
Patchable Indistinguishability Obfuscation:
iO for Evolving Software

Prabhanjan Ananth1(B), Abhishek Jain2, and Amit Sahai1

1 Center for Encrypted Functionalities and Department of Computer Science,
UCLA, Los Angeles, USA

{prabhanjan,sahai}@cs.ucla.edu
2 Johns Hopkins University, Baltimore, USA

abhishek@cs.jhu.edu

Abstract. In this work, we introduce patchable indistinguishability
obfuscation: our notion adapts the notion of indistinguishability obfus-
cation (iO) to a very general setting where obfuscated software evolves
over time. We model this broadly by considering software patches P as
arbitrary Turing Machines that take as input the description of a Turing
Machine M , and output a new Turing Machine description M ′ = P (M).
Thus, a short patch P can cause changes everywhere in the description of
M and can even cause the description length of the machine to increase
by an arbitrary polynomial amount. We further considermulti-program
patchable indistinguishability obfuscation where a patch is applied not
just to a single machine M , but to an unbounded set of machines
M1, . . . ,Mn to yield P (M1), . . . , P (Mn).

We consider both single-program and multi-program patchable indis-
tinguishability obfuscation in a setting where there are an unbounded
number of patches that can be adaptively chosen by an adversary. We
show that sub-exponentially secure iO for circuits and sub-exponentially
secure re-randomizable encryption schemes (Re-randomizable encryp-
tion schemes can be instantiated under standard assumptions such as

The full version of this paper can be found in [6].
Work done in part while visiting the Simons Institute for Theoretical Computer
Science, supported by the Simons Foundation and by the DIMACS/Simons Collab-
oration in Cryptography through NSF grant #CNS-1523467.
P. Ananth—This work was partially supported by grant #360584 from the Simons
Foundation and the grants listed under Amit Sahai.
A. Jain—Supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213
and NSF CNS-1414023.
A. Sahai—Research supported in part from a DARPA/ARL SAFEWARE award,
NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276,
BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
This material is based upon work supported by the Defense Advanced Research
Projects Agency through the ARL under Contract W911NF-15-C-0205. The views
expressed are those of the authors and do not reflect the official policy or posi-
tion of the Department of Defense, the National Science Foundation, or the U.S.
Government.

c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part III, LNCS 10212, pp. 127–155, 2017.
DOI: 10.1007/978-3-319-56617-7 5

128 P. Ananth et al.

DDH, LWE.) imply single-program patchable indistinguishability obfus-
cation; and we show that sub-exponentially secure iO for circuits and
sub-exponentially secure DDH imply multi-program patchable indistin-
guishability obfuscation.

At the our heart of results is a new notion of splittable iO that allows
us to transform any iO scheme into a patchable one. Finally, we exhibit
some simple applications of patchable indistinguishability obfuscation,
to demonstrate how these concepts can be applied.

1 Introduction

Program obfuscation is the process of making a program “unintelligible” to any
polynomial-time entity while preserving its functionality. A formal study of pro-
gram obfuscation was initiated more than a decade ago in the works of [10,41]. In
the recent years, this research area has seen renewed activity with the emergence
of candidate constructions [30] for a type of general-purpose program obfusca-
tion called indistinguishability obfuscation. This notion has proven to be both
extremely useful and the most plausible of existing notions of program obfusca-
tion.

A major limitation of existing notions of program obfuscation is that they
only consider “static” programs that do not change with time. In reality, however,
programs are rarely changeless. We typically alter programs over time, with
patches (a.k.a updates) causing the programs to grow and vary, in response to
demands for greater or new functionality. Can program obfuscation be adapted
to deal with this reality? Specifically, can we obfuscate programs that evolve over
time? The central intellectual and theoretical focus of this work is to answer this
question.

Obfuscation for Evolving Software. A trivial solution to obfuscating evolv-
ing software would be to simply apply the obfuscator afresh to each updated
version of a particular program. For example, to modify an obfuscation of a pro-
gram M , the obfuscator may simply release a fresh obfuscation of M ′ where M ′

is the patched version of M . Note, however, that in this solution, the total com-
munication complexity is at least |M | + |M ′|. In particular, this is the case even
if the difference between the programs M and M ′ can be described in the form of
a small patch P . In contrast, if M was not obfuscated, then we could modify it
by simply communicating the patch P to a user, yielding a total communication
complexity of only |M | + |P |. Our goal is to develop a mechanism for program
obfuscation that approximately preserves this communication complexity.

A bit more precisely, we define a notion of patchable obfuscation where,
informally, there are four algorithms:

• Obf(M ; r) taking as input a program M , and outputting an obfuscated
program 〈M〉, using randomness r.

• GenPatch(P ; r, r′) taking as input a patch P , and outputting an encoded
patch 〈P 〉, using a combination of the original randomness r and new
randomness r′.

Patchable Indistinguishability Obfuscation: iO for Evolving Software 129

• AppPatch (〈M〉, 〈P 〉) taking as input an obfuscated program 〈M〉 and a patch
encoding 〈P 〉, and outputting an obfuscated patched program 〈M ′ = P (M)〉.

• Eval (〈M〉, x), taking as input an obfuscated program 〈M〉 and an input x,
and outputting the value y = M(x).

The key efficiency requirement is that the size of a patch encoding should
not depend on the size of the original program M . Specifically, we want that
|〈P 〉| = poly(|P |, λ), where λ is the security parameter.

Beyond this basic efficiency requirement, we also discuss some other impor-
tant considerations w.r.t. patchable obfuscation.

I. No restriction on patches: An important consideration for patchable
obfuscation is the class of patches that we wish to allow. Clearly, the larger the
class of patches that we can support, the larger the potential application pool.

To maximize the applicability of our notion, we allow for arbitrary patches.
Specifically, we model a patch P as a Turing machine that takes as input a
program M (also modeled as a TM) and outputs a new program M ′. We allow
for the unpatched program to grow in size after patching. That is, M ′ may be
arbitrarily bigger than M .

II. Multiple patches: Another consideration is the number of patches that
we wish to allow. In reality, it may be difficult to anticipate in advance how
many times a program may need to be patched. Thus, we allow for an unlimited
number of patches.

Specifically, we consider two modes of patching:

• Sequential patching: Here, given an obfuscated program 〈M0〉 and a sequence
of patch encodings 〈P1〉, . . . , 〈Pn〉, one can apply the patches one-by-one, in
order, to obtain 〈M1〉, . . . , 〈Mn〉 s.t. Mi = Pi(Mi−1).

• Parallel patching: Here, given an obfuscated program 〈M0〉 and a sequence of
patch encodings 〈P1〉, . . . , 〈Pn〉, one can apply each patch to 〈M〉, in parallel,
to obtain 〈M1〉, . . . , 〈Mn〉 s.t. Mi = Pi(M0).

While sequential patching seems to better capture patching of programs in
reality, as we discuss later, parallel patching also enables interesting applications
of patchable obfuscation. Thus, we consider both patching modes in this work.

III. Support for multiple programs: So far, we have only discussed patch-
ing for a single obfuscated program. Now consider the case where an authority
wishes to patch multiple obfuscated programs 〈M1〉, . . . , 〈Mn〉. Such a situation
often arises in practice where, for example, the programs M1, . . . ,Mn may cor-
respond to different copies of the same core program M that are individualized
to different users.

One approach to address this scenario would be to release a separate patch for
every obfuscated program. In this case, however, the communication complexity
grows linearly with the number of obfuscated programs and may quickly become
prohibitive. Instead, we would like to build patchable obfuscation where the
obfuscator can release one patch that can be applied to all of the obfuscated
programs. We refer to this notion as multi-program patchable obfuscation.

130 P. Ananth et al.

How to Define Security? Of course, we must define security for patchable
obfuscation. The natural direction is to start with a “base” notion of obfuscation
(without patching) and extend it to the setting of patching. Our goal in this
work is to obtain general positive results for patchable obfuscation. With this
viewpoint, we identify indistinguishability obfuscation (iO) [10] as a natural
choice for the base notion. Indeed, over the last few years, several general-purpose
candidate constructions, (for example: [9,22,30]) for iO have been proposed, and
no impossibility results are known. Furthermore, it was shown by [39] that iO is,
in fact, “best-possible” obfuscation. iO has already enabled a long sequence of
exciting applications (see e.g., [18,28,30,51]) and its patchable analogue can be
expected to find even more applications. Finally, we stress that while the security
of iO remains an area of intense study, there are several known iO candidates
and even universal iO candidates under well-studied assumptions [3].

In contrast, powerful (base) notions such as virtual black-box obfuscation [10]
and differing-inputs obfuscation [1,10,20] have been shown to be impossible to
realize for general functions [10,13,15,31,36]. This, in turn, means that patchable
analogues of these notions are also impossible, in general. The notion of virtual
grey-box obfuscation [14,16] is impossible for general Turing Machines but seems
to circumvent general impossibility results for circuits; however, it has found
rather limited applicability so far.

In light of the above, in this work, we focus on patching in the context of iO.
We do believe that the study of patchable obfuscation for other base obfuscation
notions (e.g., obfuscation in weaker adversarial models such as virtual black-
box obfuscation in hardware token model [34,38,40] or generic model [9,22]) is
interesting, and we leave this study to future work. We remark that many of the
ideas that we develop in this work should be more widely applicable to other
notions of obfuscation, and are not intrinsically tied to iO. As such, we envision
these ideas to be portable to other notions of patchable obfuscation.

Patchable Indistinguishability Obfuscation. We develop a notion of patch-
able indistinguishability obfuscation (pa-iO) that naturally extends the standard
notion of iO to the setting of patching. Let us explain our notion for the single-
program case, for sequential and parallel patches.

• Sequential patches: Recall that iO security dictates that given two equivalent
programs M0 and M1, obfuscations of M0 and M1 are computationally indis-
tinguishable. In single-program pa-iO for sequential patches, we require that
given two equivalent programs M0

0 and M0
1 and a sequence of patch pairs

(P 1
0 , P 1

1), . . . , (Pn
0 , Pn

1) such that for every “level” i ∈ [n], the patched pro-
grams M i

0 = P i
0(M

i−1
0) and M i

1 = P i
1(M

i−1
1) are also equivalent, it should

be hard to distinguish the tuples (〈M0
0 〉, {〈P i

0〉}n
i=1) and (〈M0

1 〉, {〈P i
1〉}n

i=1).
Intuitively, the equivalence requirement at every patch level i rules out the
trivial attack of using a splitting input for the patched programs M i

0 and M i
1

to distinguish the tuples.
• Parallel patches: Single-program pa-iO for parallel patches is defined similarly

to above, except that here we require equivalence for the patched programs
M i

0 = P i
0(M

0
0) and M i

1 = P i
1(M

0
1) at every (parallel) “branch” i ∈ [n].

Patchable Indistinguishability Obfuscation: iO for Evolving Software 131

A few remarks are in order: (1) It is easy to see that these definitions ensure
patch hiding, which is crucial for some of the applications discussed later. (2)
Our definitions naturally extend to multi-program pa-iO where we start with
multiple pairs of programs and equivalence is required for every pair at every
level/branch. (3) We, in fact, consider adaptive security, where the adversary can
make the patch queries in an adaptive fashion. See Sect. 2 for further details.

Implications of pa-iO. We view pa-iO as a powerful primitive that is likely to
have several applications in the future. To see the power of pa-iO, it is instructive
to first compare it with iO. While iO exists if P=NP,1 we show that multi-
program pa-iO for parallel patches implies secret-key functional encryption (FE)
[19,49,50]. The construction is remarkably simple: let Mf,x be an input-less
machine that simply outputs f(x). We construct an FE scheme as follows:

• A secret key for a function f is computed as 〈Mf,⊥〉, i.e., an obfuscation of
Mf,x where x = ⊥.

• Encryption of a message m corresponds to generating an encoding 〈Pm〉 for a
patch Pm that modifies Mf,⊥ to Mf,m.

• Decryption simply corresponds to applying the patch encoding 〈Pm〉 on
〈Mf,⊥〉 to obtain 〈Mf,m〉 and then evaluating it to obtain f(m).

Correctness and security of the construction follow in a straightforward man-
ner from the correctness and security of pa-iO.2 As we discuss later, the above
basic idea can, in fact, be easily extended to multi-input functional encryption
[35], yielding new results.

Alternate Viewpoint: Obfuscation with Private Homomorphism.
Another way of looking at our notion of pa-iO is as a form of iO that supports
a kind of semi-private homomorphism: the generation of the patch encoding is
private – requiring secret information that was used to obfuscate the original
program – although the application of the patch encoding is public. Note that
unlike encryption, for the security of obfuscation it is critical that this homomor-
phism is semi-private – if an adversary was allowed to use public information to
arbitrarily modify the program underlying an obfuscation, this would trivially
allow the adversary to break the security of the original obfuscated program.
On the other hand, our notion of pa-iO and the notion of fully homomorphic
encryption [33] share a similarity in that they both require a form of compactness
for the notions to be non-trivial.

1 Assuming NP �= co-RP, it was shown that iO implies one-way functions [43,48].
2 An observant reader may notice that in the above construction, it is not important

whether the size of a patch encoding depends on the size of an unpatched machine
Mf,⊥ or not. However, it is important that the size of the patch encoding is inde-
pendent of the number of obfuscated machines that it can be applied to – a property
guaranteed by multi-program pa-iO.

132 P. Ananth et al.

1.1 Our Results

We state our results below.

I. Patchable Indistinguishability Obfuscation. In this work, we formalize
the notion of patchable indistinguishability obfuscation. We focus on the setting
where programs to be obfuscated and patched are described as Turing Machines.

Multi-program pa-iO: Our main result is a construction of a multi-program pa-iO
scheme from sub-exponentially secure iO and sub-exponentially secure DDH.

Theorem 1 (Multi-program pa-iO: Sequential patches). Assuming the
existence of sub-exponentially secure iO for circuits, sub-exponentially secure
DDH, there exists an adaptively secure multi-program pa-iO scheme with
unbounded sequential patches, for Turing Machines where the running time of the
patch generation algorithm for a patch P is bounded by poly(λ, |P |, �), where λ is
a security parameter and � is a bound on the input size to the patched program.

Note that the runtime efficiency of the patch generation algorithm in the
above theorem implies the necessary size efficiency for a patch encoding, namely,
the size of the encoding of a patch P is bounded by poly(λ, |P |, �).
Single-Program pa-iO: We obtain the above result in two steps. Our first, and
key step is to construct a single-program pa-iO scheme for TMs which achieves
the desired size efficiency for patches but requires a large state (proportional to
the size of the TM being updated) as well as a large patch generation time.

Theorem 2 (Single-program pa-iO: Sequential patches). Assuming the
existence of sub-exponentially secure iO for circuits and sub-exponentially secure
re-randomizable encryption schemes, there exists an adaptively secure single-
program pa-iO scheme with unbounded sequential patches, for Turing Machines
where the size of the obfuscation of a patch P is bounded by poly(λ, |P |, �), where
λ is a security parameter and � is a bound on the input size to the patched
program.

Main Tool: Splittable iO: The main tool in our construction of single-program
is an intermediate notion between iO and patchable iO, that we refer to as
splittable iO. Very roughly, splittable iO allows us to reduce the problem of
building patchable iO to the problem of building a patchable “encoding” scheme,
a seemingly simpler problem. Very roughly, an obfuscation of M w.r.t. splittable
iO consists of two parts: an encoding of M w.r.t. a patchable encoding scheme,
and some auxiliary information z computed on the encoding as well as the secret
key used to encode M . We place suitable efficiency and security requirements
on the auxiliary information so as to allow us to transfer the patching property
of the encoding scheme to the setting of iO. We refer the reader to the technical
overview section for further details on this notion.

From Single-Program to Multi-program pa-iO: Next, we devise a generic trans-
formation from any such single-program pa-iO scheme to a multi-program pa-iO
scheme with the aforementioned efficient patch generation property.

Patchable Indistinguishability Obfuscation: iO for Evolving Software 133

Theorem 3 (Single-program to Multi-program pa-iO). Assuming the
existence of a succinct garbled TM scheme with persistent memory and a compact
secret-key functional encryption scheme for general circuits, there exists a gen-
eral transformation from any single-program pa-iO scheme to a multi-program
pa-iO scheme for TMs with efficient patch generation.

In particular, when the underlying primitives are all adaptively secure, then
the resulting multi-program pa-iO scheme is also adaptively secure. An adap-
tively secure succinct garbled TM scheme with persistent memory is known from
the works of [2,24] based on sub-exponentially secure iO and DDH assumption,
while a compact secret-key functional encryption scheme is known from iO for
general circuits.

For the theorems above, we stress that we place no restrictions on the patches.
A patch P can be an arbitrary Turing Machine that takes the original program
description M as input, and outputs an arbitrary Turing Machine description
M ′ = P (M) that can differ in arbitrary ways from M . In particular, the descrip-
tion size of P (M) can be any unbounded polynomial in the security parameter,
and thus the program size can grow by arbitrary polynomial factors. Furthermore
any unbounded polynomial number of patches can be applied sequentially, and
the adversary can specify these patches adaptively given all obfuscated programs
and patches constructed earlier.

Parallel Patching: We can obtain a similar result for multi-program pa-iO in the
context of parallel patches. This result follows the same approach as the case
of sequential patches. The first step is to obtain single-program pa-iO scheme
with unbounded parallel patches and the second step is to obtain multi-program
pa-iO from single-program pa-iO. The construction of single-program pa-iO
with parallel patches will be identical to the one in the sequential patch setting.
The transformation from single-program pa-iO to multi-program pa-iO is, how-
ever, different from the sequential setting to enable this transformation. Instead
of using garbled TM scheme with persistent memory, we instead employ func-
tional encryption for TMs [7,37] scheme. Since the techniques employed in the
parallel patch setting are similar to the sequential patch setting, we omit the
transformation. We have the following theorem.

Theorem 4 (Multi-program pa-iO: Parallel patches). Assuming the exis-
tence of sub-exponentially secure iO for circuits, sub-exponentially secure DDH,
there exists an adaptively secure multi-program pa-iO scheme with unbounded
parallel patches, for Turing Machines where the running time of the patch gen-
eration algorithm for a patch P is bounded by poly(λ, |P |, �), where λ is a security
parameter and � is a bound on the input size to the patched program.

II. Applications of pa-iO. We view pa-iO, and especially multi-program pa-iO
as a powerful primitive that is likely to have several applications in the future.
As initial evidence of this, we demonstrate implications of pa-iO to functional
encryption and iO for TMs. In our eyes, the main appeal of these implications

134 P. Ananth et al.

is their remarkable simplicity that highlights the potential of pa-iO as a replace-
ment for iO in cryptographic applications.

Multi-input FE for Unbounded Arity Functions: We first show that multi-
program pa-iO for parallel updates implies secret-key multi-input functional
encryption (MIFE) [4,21,35] for unbounded arity functions. This implication
follows from a straightforward extension of the pa-iO to (single-input) FE impli-
cation discussed earlier.

Theorem 5 (Unbounded-Arity MIFE). Adaptively secure multi-program
pa-iO with unbounded parallel updates implies secret-key MIFE for unbounded
arity functions with security against pre-ciphertext key queries.

Combining the above with Theorem4, we obtain secret-key MIFE for
unbounded arity functions from sub-exponentially secure iO for circuits, sub-
exponentially secure DDH. Previously, this result was only known [8] from a
knowledge assumption, namely public-coin differing-input obfuscation [42] and
one-way functions.

FE for TMs with Unbounded Length Inputs: The following implication follows as
a simple corollary of Theorem 5.

Theorem 6 (Unbounded-Input FE). Adaptively secure multi-program
pa-iO implies secret-key functional encryption for TMs with unbounded input
length with security against pre-ciphertext key queries.

A construction of FE for TMs with unbounded input was recently given by [7]
based on iO. We emphasize that our construction from multi-program pa-iO is
extremely simple, in contrast to the involved construction of [7].

We now discuss implications of pa-iO to iO for TMs. We first recall that all
recent progress on achieving iO for TMs/RAMs [17,25–27,44] from iO for cir-
cuits has required a polynomial bound � to be placed on the input length to
the obfuscated Turing Machine. We share this need for a polynomial bound �
on the input size, and the size of our obfuscated patches do grow with this
bound. Indeed, if we could remove this restriction, then we would show how to
bootstrap iO for circuits to iO for Turing Machines without any input length
restriction from iO for circuits – this remains a major open question. Achieving
iO for Turing Machines without any input length restriction currently requires
strong assumption such as output-compressing randomized encodings [45] or
knowledge-type assumptions such as public-coin diO [1,20,42]. We do not know
how to achieve these objects using only iO for circuits.

iO for TMs with Unbounded Length Inputs: So far, in our definition of pa-iO,
we have only considered “single-use” patches. More accurately, in our definition
of single-program (resp., multi-program) pa-iO for sequential patching, the ith

patch Pi can only be applied to the updated machine (resp., machines) at level
i − 1. As we discuss now, such “single-use” patches are, in fact, inherent given
the current state of art in iO for TMs.

Patchable Indistinguishability Obfuscation: iO for Evolving Software 135

In particular, is not difficult to see that single-program pa-iO with reusable
patches (i.e., where a patch P is not tied to any “level” and can be applied an
arbitrary number of times, to any machine) in fact, implies iO for TMs with
unbounded length inputs. The construction is extremely simple: let Mx be a
family of (input-less) machines parameterized by strings x of arbitrary length,
where every machine simply outputs M(x). Obfuscation of a TM M consists of
an obfuscation of a machine M⊥ w.r.t. the pa-iO scheme along with encodings
of two reusable patches P0 and P1. Patch P0 is such that it updates any machine
Mx to Mx‖0 while P1 updates any machine Mx to Mx‖1.

To evaluate the above obfuscation on any input x = x1, . . . , x� for an arbi-
trary �, a user can transform obfuscation of M⊥ to Mx by applying the patches
Px1 , . . . , Pxn

and then execute Mx to obtain M(x). The correctness of the con-
struction is easy to verify.

While we do not consider security for reusable patches in this work, we view
the above as a potential new template for building iO for TMs with unbounded
length inputs.

1.2 Technical Overview

We now give an overview of the main technical ideas in our constructions. We
start by building a general template for building pa-iO, and then discuss our
ideas for implementing this template.

1.2.1 A Template for pa-iO
In this section, we devise a general template for building pa-iO starting from
any non-patchable obfuscation scheme. We keep the discussion in this section to
a high-level, focusing on issues directly related to patching, and largely ignoring
implementation issues that may arise due to the specific properties of the under-
lying non-patchable obfuscation scheme. For simplicity, in this section, we advise
the reader to think of the non-patchable obfuscation scheme as general-purpose
virtual-black-box obfuscation. Later, in Sect. 1.2, we discuss the additional chal-
lenges that arise in implementing our template when the non-patchable obfus-
cation scheme is iO, and our solutions for the same.

Let us start with the weaker goal of building single-program pa-iO where the
authority issues a single obfuscated program that can then be patched multiple
times, in a sequential order. Our initial idea towards achieving this goal is to
identify an encoding scheme that supports patching and then combine it with a
non-patchable obfuscation scheme to build a pa-iO scheme. Intuitively, we say
that an encoding scheme is patchable if given an encoding of a machine M and
an encoding of a patch P , it is possible to derive an encoding of M ′ = P (M).
The hope here is that the patching property of the encoding scheme can be
translated into patching property for obfuscation.

A natural candidate for a patchable encoding scheme is fully homomorphic
encryption (FHE). Indeed, given an encryption (i.e., encoding) of a machine M
and an encryption of a patch P , one can obtain an encryption of the patched

136 P. Ananth et al.

machine M ′ = P (M) by homomorphically evaluating the function f(M,P) =
P (M). Starting with FHE and any non-patchable obfuscation scheme, we can
build an initial template for pa-iO as follows: to obfuscate M , first encrypt M
using FHE and then provide an obfuscation of the FHE decryption circuit that
has the FHE decryption key hardcoded into it. Evaluation on an input x can be
done as follows: first use FHE evaluation to transform encryption of M into an
encryption of M(x), and then use the obfuscated decryption circuit to obtain
M(x). To patch the obfuscated program, we can simply patch the encryption of
M in the manner as described above.

While this solution seems to offer the functionality of patching, it does not
offer any security. Specifically, in the above template, an adversary can choose
an arbitrary patch P ∗ on its own and then use FHE evaluation of the function
fP ∗(M) = P ∗(M) to transform encryption of M into an encryption of P ∗(M). If
this patch P ∗ is such that for two equivalent machines M0 and M1, P ∗(M0) and
P ∗(M1) are not equivalent, then the adversary can easily break the security of
pa-iO. Indeed, the security of pa-iO prevents an adversary from creating patches
on its own, while the above template does not place this restriction in any way.
In particular, we need to crucially use the fact that patch generation is a secret
key operation.

Towards that end, we modify the above template such that an evaluator
can only apply authenticated patches. The obfuscation of M consists of an FHE
encryption of M as before but the obfuscated FHE decryption circuit now takes
as input old encryption Enc(M), updated encryption Enc(M ′), encrypted patch
Enc(P), a signature σ on Enc(P) and an input x. It checks if the signature is
valid and also if Enc(M ′) is obtained by updating Enc(M) using P . If the check
passes, then it decrypts Enc(M ′) and evaluates M ′ on x. During the patching
phase, the authority sends both Enc(P) and the signature σ. This signature now
prevents a user from applying “invalid” patches to the obfuscation; however, we
note that in the context of iO, this authentication will need to be done in a
much more careful manner, as we elaborate below.

Enforcing Ordered Executions of Patches. While the above template does
not seem to suffer from any immediate issues when we consider a single patch,
unfortunately, its security breaks down when we consider the setting of mul-
tiple patches. Indeed, in the above template, given (say) two patch encodings
(Enc(P1), σ1), (Enc(P2), σ2), an adversary may first apply the second patch
and then the first patch, which may break the equivalence requirement on the
patched machines in the security definition of pa-iO. In fact, an adversary can
also repeatedly apply the same patch multiple times in the above template,
which may also break the equivalence requirement on the patched machines in
the security definition of pa-iO. Indeed, the definition of pa-iO requires that the
patch encodings can only be applied in order, namely, the ith patch encoding
can only be applied to the (i − 1)th patched obfuscation, once.

Towards this, we introduce a mechanism to force a user to apply the patches
in order. We begin by observing that instead of authenticating the encrypted
patch in the above template, if we instead authenticate the encrypted patched

Patchable Indistinguishability Obfuscation: iO for Evolving Software 137

machine, then we can enforce ordered executions of patches. That is, suppose
we want to update the machine M using patch P , the authority first computes
Enc(P) and then updates Enc(M) using Enc(P) to obtain Enc(M ′). It then
signs Enc(M ′) and sends the signature3 σ and the encrypted patch Enc(P) to
the user. The user now updates Enc(M) using Enc(P) to obtain Enc(M ′). To
evaluate the patched obfuscation on an input x, it inputs (Enc(M ′), σ, x) to the
obfuscated FHE decryption circuit that first checks for validity of the signature
and then decrypts Enc(M ′) followed by computation of M ′(x), as before. Cru-
cially, by shifting the authentication to the updated encrypted machine instead of
encrypted patch, we are now able to prevent the “out-of-order patching” attacks
(as well as “repeated patching” attacks) by an adversary discussed above.

A disadvantage of the above solution is that it requires the authority to
maintain large state. In particular, at any time, the authority must remember
the last patched machine Mi−1 in order to generate a valid encoding for the ith

patch Pi. Furthermore, the patch encoding generation time now depends on the
size of the machine Mi−1. While this loss in efficiency may be acceptable for the
setting of single-program pa-iO, it unfortunately becomes a significant barrier
for the setting of multi-program pa-iO. Indeed, in the multi-program setting, the
number of obfuscated programs are not a priori bounded; as such, if we were to
extend the above template to this case, then the authority’s state size becomes
unbounded! (This is because the authority would need to maintain a separate
state for every obfuscated program.)

Compressing the State of Authority. In order to resolve this issue we intro-
duce the next idea: “delegating” the state of the authority to the user. That is,
the authority now maintains the state at the user’s end. Implementing this idea
introduces several issues: not only should the state be encrypted at the user’s
end but it should also be possible to repeatedly update and also compute on this
(updated) encrypted state. To address these issues, we turn to a cryptographic
primitive called garbled RAMs with persistent memory. This notion allows for
encoding a database and repeatedly update this encoding and compute on the
updated encodings. The updating and computation operations are enabled by
using encodings of RAM programs which are issued by the authority. Using this
primitive, we propose a solution template.

– To obfuscate M , the authority computes: (i) Enc(M) and a signature upon
it. (ii) An obfuscation of the FHE decryption circuit (as before) that takes
an input x, Enc(M) and a signature σ, and outputs M(x) if the signature is

valid. (iii) A database encoding ˜Enc(M) of Enc(M). It then sends ˜Enc(M),
Enc(M), σ and the obfuscated decryption circuit to the user.

– To evaluate the obfuscation on an input x, the user inputs (x,Enc(M), σ) to
the obfuscated decryption circuit to recover the output M(x).

3 For this discussion, let us assume that we have a signature scheme where the size of
the signature is independent of the length of the message. We will revisit this later
when we discuss implementation issues.

138 P. Ananth et al.

– To compute a patch encoding of P , the authority first computes Enc(P) (as
before) and then computes a garbled RAM encoding ˜T of a RAM machine T
that has Enc(P) hardcoded in it. The machine T uses FHE evaluation over
Enc(M) (in the database encoding) and Enc(P) to compute Enc(M ′) and
additionally computes signature σ′ over Enc(M)′. It outputs σ′ in the clear.
The user, upon receiving the patch encoding, first computes Enc(M ′) using

Enc(P). It then updates the database encoding ˜Enc(M) using ˜T . The result

is an updated database encoding ˜Enc(M ′) and the signature σ′ on Enc(M ′).
The user can now evaluate the updated machine on any input in the same
manner as before.

Some remarks are in order: first, from an efficiency viewpoint, we need the gar-
bled RAM scheme to be succinct where the size of RAM machine encoding is
independent of its running time. This is because we are applying the above idea
on a single-program pa-iO scheme where the patch generation time depends on
the size of the machine being updated. Second, in order to argue security in
the setting of adaptively chosen patches, we need the garbled RAM scheme to
satisfy adaptive security as well. Such a garbled RAM scheme (with persistent
memory) was recently constructed in the independent works of [2,24].

Finally, we note that while the above idea successfully compresses the state
size of the authority, it still does not suffice for the multi-program setting. This
is because in the above solution, when extended to the multi-program case, the
authority would need to maintain some small state, namely, the garbling key,
for every obfuscated machine, which still leads to a state of unbounded size. We
address this problem by developing a generic transformation from any single-
program pa-iO scheme with small state (or alternatively, a stateless scheme)
into a multi-program pa-iO scheme by using a compact secret-key functional
encryption scheme for general circuits. We defer the discussion of this transfor-
mation to the next section.

1.2.2 Implementation

Issues Related to Indistinguishability Obfuscation. While the above tem-
plate seems promising, several issues arise when we have to implement it only
assuming indistinguishability obfuscation for circuits. For starters, the above
template requires an obfuscation scheme for Turing machines with unbounded
length inputs. This is because, the size of the encrypted machine M can grow
arbitrarily over a sequence of updates and thus the input to the obfuscated cir-
cuit cannot be a priori bounded. We currently know how to realize this only
based on strong knowledge-type assumptions [1,20,42]. Another technical issue
is that standard signature schemes are not “compatible” with iO and more gen-
erally, using iO restricts the type of cryptographic primitives that we can use.
These challenges were encountered in many recent works [17,26,44] whose main
goal was reducing the problem of constructing iO for Turing machines, where
the length of inputs to be evaluated are a priori bounded, to the problem of con-
structing iO for circuits. We build upon the primitives and notions introduced

Patchable Indistinguishability Obfuscation: iO for Evolving Software 139

in the work of [44] to address these challenges. We recall the Turing machine
randomized encodings4 construction by [44].

The core idea in the randomized encodings construction of Koppula et al. [44]
is to leverage an obfuscated circuit to perform step-by-step computation of the
machine M that is encoded. In more detail, a randomized encoding of (M,x) con-
sists of: (a) input tape initialized with an encoding of M and, (b) an obfuscated
circuit Cx that performs “step-by-step” computation of a machine Ux(·). Here,
Ux(·) is a universal TM that takes as input machine M and outputs M(x). By
step-by-step computation, we mean that the circuit Cx takes as input time step i,
encoded symbol and partial information about the current state in an encrypted
form and produces a new encoded symbol and state, again in encrypted form,
by executing the transition function of Ux. This enables the size of the circuit
Cx to be independent of the length of M .

To see how the randomized encodings construction might be useful to our
setting, note that we could potentially encode the machine M using a patchable
encoding scheme that will allow us to patch M . Furthermore, we can allow the
machine size to arbitrarily grow, over a sequence of updates, since the size of the
circuit Cx is independent of the machine size M . However, the main issue is that
their approach is tied to just a single computation M(x) whereas we require that
M be reused on multiple inputs. They propose an approach to achieve reusability
by using another layer of obfuscation, with M hardwired in it, that produces
fresh encodings of M for every computation. This is highly problematic for us,
since patching M would now correspond to patching the underlying obfuscated
circuit.

We need to make the randomized encodings construction of KLW reusable
while preserving the underlying encoding of M . A recent work of Ananth et
al. [5], proposed in a different context of building iO with constant overhead,
achieves this goal. In more detail, they showed how to achieve iO for TMs, with
a priori bound in the input length, such that an obfuscation of M proceeds in
two phases: (a) M is encoded using a suitable encoding scheme and, (b) an
obfuscation of a circuit that takes as input x and produces an encoding of x.
The evaluation of the obfuscation on an input x proceeds by first obtaining an
encoding of x (using the obfuscated circuit) and then decoding this using the
encoding of M to recover M(x).

While their work offers a starting point for building patchable iO, we still need
to address several issues that specifically arise in the context of patching. For
instance, their work only considers the setting when the adversary is given one
obfuscated machine whereas in our setting she also receives additionally, patches
that share some common randomness with the obfuscated machine. We need to
argue that the security holds even with this additional information. Instead of
directly digging into the details of [5] to apply it in the context of patching, we
undertake a more modular approach. First, we propose an intermediate primitive

4 A randomized encoding of (M,x) satisfies two properties: (a) it only reveals M(x)
and, (b) the size of the encoding is polynomial only in the length of M , x and security
parameter.

140 P. Ananth et al.

called splittable iO and show that it suffices for building single-program patchable
iO. We then show that splittable iO can be implemented assuming only iO for
circuits by using the framework of [5]. We describe this primitive in detail next.

Splittable iO: Intermediate Notion Between iO and Patchable iO.
A splittable iO scheme is a strengthening of iO and is associated with respect
to a patchable encoding scheme. A patchable encoding scheme consists of algo-
rithms: Setup, Encode and Decode. Setup generates a secret key sk that will be
used by Encode procedure to obtain an encoding of M , Esk(M). Decode recovers
the Turing machine M from the encoding Esk(M) using the secret key sk. Addi-
tionally, it is associated with two algorithms: patch generation algorithm, used
to generate secure patches and patch application algorithm, that enables apply-
ing secure patches on encodings of TMs. The security property requires that the
encodings and patches hide the underlying TMs and patches, respectively.

We start with a oversimplified template of splittable iO and make suitable
modifications later. An obfuscation of M , with respect to splittable iO, consists
of two parts: (Esk(M), auxM), where (i) Esk(M) is a patchable encoding of M
computed using secret key sk, (ii) auxM computed as a function of an additional
PPT algorithm AuxGen, on (sk, Esk(M)).

Armed with the notion of splittable iO, we show how to construct single-
program patchable iO. At first glance, it seems that splittable iO already allows
for patching: indeed, since M is encoded with respect to a patchable encoding
scheme, we can use the patching algorithm to update this encoding. However,
this does not work because the obfuscation also contains auxM that is tied to
encoding of M . Indeed, this is necessary for the security of obfuscation to hold.
So if the encoding of M is updated, it is necessary to also update auxM . A
naive way of achieving this is to issue a fresh auxM every time the encoding
is patched. That is, initially the user is issued an encoding of M , Esk(M) and
auxiliary information auxM . During the patching phase, a secure version of patch
P with respect to the patchable encoding scheme is issued. Along with this, a
fresh auxM ′ is issued, which is generated by first patching Esk(M) using ˜P ,
secure patch of P , and then executing AuxGen on input (sk, Esk(M ′)).

However this raises the question of efficiency: the patch size now grows with
the size of auxM ′ . This can be taken care of imposing an efficiency constraint on
splittable iO: we require that the size of aux be a polynomial in security para-
meter and specifically, independent of the size of the machine obfuscated. The
next issue is correctness: why should the patched obfuscated machine be correct?
for instance: AuxGen could abort on input patched encodings. To take care of
this issue, we impose an additional property on splittable iO: the correctness of
the obfuscated machine should hold irrespective of whether fresh encodings or
patched encodings of the machine are fed to AuxGen.

Finally, we move on to proving the security of patchable iO. A first attempt
is to use the security of the underlying patchable encoding scheme to argue this.
However, it is unclear why the security of encoding scheme is guaranteed at all
given that aux contains information about the secret key of the encoding scheme.
If we additionally impose aux to hide the secret key, we can then hope to invoke

Patchable Indistinguishability Obfuscation: iO for Evolving Software 141

the security of patchable encoding scheme to argue the security of patchable iO.
A natural approach of formalizing this is to use a simulation-based argument
– there exists a simulator that can simulate the aux even without knowing the
secret key. But this would mean that aux will not able to decode any information
about the encoding of M . In order to maintain correctness of the obfuscation of
M , we need to hardwire all possible outputs which is clearly infeasible. Instead
we use an indistinguishability-based definition: instead of having one encoding
of M , we will consider a pair of encodings of M . That is, obfuscation of M
consists of (Esk0(M), Esk1(M)), computed with respect to secret keys sk0, sk1.
In addition, it consists of aux generated using AuxGen(sk0, Esk0(M), Esk1(M)).
Now, we impose a security property that says that aux generated using sk0 is
computationally indistinguishable from aux generated using sk1.

We summarize the (informal) definition of splittable iO below. The formal
definition can be found in Sect. 3.2. In addition to the properties of any iO
scheme, a splittable iO scheme has the following properties.

1. Splittable Property: An obfuscation of M can be performed in two steps: the
first step is encoding M twice using two secret keys sk0 and sk1 of a patch-
able encoding scheme. The second step is generation of aux by computing
AuxGen on input (sk0, Esk0(M), Esk1(M)), where Esk0(M) and Esk1(M) are
two encodings of M and sk0 is the secret key used to encode Esk0(M).

2. Correctness of AuxGen: The correctness of obfuscation of M holds irrespective
of whether AuxGen is executed on fresh encodings of M or whether it is
executed on encodings of M obtained as a result of patching. This will be
used to argue the correctness of the resulting patchable iO scheme.

3. Efficiency of aux: We require that the size of aux is a polynomial in λ and
in particular, independent of the size of the machine obfuscated. This will be
used to argue the patch size efficiency of patchable iO.

4. Indistinguishability of aux: We require that it is computationally hard to
distinguish aux generated using secret key sk0 from aux generated using sk1.
This property will be helpful to argue security of patchable iO.

Going from Single-Program to Multi-program Patchable Obfuscation.
In the solution sketched above, every time the authority has to generate a patch,
she has to spend time proportional to the size of the obfuscated machine. In par-
ticular, recall that one of the steps in the generation of secure patch is computing
auxM : this step involves first patching the old encoding Esk(M) and then execut-
ing AuxGen. We will use the trick described earlier to solve the problem: we del-
egate the state of the authority as well as the computation of the secure patches
to the user. This can be implemented by using a suitable garbling scheme that
works in the persistent memory setting. Once this mechanism is implemented,
the authority is only required to store the garbling key.

While this is a viable solution in the single-program setting, this is unde-
sirable when the authority is issuing multiple obfuscated programs. She has to
store the garbling keys corresponding to all the machines in this case. The storage
space of the authority thus puts a bound on the number of obfuscated machines
it can issue.

142 P. Ananth et al.

To overcome this difficulty, we employ another idea for delegating responsi-
bility to the user! The garbling key of every user is maintained at her own storage
space in an encrypted form. The computation of the garbled program encodings
are then delegated to every user. This mechanism is implemented by using a
functional encryption scheme. Every user along with the obfuscated machine,
garbled encoding of state, also contains an FE encryption of the garbling key.
During the patching phase, the authority sends a FE key containing patch P ,
that takes as input a garbling key and produces a garbled encoding of P with
respect to this garbling key. To carry this out, we only require a secret-key FE
scheme for circuits.

Putting it Together: A Framework for (Multi-program) Patchable
Obfuscation. Putting all the components together, we construct a multi-
program patchable iO in the following steps:

1. The first step involves formalizing the notion of splittable iO. This is shown
in Sect. 3.

2. Next, we show how to obtain single-program patchable iO from splittable iO.
This is shown in Sect. 4. The resulting single-program patchable iO scheme
is statefull, i.e., the authority is required to maintain a large state.

3. We show how to overcome this problem by giving a transformation from any
statefull to a stateless single-program patchable iO scheme. This is presented
in the full version.

4. In the next step, we give a transformation from single-program to multi-
program patchable iO. This is presented in the full version.

5. In the last step, we instantiate splittable iO using the framework of [5]. This
is presented in the full version.

1.3 Related Work: Incremental Cryptography

The area of incremental cryptography was pioneered by Bellare et al. [11].
Subsequently, this concept of incremental updates has been studied for vari-
ous standard primitives such as encryption schemes, signature schemes and so
on [12,23,29,46,47]. We remark that none of these works handled the setting of
arbitrary updates.

In a concurrent and independent work, [32] consider a related notion called
incremental obfuscation. In incremental obfuscation, individual bits of an exist-
ing obfuscated program can be updated one-by-one. While their work shares
much in spirit with our work, there are several important differences that we
describe below.

Our work focuses on support for arbitrary, adaptively chosen patches that
may potentially increase the size of the program(s) being patched, and we
consider both single-program and multi-program setting. In contrast, their
work considers the single-program setting where bit-wise, non-adaptively chosen
patches can be applied such that the size of the circuit being patched remains
unchanged. Our main efficiency requirement is that the size of the secure patches

Patchable Indistinguishability Obfuscation: iO for Evolving Software 143

(or more strongly, the time to generate the secure patches) is independent of the
size of the program. In contrast, their work considers the stronger runtime effi-
ciency requirement where the time to apply the secure patch is also independent
of the size of the circuit.

2 Patchable iO: Definitions and Implications

In this section, we present the formal definitions of patchable indistinguishability
obfuscation (pa-iO) in the single program and multi program setting.

2.1 Definition: Single-Program pa-iO
In this section, we present a formal definition of single-program patchable indis-
tinguishability obfuscation, denoted as pa-iOsp. We start by presenting the syn-
tax, and then proceed to give a security definition for sequential updates.

Syntax. A pa-iOsp scheme, defined for a class of Turing machines M
with an associated family of patches P and update algorithm Update,
consists of a tuple of probabilistic polynomial-time algorithms pa-iOsp =
(Setup,Obf,GenPatch,AppPatch,Eval) which are defined below.

– Setup, Setup(1λ): It takes as input the security parameter λ and outputs the
secret key SK.

– Obfuscate, Obf(SK,M): It takes as input the secret key SK and a TM
M ∈ M. It outputs an obfuscated TM 〈M〉 along with state st.

– (Stateful) Patch Generation, GenPatch(SK, P, st): It takes as input the
secret key SK, a description of a patch P ∈ P, and state st. It outputs a patch
encoding 〈P 〉 along with the updated state st′.

– Applying Patch, AppPatch
(

〈M〉, 〈P 〉
)

: It takes as input an obfuscated TM
〈M〉 and a patch encoding 〈P 〉. It outputs an updated obfuscation 〈M ′〉.

– Evaluation, Eval
(

〈M〉, x
)

: It takes as input an obfuscated TM 〈M〉 and an
input x. It outputs a value y.

Efficiency. We define two efficiency properties:

– Patch Size Efficiency: For every patch P ∈ P, we require that the size of
the patch encoding |〈P 〉| is a fixed polynomial in (|P |, λ), where (〈P 〉, st′) ←
GenPatch(SK, P, st).

– Patch Generation Efficiency: For every patch P ∈ P, we require that the
running time of GenPatch(SK, P, st) to be a fixed polynomial in (|P |, λ). The
length of st could depend on the size of the obfuscated machine its associated
with and we require that the running time of GenPatch to be independent
of |st|.
It is easy to see that the second property implies the first property. Our first

construction of pa-iOsp only satisfies the first property. In the full version, we
describe a modified construction that also achieves the second property.

144 P. Ananth et al.

Correctness for Sequential Patches. At a high level, the correctness property
states that executing Update on a TM M and a patch P is equivalent to executing
AppPatch on the obfuscation of M and a secure patch of P . In fact we require
that this holds even if there are multiple patches that are applied sequentially.

For any TM M0 ∈ M, L > 0, sequence of patches P1, . . . , PL ∈ P, consider
two processes:

– Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ),
(b)

(

〈M0〉, st0
)

← Obf(SK,M0), (c)
(

〈Pi〉, sti
)

← GenPatch(SK, Pi, sti−1),

(d) 〈Mi〉 ← AppPatch
(

〈Mi−1〉, 〈Pi〉
)

.
– Update: Mi ← Update(Mi−1, Pi).

We require that for all x ∈ {0, 1}∗, every i ∈ [L], Eval
(

〈Mi〉, x
)

= Mi(x).

Remark 1. For the case of parallel patching, we require that 〈Mi〉 ←
AppPatch

(

〈M0〉, 〈Pi〉
)

is a valid obfuscation of machine Mi. We emphasize that
for the case of parallel patching, the patches are applied only on the original
machine.

Adaptive Security for Sequential Patches. We next give an indistinguishability
(IND)-style definition for modeling the security of an pa-iOsp scheme for the
case of sequential patches. In an IND-security definition, we consider a security
game between the challenger and the adversary. In this game, the adversary
sends two machines (M0

0 ,M0
1) to the challenger and in response receives an

obfuscation 〈M0
b 〉, where b is the challenge bit chosen randomly by the challenger.

Then the adversary submits patch queries, adaptively, to the challenger in a
series of phases. In each phase, the adversary chooses a pair of patches (P i

0, P
i
1)

and in return gets the patch encoding 〈P i
b 〉. The patch queries of the adversary

are restricted in the following manner: suppose
(

(P 1
0 , P 1

1), . . . , (PL
0 , PL

1)
)

is a
sequence of adaptive patch queries made by the adversary. We require that
the machine M i

0 is functionally equivalent with M i
1, for every i ∈ [L], where

M i
0 ← Update(M i−1

0 , P i
0) (resp., M i

1 ← Update(M i−1
1 , P i

1)). At the end of the
game, the adversary attempts to guess the bit b. If the adversary’s guess is the
same as b only with probability negligibly close to 1/2, then we say that the
scheme is secure. Henceforth, we use the term adaptive security to refer to this
notion. We proceed to formally defining this notion.

The experiment for the adaptive security definition is formulated below. Let
A be any PPT adversary.

Expt
pa-iOsp

A (1λ, b):

1. A sends (M0
0 ,M0

1) to the challenger.
2. Challenger executes the setup algorithm to obtain SK ← Setup(1λ). It then

sends 〈M0
b 〉 ← Obf(SK,M0

b) to A.

Patchable Indistinguishability Obfuscation: iO for Evolving Software 145

3. Repeat the following steps for i ∈ {1, . . . , L}, where L is chosen by A.
– A sends (P i

0, P
i
1) to the challenger.

– Challenger checks if M i
0 ≡ M i

1, where M i
0 ← Update(M i−1

0 , P i
0) and

M i
1 ← Update(M i−1

1 , P i
1).

– Challenger computes 〈P i
b 〉 ← GenPatch(SK, P i

b) and sends 〈P i
b 〉 to A.

4. A outputs the bit b′.

Definition 1 (Adaptive Security). A single-program patchable indistin-
guishability obfuscation scheme pa-iOsp is said to be adaptively secure against
sequential updates if for any PPT adversary A, there exists a negligible function
negl(·) s.t.

∣

∣

∣Pr
[

1 ← Expt
pa-iOsp

A (1λ, 1)
]

− Pr
[

1 ← Expt
pa-iOsp

A (1λ, 0)
]∣

∣

∣ ≤ negl(λ)

Remark 2. For the case of parallel patching, the same security is defined with
the only difference being that it is required that the machine M i

0 is functionally
equivalent to M i

1, where M i
b is obtained by patching M0

b (the original machine)
using Pi.

2.2 Definition: Multi-program pa-iO
We now present a formal definition of multi-program pa-iO, denoted as pa-iOmp.
Informally speaking, pa-iOmp allows an authority to obfuscate an arbitrary num-
ber of programs in such a way that it is possible to later issue a patch encoding
that can be used to update all the obfuscated programs at once. The authority
who issues the obfuscated programs stores just a “short” information about all
the obfuscated programs issued that enables it to produce a single patch that
can act on all these programs. In particular, the size of the storage space of
the authority is independent of the joint size of all these programs.5 This is
in contrast to the single-program setting described above, where the authority
maintains state and this state can be as big as the program whose obfuscation
is issued. There is another difference between both the settings: in the single-
program setting, if we were to relax the size of the secure patch to be propor-
tional to the size of the updated program then achieving a feasibility result is
straightforward – the secure patch will just be the obfuscation of the updated
program. Hence the primary goal is to reduce the size of the patch. However,
in the multi-program setting, even if we relax the size of the secure patch to be
proportional to the size of any of the updated programs, achieving a feasibility
result is already non-trivial. As mentioned earlier, the authority does not have
enough space to store all the updated programs and hence the above näıve solu-
tion, of sending a fresh obfuscation of the updated program, does not work. As
we will see later we not only give a feasibility result in this setting but we also

5 The reason why the authority can’t store all the programs is because it is a
machine that has a priori bounded memory and yet has the capability to produce
an unbounded number of obfuscated programs.

146 P. Ananth et al.

achieve a solution with optimal efficiency where the size of the secure patches
depend only on the size of their original patches and in particular, independent
of the size of any obfuscated programs issued.

Syntax. A pa-iOmp scheme, defined for a class of Turing machines M and a family
of patches P, consists of a tuple of probabilistic polynomial-time algorithms
pa-iOmp = (Setup,Obf,GenPatch,AppPatch,Eval) which are defined below. We
denote the update algorithm associated with (M,P) to be Update.

– Setup, Setup(1λ): It takes as input the security parameter λ and outputs the
secret key SK.

– Obfuscate, Obf(SK,M): It takes as input the secret key SK and a TM M ∈ M
id. It outputs an obfuscated TM 〈M〉.

– (Stateless) Patch Generation, GenPatch(SK, P): It takes as input the
secret key SK and a description of a patch P ∈ P. It outputs a patch encoding
〈P 〉.

– Applying Patch, AppPatch
(

〈M〉, 〈P 〉
)

: It takes as input an obfuscated TM
〈M〉 and a patch encoding 〈P 〉. It outputs an updated obfuscation 〈M ′〉.

– Evaluation, Eval
(

〈M〉, x
)

: It takes as input an obfuscated TM 〈M〉 and an
input x. It outputs a value y.

Efficiency. Similar to pa-iOsp, we define two efficiency properties for pa-iOmp:

– Patch Size Efficiency: For every patch P ∈ P, we require that the size of
the patch encoding |〈P 〉| is a fixed polynomial in (|P |, λ), where (〈P 〉, st′) ←
GenPatch(SK, P, st).

– Patch Generation Efficiency: For every patch P ∈ P, we require that the
running time of GenPatch(SK, P,) to be a fixed polynomial in (|P |, λ).

It is easy to see that the second property implies the first property. Our con-
struction of pa-iOmp presented in the full version achieves both of the properties.

Correctness for Sequential Patches. For every Q,L > 0, any sequence of TMs
M01 , . . . ,M

Q
0 ∈ M, sequence of patches P1, . . . , PL ∈ P, consider the following

two processes. For every j ∈ {1, . . . , Q}, i ∈ {1, . . . , L}, we have:

– Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ),
(b) 〈M j

0 〉 ← Obf(SK,M j
0), (c) 〈Pi〉 ← GenPatch(SK, Pi), (d) 〈M j

i 〉 ←
AppPatch

(

〈M j
i−1〉, 〈Pi〉

)

.

– Update: M j
i ← Update(M j

i−1, Pi).

We require that ∀x ∈ {0, 1}∗, ∀j ∈ [Q], ∀i ∈ [L], we have Eval
(

〈M j
i 〉, x

)

=

M j
i (x).

Patchable Indistinguishability Obfuscation: iO for Evolving Software 147

Adaptive Security for Sequential Patches. We next give indistinguishability
(IND)-style definitions for modeling the security of a patchable obfuscation
scheme. As in the case of single-program patchable obfuscation, the definition is
based on a game between the challenger and the adversary. The adversary makes
TM queries and patch queries to the challenger. One important distinction is
that in this setting, the adversary can make multiple TM queries whereas in the
case of single-program obfuscation, it makes just one TM query. We describe the
experiment below.

Expt
pa-iOmp

A (1λ, b):

1. A submits a sequence of TM pairs
(

(M1
0,0,M

1
0,1), . . . , (M

Q
0,0,M

Q
0,1)

)

.

2. Challenger executes the setup algorithm to obtain SK ← Setup(1λ). For every
j ∈ [Q], it computes 〈M j

0,b〉 ← Obf(SK,M j
0,b) and sends

{

〈M j
0,b〉

}

j∈[Q]
to the

adversary.
3. Repeat the following steps for i ∈ {1, . . . , L}, where L(λ) is chosen by A:

– A sends (P i
0, P

i
1) to the challenger.

– Challenger computes 〈P i
b 〉 ← GenPatch(SK, P i

b). It sends 〈P i
b 〉 to A.

4. For every i ∈ {1, . . . , L}, every j ∈ {1, . . . , Q}, the challenger checks if M j
i,0 ≡

M j
i,1, where M j

i,0 ← Update(M j
i−1,0, P

i
0) and M j

i,1 ← Update(M j
i−1,1, P

i
1).

If check fails then the challenger aborts the experiment.
5. A outputs the bit b′.

Definition 2. (Adaptive security). A multi-program patchable obfuscation
scheme pa-iOmp is said to be adaptively secure if for any PPT adversary A,
there exists a negligible function negl(·) s.t.

∣

∣

∣Pr
[

0 ← Expt
pa-iOmp

A (1λ, 0)
]

− Pr
[

0 ← Expt
pa-iOmp

A (1λ, 1)
]∣

∣

∣ ≤ negl(λ)

Remark 3. For the case of parallel patching, the correctness and security can be
similarly defined.

3 Splittable iO

We describe the notion of splittable iO next. This notion will be associated with
a patchable encoding scheme. We define patchable encoding scheme first.

3.1 Patchable Encoding Scheme

A patchable encoding scheme is an encoding scheme associated with a class of
Turing machines. This scheme allows for updating an encoding of a machine
M using an encoding of a patch P to obtain an encoding of another machine
M ′, where M ′ ← Update(M,P). The secret key, used in the computation of the
encodings, is generated using algorithm Gen. Turing machines are encoded using

148 P. Ananth et al.

Encode and the patches are encoded using GenPatch. Algorithm AppPatch is used
to apply update the encoding of machine M using encoding of patch P . Finally,
Decode is used to decode an encoding of M using the secret key produced by
Gen.
Syntax. A patchable encoding scheme is described by the algorithms UE =
(Gen,Encode,GenPatch,AppPatch,Decode) which are defined below. We denote
by M, the class of Turing machines it is associated with. We further denote the
update algorithm associated with M to be Update.

– sk ← Gen(1λ): On input λ, it produces the secret key sk.
– Esk(M) ← Encode(sk,M): On input secret key sk, Turing machine M , it

produces an encoding of M , namely Esk(M), with respect to sk.
– ˜P ← GenPatch(sk, P): On input secret key sk, patch P , it produces a secure

patch ˜P .
– Esk(M ′) ← AppPatch

(

Esk(M), ˜P
)

: On input encoding Esk(M), secure patch
˜P , it produces the updated encoding Esk(M).

– M ← Decode(sk, Esk(M)): On input secret key sk, machine encoding Esk(M),
it produces the machine M .

Efficiency. We require that the size of the secure patches is a (a priori fixed)
polynomial in the security parameter and the size of the underlying patch. That
is, | ˜P | = poly(λ, |P |), where ˜P ← GenPatch(sk, P).

Correctness of Sequential Updating. Consider M ∈ M and a sequence of patches
P1, . . . , PL. We consider the following two processes:

– Encode-then-Update: Compute the following: (a) sk ← Gen(1λ); (b)
Esk(M1) ← Encode(sk,M); (c) For every i ∈ [L], ˜Pi ← GenPatch(sk, Pi);
(d) Esk(Mi+1) ← AppPatch

(

Esk(Mi), ˜Pi

)

.
– Update: For every i ∈ [L], Mi+1 ← Update(Mi, Pi) with M1 = M .

We require that Decode(sk, Esk(ML)) = ML.

Security. We require any patchable encoding scheme to satisfy the following.

Definition 3. A patchable encoding scheme, UE = (Gen,Encode,GenPatch,
AppPatch,Decode) is said to be secure if the following holds: Consider the
game between a challenger and an adversary. The adversary submits machines
(M1

0 ,M1
1) . . . , (MQ

0 ,MQ
1) ∈ M to the challenger. In return, the adversary

receives {Esk(M j
b)}j∈[Q], where b ∈ {0, 1} is picked at random. The adversary

can then make patch queries (P i
0, P

i
1), for every i ∈ [L], adaptively. In return

it receives ˜P i
b . The probability that the adversary outputs b is negligibly close to

1/2.

We can correspondingly define an encoding scheme supporting parallel patches.
In the full version, we present an instantiation of the above primitive using

fully homomorphic encryption.

Patchable Indistinguishability Obfuscation: iO for Evolving Software 149

3.2 Definition of Splittable iO

We define the notion of splittable iO next. A splittable iO is an indistinguishabil-
ity obfuscation scheme, satisfying additional properties. The model of computa-
tion is Turing machines and we work in succinct iO setting [17,26,44]. Although
the algorithms associated with succinct iO take the input length bound as input,
we omit this in the description below. For simplicity, set the input length bound
to be λ. Our results can easily be extended to the case when the input bound is
an arbitrary polynomial in λ and our parameter sizes would blow accordingly.

Firstly, we require that the obfuscation of M proceeds in two steps: in the first
step, M is encoded (twice) using the underlying patchable encoding scheme UE.
This is done by generating the setup of UE twice and encoding M using both
these secret keys sk0 and sk1. Call the two encodings Esk0(M) and Esk1(M).
The second step involves generation of auxiliary information as a function of the
encodings Esk0(M) and Esk1(M) and one of the secret keys. This is enabled via an
additional algorithm AuxGen. This requirement on the structure of the obfuscate
algorithm is termed as splittable property. The second property we require is
correctness of AuxGen – this says that the correctness of the obfuscated machine
should not be affected by whether the two encodings (part of the obfuscated
machine) fed to AuxGen are freshly computed or if they are obtained as a result of
patching. The third property, which is efficiency of aux, states that the auxiliary
information produced by AuxGen should be a fixed polynomial in λ. Finally,
we have the indistinguishability of aux property that states that the auxiliary
information obtained by AuxGen on input two encodings Esk0(M) and Esk1(M)
and secret key sk0 is indistinguishability the output of AuxGen on input Esk0(M),
Esk1(M) and secret key sk1.

Definition 4 (Splittable iO). A splittable iO scheme, denoted by siO =
(Obf,Eval) for a class of Turing machines M, is an indistinguishability obfus-
cation scheme that is associated with a patchable encoding scheme UE =
(Gen,Encode,GenPatch,AppPatch,Decode) and satisfies the following properties:

– Splittable Property: Obf consists of Gen,Encode and an additional PPT
algorithm AuxGen. On input (1λ,M) it proceeds in the following three phases:
1. Encoding of M using UE: (a) sk0 ← Gen(1λ); sk1 ← Gen(1λ).

(b) Esk0(M) ← Encode(sk0,M); Esk1(M) ← Encode(sk1,M)
2. Generation of aux: aux ← AuxGen (sk0, Esk0(M), Esk1(M))

Output 〈M〉 = (Esk0(M), Esk1(M), aux). The secret state associated with this
execution is set to be (sk0, sk1).

– Correctness of AuxGen: Let M ∈ M and let P1, . . . , PL be a sequence of
patches. Let Mi be the ith updated machine, Mi ← Update(Mi−1, P), for every
i ∈ [L], where M0 = M .
Consider the following process:

• Let sk0, sk1 be such that sk0 ← UE.Gen(1λ), sk1 ← UE.Gen(1λ).
• Let Esk0(M) ← UE.Encode(sk0,M) and Esk1(M) ← UE.Encode(sk0,M).

150 P. Ananth et al.

• Consider the ith updated encodings, Esk0(Mi) ← UE.AppPatch
(Esk0(Mi−1),UE.GenPatch(sk0, Pi)) and Esk1(Mi) ← UE.AppPatch
(Esk1(Mi−1),UE.GenPatch(sk1, Pi)).

• Let aux ← AuxGen(sk0, Esk0(ML), Esk1(ML)) and set 〈ML〉 =
(Esk0(ML), Esk1(ML), aux).

For every x, we have Eval(〈ML〉, x) = ML(x).

– Efficiency of aux: There exists a polynomial p such that the following holds.
Let (Esk0(M), Esk1(M), aux) ← Obf(1λ,M) for M ∈ M. Then, |aux| = p(λ).

– Indistinguishability of aux: Consider M0,M1 ∈ M such that M0(x) =
M1(x) for every x ∈ {0, 1}∗. Suppose E0, E1, sk0, sk1 are such that M0 ←
Decode(sk0, E0) and M1 ← Decode(sk1, E1). We have,

{E0, E1, sk0, sk1, aux0} ≈c {E0, E1, sk0, sk1, aux1} ,

where auxb ← AuxGen(skb, E0, E1) for b ∈ {0, 1}.
An instantiation of splittable iO is presented in the full version.
We note that the above definition can be extended to the parallel patches

setting if the underlying patchable encoding scheme supports parallel patches.

4 Splittable iO to Single-Program pa-iO
We give a generic transformation from splittable iO to single-program patchable
iO.

Construction. The main tool we use in our construction is a splittable iO
scheme siO = (siO.Obf, siO.Eval) associated with the updatable encoding scheme
UE = (Gen,Encode,GenPatch,AppPatch,Decode). We construct a single-program
patchable obfuscation scheme pa-iO below.

Setup,Setup(1λ): It outputs SK = ⊥.

Obfuscate,Obf(SK,M): It takes as input the secret key SK = ⊥ and a TM
M ∈ M. The obfuscation of M is essentially the obfuscation of M with
respect to siO. That is, it executes the obfuscate algorithm of siO on M ;
(Esk0(M), Esk1(M), aux) ← siO.Obf(1λ,M). Denote (Esk0(M), Esk1(M), aux) by
〈M〉. Let the state associated with this execution be (sk0, sk1) (refer to Splittable
Property in Definition 4).

It outputs the obfuscated TM 〈M〉. The state is set to be st =
(sk0, sk1, Esk0(M), Esk1(M)). That is, the state consists of the two secret keys
and the patchable encodings of M with respect to sk0 and sk1.

Secure Patch Generation,GenPatch(SK, P, st): It takes as input the secret
key SK = ⊥, a description of a patch P ∈ P and state st =
(sk0, sk1, Esk0(M), Esk1(M)). Then,

– It computes the secure patches, ˜P 0 ← UE.GenPatch(sk0, P) and ˜P 1 ←
UE.GenPatch(sk1, P).

Patchable Indistinguishability Obfuscation: iO for Evolving Software 151

– It applies the secure patches on the encodings, Esk0(M
′) ← UE.AppPatch

(Esk0(M), ˜P 0) and Esk1(M
′) ← UE.AppPatch(Esk1(M), ˜P 1).

– It then executes AuxGen algorithm of siO. It computes aux′ ←
AuxGen(sk0, Esk0(M0), Esk1(M1)).

It outputs a secure patch 〈P 〉 = (˜P 0, ˜P 1, aux′). It updates the state to be
st′ = (sk0, sk1, Esk0(M

′), Esk1(M
′)).

Note: It suffices to just include the encodings (˜P 0, ˜P 1) (and not the updated
encodings Esk0(M

′), Esk1(M
′)) as part of secure patch because anyone hav-

ing the original pair of encodings (Esk0(M), Esk1(M)) can now recompute the
(Esk0(M

′), Esk1(M
′)) by using just (˜P 0, ˜P 1).

Applying Patch,AppPatch (〈M〉, 〈P 〉): It takes as input an obfuscated TM

〈M〉 = (Esk0(M), Esk1(M), aux) and a secure patch 〈P 〉 = (˜P 0, ˜P 1, aux′).

– It applies the secure patches on the encodings, Esk0(M
′) ← UE.AppPatch

(Esk0(M), ˜P 0) and Esk1(M
′) ← UE.AppPatch(Esk1(M), ˜P 1).

– It replaces aux with aux′ which is sent as part of the patch.

It outputs an updated obfuscation 〈M ′〉 = (Esk0(M
′), Esk1(M

′), aux′).

Evaluation,Eval (〈M〉, x): It takes as input an obfuscated TM 〈M〉 and an input
x. It executes the evaluation algorithm of siO; y ← siO.Eval(〈M〉, x). Output y.

Efficiency. We claim that the size of the secure patch solely depends on the size
of the patch and the security parameter. In particular, it is independent of the
size of the machine.

Consider a patch P . Let the output of GenPatch(SK, P, st) be 〈P 〉 =
(˜P 0, ˜P 1, aux′). From the efficiency of the underlying patchable encoding scheme,
|(˜P 0, ˜P 1)| = poly(λ, |P |). From the efficiency of the underlying spittable iO
scheme, |aux′| = poly(λ).

Remark 4. The secure patch generation time in the above scheme is proportional
to the size of the obfuscated machine. This is in general undesirable and we show
how to deal with this issue in the full version.

Correctness of Sequential Updating. Consider a TM M0 ∈ M and a sequence of
patches P1, . . . , PL ∈ P. Consider the following two processes generated using
the above scheme. For every i ∈ {1, . . . , L}, we have:

– Obfuscate-then-Update: Compute the following: (a) SK ← Setup(1λ),
(b) (〈M0〉, st0) ← Obf(SK,M0), (c) (〈Pi〉, sti) ← GenPatch(SK, Pi, sti−1),
(d) 〈Mi〉 ← AppPatch

(

〈Mi−1〉, 〈Pi〉
)

.
– Update: Mi ← Update(Mi−1, Pi).

We have the following claim.

152 P. Ananth et al.

Claim. For every x, we have Eval(〈ML〉, x) = ML(x).

Proof. Let 〈M0〉 = (E0
0 , E0

1 , aux0), st = (sk0, sk1, E0
0 , E0

1) and 〈ML〉 =
(EL

0 , EL
1 , auxL). Note that E0 is the output of an execution of Encode(sk0,M0)

and aux0 is the output of AuxGen(sk0, E0
0 , E0

1). From the correctness of patchable
encoding scheme, we have Decode(SK0, E

L
0) = ML. Using this fact along with the

correctness of AuxGen property of siO, we get that the output of Eval(〈ML〉, x)
to be ML(x).

Security of Sequential Updating. We prove,

Theorem 7. pa-iO satisfies security of sequential updating property.

A formal proof for the above theorem can be found in the full version.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive 2013:689 (2013)

2. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM
computations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 3–30. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 1

3. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: boosting correctness and combining security. In: CRYPTO
(2016)

4. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: CRYPTO (2015)

5. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation with constant size
overhead. Cryptology ePrint Archive, report 2015/1023 (2015)

6. Ananth, P., Jain, A., Sahai, A.: Patchable obfuscation. Cryptology ePrint Archive,
report 2015/1084 (2015). http://eprint.iacr.org/2015/1084

7. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 6

8. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryp-
tion for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 2

9. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

10. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

11. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5 22

http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://eprint.iacr.org/2015/1084
http://dx.doi.org/10.1007/978-3-662-49096-9_6
http://dx.doi.org/10.1007/978-3-662-48797-6_2
http://dx.doi.org/10.1007/978-3-662-48797-6_2
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/3-540-48658-5_22

Patchable Indistinguishability Obfuscation: iO for Evolving Software 153

12. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and appli-
cation to virus protection. In: Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, pp. 45–56. ACM (1995)

13. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. IACR Cryptology ePrint Archive 2016:162 (2016)

14. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14623-7 28

15. Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth, O., Rosen,
A.: The impossibility of obfuscation with auxiliary input or a universal simulator.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 71–89.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 5

16. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 108–125. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 7

17. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC (2015)

18. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: ITCS (2016)

19. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

20. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 3

21. Brakerski, Z., Komargodski, I., Segev, G.: From single-input to multi-input func-
tional encryption in the private-key setting. In: EUROCRYPT (2016)

22. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 1

23. Buonanno, E., Katz, J., Yung, M.: Incremental unforgeable encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg (2002).
doi:10.1007/3-540-45473-X 9

24. Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive garbled RAM.
In: TCC (2016-B)

25. Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: ITCS (2016)
26. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-

cation of iterated circuits and RAM programs. In: STOC (2015)
27. Chen, Y.-C., Chow, S.S.M., Chung, K.-M., Lai, R.W.F., Lin, W.-K., Zhou, H.-S.:

Computation-trace indistinguishability obfuscation and its applications. In: ITCS
(2016)

28. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

29. Fischlin, M.: Incremental cryptography and memory checkers. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 393–408. Springer, Heidelberg (1997).
doi:10.1007/3-540-69053-0 27

30. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berke-
ley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Computer Society (2013)

http://dx.doi.org/10.1007/978-3-642-14623-7_28
http://dx.doi.org/10.1007/978-3-662-44381-1_5
http://dx.doi.org/10.1007/978-3-662-44381-1_7
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://dx.doi.org/10.1007/3-540-45473-X_9
http://dx.doi.org/10.1007/3-540-69053-0_27

154 P. Ananth et al.

31. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 29

32. Garg, S., Pandey, O.: Incremental program obfuscation. Cryptology ePrint Archive,
report 2015/997 (2015). http://eprint.iacr.org/

33. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178. ACM (2009)

34. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

35. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 32

36. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxil-
iary input. In: Proceedings of 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2005), Pittsburgh, PA, USA, 23–25 October 2005,
pp. 553–562 (2005)

37. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40084-1 30

38. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 3

39. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-70936-7 11

40. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 19

41. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 34

42. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 26

43. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS, Philadelphia, PA, USA, 18–21 October 2014,
pp. 374–383 (2014)

44. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

45. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562,
pp. 96–124. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 5

46. Micciancio, D.: Oblivious data structures: applications to cryptography. In: Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
pp. 456–464. ACM (1997)

http://dx.doi.org/10.1007/978-3-662-44371-2_29
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-642-40084-1_30
http://dx.doi.org/10.1007/978-3-540-85174-5_3
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-540-70936-7_11
http://dx.doi.org/10.1007/978-3-642-11799-2_19
http://dx.doi.org/10.1007/3-540-44448-3_34
http://dx.doi.org/10.1007/3-540-44448-3_34
http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/978-3-662-49096-9_5

Patchable Indistinguishability Obfuscation: iO for Evolving Software 155

47. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic
public-key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 37

48. Moran, T., Rosen, A.: There is no indistinguishability obfuscation in pessiland.
IACR Cryptology ePrint Archive 2013:643 (2013)

49. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010:556 (2010)

50. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

51. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, 31 May–03 June 2014, pp. 475–484 (2014)

http://dx.doi.org/10.1007/978-3-642-29011-4_37
http://dx.doi.org/10.1007/978-3-642-29011-4_37
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27

	Patchable Indistinguishability Obfuscation: iO for Evolving Software
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work: Incremental Cryptography

	2 Patchable iO: Definitions and Implications
	2.1 Definition: Single-Program pa-iO
	2.2 Definition: Multi-program pa-io

	3 Splittable iO
	3.1 Patchable Encoding Scheme
	3.2 Definition of Splittable iO

	4 Splittable iO to Single-Program pa-iO
	References

