if its violation was an unintentional stopfailure caused, for example, by an 
undelivered message. The procedure is based on the pessimistic assumption that all faults are malicious 
ones, which only holds in a fully reliable communications environment The notion of faulty behavior 
implicit in this assumption coincides with that of research in Byzantine agreement. In that domain faulty 
behavior is undetected. and messages are private. In cryptographic protocols, on the other hand, 
encrypted messages are assumed to be available to all parties. Furthermore, during the execution of a 
validated cryptographic protocol "Byzantine" behavior is detected (with overwhelming probability) 
whenever it occurs. Since all players know this is true, in practice it may be the case that most faults will 
be unintentional. Paradoxically, the transformation of Goldreich, Micali, and Wigderson turns the honest 
majority into compromisers. Here we present a more realistic analysis of possible faulty behaviors, and 
describe a new fault-recovery procedure that avoids imposing on inadvertently faulty processors the 
heavy penalty demanded by their procedure. 

4.1. New Fault Model 
The first question one must ask is when it is possible for a protocol to recover even from a single fault. 

If the protocol is to continue after a violation, then any recovery procedure must confer on the honest 
users that detect the faulty processor the power to act on its behalf in the continuation of the protocol. But 
there are protocols --- e.g. poker-playing, stock transactions --- in which we don't want to recover in this 
way; even if a user (perhaps inadvertently) times out of today's transactions, he may want to play cards 
(or buy stocks) tomorrow, using the same secret card-playing (or stock-market) strategy. This strategy is 
a part of the processor's program that should never be shared with others. It is only in the case Of 

protocols in which each processor's entire program is publicly known that it makes sense to look for 
recovery procedures. For the rest of this paper, we assume that all protocols are of 011s form. 

We begin by distinguishing between two different sorts of faulty behavior: passive compromise, by 
which we mean the attempt to exmact secret information while seeming to act according to the protocol, 
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and active violation, intentional or unintentional, of the protocol's instructions. such as by sending 
erroneous (Byzantine) messages or by stopfailure. We model these two kinds of faults by speaking of an 
adversary who is able to Corrupt a bounded number of the processors. The adversary may, at any time 
during the execution of our p r o w l ,  choose a processor to compromise, until he has chosen c(n)  
compromisers; he has access to the internal state and all the tapes of each of the compromisers, and he 
may perform any (feasible) computation with this information. Compromising behavior is, by definition, 
undetectable by an honest user, the most that we may demand is tha~ the protocol be designed so that 
compromisers cannot gain anything from the information that h y  share. In fact, a protocol that is 
minimum-knowledge with respect to c(n)-subsets can tolerate a c(n)-bounded compromising adversary. 
The adversary may also choose up to v(n) violators; at any point during the execution, he may block the 
messages sent by any of the violators or over-write them with messages of his choice. From the point of 
view of an honest processor, violating behavior is of two sorts: stopfailure, which is detectable when the 
violator times out (according to the global clock) and fails to send an expected message during a round of 
the protocol; and sending erroneous messages, which will be detected (with very high probability) if our 
protocol is a validated one. It can happen that a processor can be both a compromiser and a violator; this 
situation can model what the authors of [24] call a "malicious adversary", which is the strongest form of 
adversarial behavior. However, we do not assume that every fault must be malicious. 

TO fix notation, let h(n) =n-c(n)-v(n) denote the minimum number of honest processors, those that are 
neither compromisers nor violators. 

4.2. Fault-Recovery Procedures 
We suggest a new protocol transformation that fits the more realistic fault model just described. The 

transformed protocol preserves the privacy of all inputs, including those of a violator, and can be 
implemented in the public-key model. More precisely, the transformation is discretion-preserving: 
during an execution of thc transformed protocol an honest user computes no more about the input of any 
other user, including violators, than he computes in the original protocol. Funhermore, we give a rejoin 
procedure by which a disqualified faulty machine may rejoin the protocol execution in order to obtain its 
computed outputs, without disturbing the original protocol's computational results or the cryptographic 
constraints they satisfy. 

Here we state the main result of this section. 

Theorem 2: Any n-party protocol may be transformed into a validated protocol that is secure 
against c(n) compromisers and tolerates v(n)  (disqualified and rejoining) violators, as long as 
v (n)+c (n)S* l ;  the maasformation is of polynomial cost, and is correctness-preserving, 
privacy-preserving, and discretion-preserving. 

The transformed protocol begins with a ser-up phase, during which processors' inputs are distributed 
(by verifiable secret-sharing); in order to qualify for participation in the protocol a machine must take part 
in this stage. When a violation occurs --- up to v(n) of them are possible --- the set-up procedure restarts. 
When a violation is detected during the execurion phase, the violating machine is disqualified and the 
recovery procedure is invoked. 
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Let M - ( M , ,  . . . ,MR) be the original protocol. The transformed protocol M ’ = ( M ; ,  . . . NR’I proceeds 
as follows. 

SET-UP PHASE 

Each machine M [ ,  for each bit b of its given input and its generated random tape, chooses bits 
bj (i-1 . . . n) ac random satisfying b = @ill bj, and sends E,Cb> to Mi. (We will call b, a piece 
of the distributed bit b.) 

Each machine Mi’ follows a verifiable secret-sharing protocol with parameters (n-1,h) to share 
with all the other machines its piece of every distributed bit 

EXECUTION PHASE 

Follow M, validating every message. Whenever M requires a disqualified machine M j  to 
compute a message p, the active machines simulate the cornputation of k, using the distributed 
bits of Mi (via a multi-party cryptographic computation protocol as described in Section 3.2). 

Upon detection of a violation by machine i ,  invoke the protocol RECOVER(i). 

When disqualified machine M [  requests to rejoin the execution, invoke the protocol REJOIN(i7. 

RECOVER(i) 

Disqualify machine M I .  Let j be the first index in (i+lmodn, i+2modn,. . . } such that 
machine M,’ is not disqualified. 

For each globally distributed bit b, the active machines reco11~mcc the violator’s piece b ,  and 
machine M,’ updates its piece by setting bj := bi @ bi) 

Note that it is possible to recover in this way, even if another processor should fail during a 
reconsauction step. 

REJOIN(i) 

For each globally distributed bit b, and for each machine Mi that is not disqualified, Mi’ 
chooses a bit rj at random, and performs a 2-parcy simulated computation with M i  that has the 
effect of setring b,:=bj@rj; thenM;’ sets bi:= e j  (rj). 

Observe that the number of times that the REJOIN procedure may be invoked is bounded by the length 
of the original protocol, since at least one step must intervene between a disqualification and a rejoining. 

We call attention to a trade-off between the maximum number of compromisers and the maximum 
number of violators that can be handled using these methods. By the minimum-knowledge properties of 
verifiable secret-sharing, the violators’ privacy is preserved as long as c(n) Ih(n)-1.  Since h users are 
needed in order to reconstruct each violator’s shares, the maximum number of violators that can be 
tolerated satisfies v(n) I n-h(n)  5 n-c(n)-l; in other words, we must have v(n)  + c(n) 5 n-1. In case there 
is no distinction made between compromisers and violators, the maximum number of faults is L(n-1)/21. 
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In the full version of this paper, we will describe a ctynamic recovery procedure for a model in which 
there is a failure rate (instead of bounds c(n) and v(n ) )  given as a fault parameter. 

5. Conclusions 
In this paper we address a number of issues in the design of protocols to solve general multi-party 

computational problems subject to various cryptographic consuaints. First, we present new techniques 
that enable the automatic translation of a problem specification into a multi-party protocol satisfying any 
given partial-information and temporal constraints; the resulting protocol can be implemented in the 
public-key model, requiring the generation of new cryptographic keys only for certain synchronous 
computation problems. Second, we present new fault-recovery procedures that make it possible to 
continue a protocol in the presence of faults as long as there is an honest majority, without changing 
either the distribution of results computed by the protocol or the cryptographic constraints they satisfy, 
while at the same time preserving the security and privacy of all users, including failing processors. 

In both parts of this work we apply the complexity-theoretic approach to knowledge in order to 
measure and control the computational knowledge released to each of the participants in a protocol. This 
approach enables us to design protocol procedures that simulate, in a distributed fashion, a cenual trusted 
party that assures the correcmess, privacy, and synchrony of the results computed. This “trusted-party 
methodology” of protocol design can be applied, for example, to existing protocols that require a central 
server (e.g. [14, IS]) in order to make them fully distributed. 

Appendix 

I. The Basic Two-Party Construction 
Here we describe the technical details of a simulated gate in a two-party circuit simulation. 

For this description, we implement the operations of probabilisac encryption as follows. The one-way 
function E is used to e n a d e  the cleartext a by choosing a bit-saing r at random and computing the 
ciphertext x-E(r)@a. We will call r the random seed for the ciphertext x. Without the trapdoor 
information for E,  it is an intractable problem to recover u (or any value that functionally depends on a)  
from x. 

AS in Section 3.1, we call the two parties A and B (for Alice and Bob). A is the circuit-constructor and 
B is the circuit-evaluator. 

Instead of giving our consrmction in complete generality, we will explain the case of an input gate with 
two input entries that computes i,ORi,, where iA is A’s input bit and i, is B’s input bit. The two entries 
are presented to B as two pairs of ciphertexts, [ x w x I ]  and tyo,y,], unordered and ordered, respectively. 
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Next, A and B perform the generalized oblivious transfer protocol, so that (according to his choice of 
the bit iB'o, say) B obliviously receives the random seed so for the ciphenext yo; he can then decode it md 
recover the cleartext b,. A then will send B either r,, the random seed for xp or r , ,  the random seed for x,, 
depending on whether A's input bit iA is 0 or 1. Say, B receives rl; he can decipher xi and recover the 
cleartext nl. 

Note that after these computations it is an intractable problem for B to exract a. from xo, or b, from y,. 

Let a:, no" denote the left and right halves of the bit-string no, and similarly for the other cleartext 
strings. Along with its entry ciphertexts, the gate is presented with "instructions" of the following form. 

lst, 1st: L.L 

lst, 2nd : R,  L 

2nd, 1st : L, R 

2nd, 2nd : R ,  R 
What this means is that if the two cleartexts received by B correspond to the first and the first 
(respectively) of the two pairs of entry ciphertexts, then B should compute the XOR of the left half and 
the left half (respectively) of the two cleartexts; if they correspond to the first and the second, he should 
XOR the right half of the first with the left half of the second; and so on. Each instruction corresponds to 
a line of the gate's truth table, and the lines have been randomly permuted. 

The cleartexts have been chosen at random by A so as to satisfy the equations 
* a t  C3 b t = c w  

@ b,'= c,, . a,' @ boR = c,, and 

*a:  @ b;=c1, 
where c, and c1 are random strings of the appropriate length. (Explicitly, A could build the gate by first 
choosing the order of the four instructions, then choosing c,,, cl, no, nl at random, and finally computing 
b,, b, according to the equations.) 

In our case, B has received aI and b,, so he follows the third instruction and computes c,. The fact that 
he also knows the string bk gives him no help in using the first equation to compute c,, since he has no 
information about the random string a;. Similarly, since he does not know which of the other three 
"TOWS" of the truth table would give him the same result-string c1 as the row which he did use, he cannot 
use the String alR to learn anything from the fourth equation. And he knows neither of the bit-strings on 
the left hand side of the second equation. 

Thus, in any execution of the evaluation protocol, B computes a single result-string, and gains no 
computational advantage in guessing any other result-string; and this is what we need in order to assure 
the security of intermediate computational results. The result string is used in turn as a random seed. 
either for an input entry of the intermediate gate to wluch this gate is connected, or for the simulated 
circuit's output. 
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II. Multi-Party Computation 

computations. 
Here we show how n parties cad use their shares of globally distributed bits to simulate circuit 

Throughout this section, a l l  arithmetic expressions should be interpreted mod 2. At the beginning of 
the protocol, each machine does the following for each bit b that it needs as input to the circuit 

simulation: it chooses bits b .  (j=l . . . n) at random satisfying b = zLl bi and sends EJbj) to My 
J 

How do n parties "compute" with these shares? Suppose u and b are two s h a d  bits; that is, machine 

Mi possesses share ui of bit u and share bj of bit b. These random shares satisfy the equations u - x-l ui 

TO simulate a NOT gate, i.e. to simulate the computation a:= 1 4 ,  one of the machines, say the first, 
complements its share: ul:=l-ul. Now every machine possesses a proper random share of the 
complementary bit i d .  For the simulation of an AND gate, i.e. of the computation c := ub, consider the 
following equations, where each rii is a bit randomly chosen by M;: 

" 

where ci =ap, + &+i[rij+(r,i+u,bi)] is the share of c that will be computed by Mi at the end of the 
computation. Each pair of machines, Mi and MI, cany on two different two-party interactions. In the first 
of these, Mi acts as the circuit-consauctor and M .  acts as the circuit evaluator for a circuit with inputs 
rb, ui from Mi and bj from Mi, and output rii+u,b, for MI. Machine M i  holds the value rii and mcahine M j  
holds the value rii+upi thus the two machines hold random shares whose sum i s  equal to a?,. In the 
second of their interactions, they reverse their roles in order to share aJb;. (Notice that the required 
two-party computations are very simple.) Each machine M i  takes the sum mod 2 of these 2(n-1) output 
values, and adds upi to is the resulting sum ci is its share of the new globally distributed bit c=ob. This 
concludes the simulation of the AND gate, 

I 

The multi-party circuit-simulation just described is minimum-knowledge with respect to (n-1)-subsets, 
and it can realize computations with privacy constraints. At the end of the simulation, the circuit's 
outputs are "computed as follows. For each bit b of the public output op each machine M i  announces its 
share bi. For each bit b of the private output o. for machine M . ,  every other machine Mi,  i+j, reveals its 
share bi. 

I J 
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