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Abstract. Motivated by the goal of securely searching and updating dis-
tributed data, we introduce and study the notion of function secret shar-
ing (FSS). This new notion is a natural generalization of distributed point
functions (DPF), a primitive that was recently introduced by Gilboa and
Ishai (Eurocrypt 2014). Given a positive integer p ≥ 2 and a class F of
functions f : {0, 1}n → G, where G is an Abelian group, a p-party FSS
scheme for F allows one to split each f ∈ F into p succinctly described
functions fi : {0, 1}n → G, 1 ≤ i ≤ p, such that: (1)

∑p
i=1 fi = f , and

(2) any strict subset of the fi hides f . Thus, an FSS for F can be thought
of as method for succinctly performing an “additive secret sharing” of
functions from F . The original definition of DPF coincides with a two-
party FSS for the class of point functions, namely the class of functions
that have a nonzero output on at most one input.

We present two types of results. First, we obtain efficiency improve-
ments and extensions of the original DPF construction. Then, we ini-
tiate a systematic study of general FSS, providing some constructions
and establishing relations with other cryptographic primitives. More con-
cretely, we obtain the following main results:

– Improved DPF. We present an improved (two-party) DPF con-
struction from a pseudorandom generator (PRG), reducing the length
of the key describing each fi from O(λ · nlog2 3) to O(λn), where λ
is the PRG seed length.

– Multi-party DPF. We present the first nontrivial construction of
a p-party DPF for p ≥ 3, obtaining a near-quadratic improvement
over a naive construction that additively shares the truth-table of f .
This constrcution too can be based on any PRG.

– FSS for simple functions. We present efficient PRG-based FSS
constructions for natural function classes that extend point func-
tions, including interval functions and partial matching functions.

– A study of general FSS. We show several relations between
general FSS and other cryptographic primitives. These include a
construction of general FSS via obfuscation, an indication for the
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implausibility of constructing general FSS from weak cryptographic
assumptions such as the existence of one-way functions, a complete-
ness result, and a relation with pseudorandom functions.

1 Introduction

A secret sharing scheme [44] allows a dealer to randomly split a secret s into p
shares, such that certain subsets of the shares can be used to reconstruct the
secret and others reveal nothing about it. The simplest type of secret sharing is
additive secret sharing, where the secret is an element of an Abelian group G,
it can be reconstructed by adding all p shares, and every subset of p − 1 shares
reveals nothing about the secret. A useful feature of this secret sharing scheme
is that it is homomorphic in the sense that if p parties hold shares of many
secrets, they can locally compute shares of the sum of all secrets. This feature of
additive secret sharing (more generally, linear secret sharing) is useful for many
cryptographic applications.

In this work we study the following natural extension of additive secret shar-
ing. Suppose we are given a class F of efficiently computable and succinctly
described functions f : {0, 1}n → G. Is it possible to split an arbitrary f ∈ F
into p functions f1, . . . , fp such that: (1) f(x) =

∑p
i=1 fi(x) (on every input x),

(2) each fi is described by a short key ki that enables its efficient evaluation,
yet (3) any strict subset of the keys completely hides f? We refer to a solution
to this problem as a function secret sharing (FSS) scheme for F .

If one insists on perfectly hiding f , then it can be shown that, even for very
simple classes F , the best possible solution is to additively share the truth-
table representation of f , whose shares consist of 2n group elements. But if
one considers the computational notion of hiding, then there are no apparent
limitations to what can be done for polynomial-time computable f . The power
of such computationally hiding FSS schemes is the main question considered in
this work.

We note that other types of secret sharing of functions have been considered
in the literature, mostly in the context of threshold cryptography (cf. [16,18]).
However, these other notions either apply only to very specific function classes
that enjoy homomorphism properties compatible with the secret sharing, or
alternatively they do not require an additive (or homomorphic) representation
of the output which is essential for the applications we consider.

A useful instance of FSS, recently introduced by Gilboa and Ishai [26], is
a distributed point function (DPF). A DPF can be viewed as a 2-party FSS
for the function class F consisting of all point functions, namely all functions
f : {0, 1}n → G that evaluate to 0 on all but at most one input. For x ∈ {0, 1}n

and y ∈ G, we denote by fx,y the point function that evaluates to y on input x
and to 0 on all other inputs. The main result of [26] was an efficient construction
of a DPF from any pseudorandom generator (PRG), or equivalently any one-way
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function [34].1 More concretely, given a PRG with seed length λ, the length of
each key ki is O(λ · nlog2 3).

The DPF problem was motivated in [26] by applications to improving the
communication and computation complexity of 2-server private information
retrieval (PIR) [14,15,38] and related problems, as well as by the complexity
theoretic problem of worst-case to average-case reductions. To further motivate
the questions considered in this work, we discuss two typical application scenar-
ios for DPF and the benefits that could be gained by extending DPF to more
general instances of FSS.

Multi-server PIR and secure keyword search. Suppose that each of p
servers holds a database D of m keywords wj ∈ {0, 1}n. A client wants to count
the number of occurrences of a given keyword w without revealing w to any
strict subset of the servers. Letting G = Zm+1 and f = fw,1, the client splits
f into p additive shares and sends to server i the key ki describing fi. Server
i computes and sends back to the client

∑
wj∈D fi(wj). The client can find the

number of matches by adding the p group elements received from the servers.
In this application, FSS for other classes F can be used to accommodate richer
types of search queries, such as counting the number of keywords that lie in an
interval, satisfy a fuzzy match criterion, etc. We note that by using standard
randomized sketching techniques, one can obtain similar solutions that do not
only count the number of matches but also return the payloads associated with
a bounded number of matches (see, e.g., [41]).

Incremental secret sharing. Suppose that we want to collect statistics
about web usage of mobile devices without compromising the privacy of individ-
ual users, and while allowing fast collection of real-time aggregate usage data.
A natural solution is to maintain a large secret-shared array of group elements
between p servers, where each entry in the array is initialized to 0 and is incre-
mented whenever the corresponding web site is visited. A client who visits URL
u can now secret-share the point function f = fu,1, and each server i updates
its shared entry of each URL uj by locally adding fi(uj) to this share. The end
result is that only position uj in the shared array is incremented, while no collu-
sions involving strict subsets of servers learn which entry was incremented.2 Here
too, applying general FSS can allow for more general “attribute-based” writing
patterns, such as secretly incrementing all entries whose public attributes sat-
isfy some secret predicate. The above incremental secret sharing primitive can
be used to obtain low-communication solutions to the problem of private infor-
mation storage [40], the “writing” analogue of PIR.

1 The construction from [26] is described for the special case where G = Z
m
2 , but it

can be easily extended to the case of a general Abelian G.
2 Handling malicious clients who may try to tamper with this process is beyond the

scope of this work; we note, however, that due to the succinctness and simple struc-
ture of FSS shares one could employ general techniques for secure multiparty com-
putation for this purpose without a major toll on efficiency.



340 E. Boyle et al.

1.1 Our Contribution

In this work we improve and extend the work of [26], presenting two types of
results. First, we improve the efficiency of the previous DPF construction and
obtain the first nontrivial p-party DPF constructions for p ≥ 3. Second, we
initiate a systematic study of general FSS, providing some constructions and
establishing relations with other cryptographic primitives. More concretely, we
obtain the following main results:

Improved DPF. We present an improved (two-party) DPF construction from
one-way functions, reducing the length of the key describing each fi from O(λ ·
nlog2 3) to O(λn), where λ is a security parameter (that can be thought of as
the seed length of a PRG) and n is the input and output length. We also obtain
a similar improvement in the evaluation time. This improvement can have rele-
vance to the practical efficiency of 2-server PIR and related primitives.

Multi-party DPF. We provide the first nontrivial construction of a p-party
DPF for p ≥ 3, obtaining a near-quadratic improvement over a naive construc-
tion that additively shares the truth-table of f . This construction too can be
based on the (necessary) assumption that a one-way function exists. More con-
cretely, letting N = 2n denote the input domain size and λ a PRG seed length,
the length of each DPF key ki is O(λ · 2p/2 · N1/2). Improving the asymptotic
dependence on N (without relying on stronger assumptions) is one of the main
questions left open by this work. For p ≥ 3, our p-party DPF implies the first
p-server, (p−1)-private PIR protocols with sublinear query length and constant
answer length, as well as the first (p−1)-private sublinear-communication storage
schemes in the model of [40].

FSS for simple functions. We present efficient PRG-based FSS construc-
tions for natural function classes that go beyond point functions. These include
interval functions and instances of partial matching functions. As illustrated
above, such extensions can be used to support more general search queries or
selection criteria.

A study of general FSS. We initiate a study of general FSS by showing
several relations between FSS and other primitives. In particular, we obtain the
following results:

– We observe that FSS for general polynomial-time computable functions can
be obtained from an ideal obfuscation and one-way functions. This implies
(using [2]) a provable construction in the generic multilinear map model,
as well as a heuristic construction using existing candidates. Furthermore,
building on a recent work of Canetti et al. [13], we obtain a similar result
based on Indistinguishability Obfuscation (iO) with sub-exponential security.

– Complementing the above, we give evidence against the possibility of con-
structing general FSS from weak cryptographic assumptions such as the
existence of one-way functions or even oblivious transfer. We do this by
showing that general FSS implies low-communication protocols for secure
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two-party computation that rely on a reusable source of correlated random-
ness (that can be realized via one-time offline preprocessing). Currently all
known approaches for obtaining such protocols rely on fully homomorphic
encryption or related primitives. We show that a similar “barrier” applies
even to FSS for the complexity class AC0. This should be contrasted with
our PRG-based positive results, which apply to strict sub-classes of AC0.

– We prove the following completeness result: assuming the hardness of LWE,
there is a class F of functions in NC1 such that an efficient FSS for F implies
an efficient FSS for arbitrary polynomial-time computable functions.

– We show that in an FSS scheme for any “sufficiently rich” function class F
(which covers point functions as a special case), each share fi must define a
pseudorandom function. Note that this is not a-priori clear from the security
definition, which only requires that the shares hide f .

1.2 Related Work

In this section we discuss alternative approaches for tackling the motivating
applications for DPF and FSS discussed above. Compared to our PRG-based
constructions, all of these approaches have significant limitations in efficiency or
security.

Information-theoretic multi-server PIR. The notion of p-party DPF
roughly corresponds to a p-server PIR protocol with 1-bit answers and computa-
tional privacy against any p−1 servers. In this setting, insisting on information-
theoretic privacy implies that the length of the query sent to each server must
be linear in the database size [5,45]. This barrier can be overcome by either
settling for a lower privacy threshold t < p − 1 or allowing for longer answers.
(The latter relaxation is not suitable for applications that involve “writing,”
and results in PIR? protocols that have poor information rate when applied
to databases with long records.) Even with the above relaxations, the asymp-
totic communication complexity of the best known information-theoretic PIR
protocols [4,6,15,19,21,47] is worse than that of DPF-based protocols.

Single-server PIR. Single-server, computationally-private PIR protocols [12,
38,39] can achieve similar communication complexity to DPF-based 2-server
protocols, and moreover they have the advantages of requiring only one server
and not being vulnerable to colluding servers. However, they are not suitable
for applications that involve writing, they cannot support constant-size answers,
and they do not extend to the richer type of queries supported by our PRG-based
FSS constructions (except when using fully homomorphic encryption, discussed
below). Perhaps most importantly, single-server PIR protocols make an intensive
(and in some sense inherent [20]) use of public-key cryptography, compared to
our PRG-based constructions for DPF and simple instances of FSS. Thus, the
computational overhead on the server side, which typically forms the practical
efficiency bottleneck, can be much lower in DPF-based protocols.

FHE and TFHE. Fully homomorphic encryption (FHE) [23] can be used to
accommodate the richer query types implied by general FSS. However, the other
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limitations of PIR discussed above apply also to FHE-based protocols, and more-
over the concrete computational cost of current implementations is even worse.
Constructions of a threshold variant of FHE (TFHE) from [1] can be used to
realize a relaxed form of FSS, where the output of the function f is secret-shared
in a more redundant way that nevertheless still supports homomorphic additions
and allows for efficient decoding of the output from the shares without the knowl-
edge of a secret key. However, TFHE is a stronger primitive than standard FHE
and its implementations are even less efficient. We note that our barriers for
general FSS from weak assumptions do not apply to FHE-based constructions,
leaving open the possibility of realizing our general notion of FSS from FHE or
specific assumptions such as LWE.

Oblivious RAM. Oblivious RAM (ORAM) [31] allows a client to efficiently
access data stored on a remote server while hiding the contents of the data and
the locations being accessed. However, despite the superficial similarity to the
PIR scenario considered here, ORAM addresses a very different problem. In
particular, ORAM requires that the client “own” the data and does not directly
apply in the case where the data to be accessed comes from other sources, nor
does it scale efficiently in the case of read and write operations by many clients
who do not trust each other.

Organization. In Sect. 2 we formally define our notion of FSS and discuss
several variants and relaxations of this notion. In Sect. 3 we describe new PRG-
based constructions of DPF schemes and FSS schemes for simple function classes,
as well as a general FSS construction via general-purpose obfuscation. Finally,
in Sect. 4 we relate the FSS primitive to other cryptographic primitives and
present some barriers to basing general FSS on weak primitives such as a one-
way function.

2 Function Secret Sharing

We now formally define our notion of a function secret sharing (FSS) scheme.
Recall that, unlike “standard” secret sharing for individual elements, we begin
with the description of a function f that we wish to share among parties. The
FSS scheme provides a means to split this function into separate keys, where
each party’s key enables him to efficiently generate a standard secret share of
the evaluation f(x), and yet each key individually does not reveal information
about which function f has been shared.

Note that FSS schemes can differ in the underlying procedure for recovering
f(x) from the parties’ key-computed shares (including the number of shares),
and also in the relevant function class F for which correctness and security are
supported. In what follows, we present a general version of this definition, allow-
ing arbitrary output decoding procedures; however, in this work we focus on the
setting in which the output decoder is a fixed linear function of parties’ output
shares. Namely, decoding will correspond to taking the sum of the output shares
over an Abelian group structure. We discuss this choice of decoding structures
below.



Function Secret Sharing 343

Definition 1 (Output Decoder). A p-party share output decoder DEC is
a tuple (S1, . . . , Sp, R,Dec) specifying: share spaces S1, . . . , Sp for each of the p
parties; output space R; and a decoder function Dec : S1 × · · · × Sp → R taking
parties’ shares to an output.

We define the p-party additive output decoder for an Abelian group G to
be the tuple DEC = ((G, · · · ,G),G,Dec+), where Dec+(g1, . . . , gp) =

∑p
i=1 gi

computes the sum of elements w.r.t. the group operator of G.

Remark 1 (Modeling Function Families). We model a function family F as an
infinite collection of bit strings f (“functions”), together with efficient procedures
IdentifyDomain and Evaluate, such that the procedure Df ← IdentifyDomain(1λ, f)
interprets from the string f its corresponding input domain space, and y ←
Evaluate(f, x), for any input x ∈ Df , defines the “output” of f at x. By conven-
tion, we assume the description of f includes also the input length and output
length of f . We refer the reader to e.g. [36] for a complete formal description of
this model.

For simplicity of notation, in this work we will refer to the domain Df of f
without making explicit reference to the corresponding call to IdentifyDomain,
and will denote an evaluation Evaluate(f, x) by shorthand notation “f(x).”

Definition 2 (Function Secret Sharing). For p ∈ N, T ⊆ [p], a p-party, T -
secure function secret sharing (FSS) scheme with respect to share output decoder
DEC = (S1, . . . , Sp, R,Dec) and function class F is a pair of PPT algorithms
(Gen,Eval) with the following syntax:

– Gen(1λ, f): On input the security parameter 1λ and function description f ∈
F , the key generation algorithm outputs p keys, (k1, . . . , kp).

– Eval(i, ki, x): On input a party index i, key ki (which we assume to encode
the input and output domains D,R of the shared function) and input string
x ∈ D, the evaluation algorithm outputs a value yi ∈ Si, corresponding to
this party’s share of f(x).

satisfying the following correctness and secrecy requirements:

– Correctness: For all f ∈ F , x ∈ Df ,

Pr
[
(k1, . . . , kp) ← Gen(1λ, f)

: Dec
(
Eval(1, k1, x), . . . ,Eval(p, kp, x)

)
= f(x)

]
= 1.

– Security: Consider the following indistinguishability challenge experiment
for corrupted parties T ⊂ [p]:
1: The adversary outputs (f0, f1, , ) ← A(1λ), where f0, f1 ∈ F with Df0 =

Df1 .
2: The challenger samples b ← {0, 1} and (k1, . . . , kp) ← Gen(1λ, fb).
3: The adversary outputs a guess b′ ← A((ki)i∈T , , ), given the keys for

corrupted T .
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Denote by Adv(1λ,A) := Pr[b = b′] − 1/2 as the advantage of A in guessing
b in the above experiment, where probability is taken over the randomness of
the challenger and of A. We say the scheme (Gen,Eval) is T -secure if there
exists a negligible function ν such that for all non-uniform PPT adversaries
A, it holds that Adv(1λ,A) ≤ ν(λ).

Unless otherwise specified, we naturally interpret the output domain of the func-
tion f as an Abelian group G (in particular, {0, 1}n is interpreted as an Abelian
group with respect to the xor group operator ⊕), and DEC is the corresponding
additive output decoder as specified in Definition 1.

Remark 2. A few remarks about our definition.

1. (Adversary Structure). We say an FSS scheme is t-secure for threshold t < p
if it is T -secure for all T ⊂ [p] of size |T | ≤ t. By default, when not otherwise
specified, “secure FSS” will refer to (p−1)-security, in which any strict subset
of parties may be corrupted.

2. (Variable Output Domains). For simplicity, we take the convention that all
functions within a class F share the same output domain (i.e., f : Df → R
for shared R). We may also extend in a straightforward way to the set-
ting in which each function f has a possibly different output domain Rf .
The corresponding security will be required to hold with respect to pairs of
functions f0, f1 ∈ F with both matching domains (Df0 = Df1) and ranges
(Rf0 = Rf1).

3. (Simulation-Based Security). Our game-based security definition mirrors that
of semantic security, where the shares of corrupted parties play the role of an
“encryption” of f . As with semantic security, our game-based indistinguisha-
bility security definition can equivalently be expressed as a simulation-based
definition, where one must be able to simulate the distribution of corrupted
parties’ shares without knowledge of the shared function f (cf. [28,32]).

Output Decoding Schemes. The FSS definition above is presented with respect
to an arbitrary choice of output decoding function Dec. Based on the structure
of the chosen decoding process, the corresponding FSS scheme will have very
different properties. For example, more complex decoding procedures Dec open
the possibility of achieving FSS for more general classes of functions F , but
place limits on the applicability of the resulting scheme. Many choices for the
structure of the output decoding function yield uninteresting notions, as we now
discuss.

Arbitrary Reconstruction. Consider, for example, the FSS notion as defined,
but with no restriction on the reconstruction procedure for parties’ output
shares. Such wide freedom will render the notion non-meaningful, as it gives
rise to trivial constructions. Indeed, for any efficient function family F , one can
generate FSS keys for a secret function f ∈ F simply by sharing a description of
f interpreted as a string, using a standard secret sharing scheme. The evaluation
procedure on any input x will simply output x together with the party’s share
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of f , and the decoding procedure Dec will first reconstruct the description of f ,
and then compute and output the value f(x).

This construction satisfies correctness and security as specified above (indeed,
each party’s key individually reveals no information on f). But, the scheme
clearly leaves much to be desired in terms of utility: From just one evaluation,
the entire function f is revealed to whichever party receives and reconstructs
these output shares. At such point, the whole notion of function secret sharing
becomes moot.

“Function-Private” Output Shares. Instead, from a function secret sharing
scheme, one would hope that parties’ output shares (resulting from executing
Eval) for input x do not reveal more about the secret function f than is necessary
to determine f(x). That is, we may impose a “function privacy” requirement on
the reconstruction scheme, requiring that pairs of parties’ output shares for each
input x can be simulated given just the corresponding outputs f(x).

This requirement is both natural and beneficial, but by itself still allows for
undesired constructions. For example, given a secret function f , take one FSS key
to be a garbled circuit of f , and the second key as the information that enables
translating inputs x to garbled input labels. This provides a straightforward
function-private solution for one output evaluation, and can easily be extended
to the many-output case by adding shared secret randomness to the parties’
keys.3 Yet this construction (and thus definition) is unsatisfying: although the
output shares now hide f , their size is massive—for every output, comparable
to a copy of f itself.

Succinct, Function-Private Output Shares. We thus further restrict the
scheme, demanding additionally that output shares be succinct: i.e., comparable
in size to the function output. This definition already captures a strong, inter-
esting primitive. For example, as shown in Section 4.2, achieving such an FSS
scheme for general functions implies a form of communication-efficient secure
multi-party computation that is currently only achievable using advanced cryp-
tographic machinery (i.e., fully homomorphic encryption or reusable garbled
circuits). However, there is one final property that enables an important class of
applications, but which is not yet guaranteed: a notion of share compressibility.

Let us explore this property. Recall that one of the exciting application
regimes of distributed point functions (DPF) [26] was enabling communication-
efficient secure (2-server) Private Information Retrieval (PIR). Intuitively, to
privately recover an item xi from a database held by both servers, one can gen-
erate and distribute a pair of DPF keys encoding a point function fi whose only
nonzero output is at secret location i. Each server then responds with a single
element, computed as the weighted sum of each data item xj with the server’s
output share of the evaluation fi(xj). Correctness of the DPF scheme implies
that the xor of the two servers’ replies is precisely the desired data item xi,
3 Namely, for each new x, the parties will first use their shared randomness to coor-

dinately rerandomize the garbled circuit of f and input labels, respectively.
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while security guarantees the servers learn nothing about the index i. But most
importantly, the linear structure of the DPF reconstruction enabled the output
shares pertaining to all the different elements of the database to be compressed
into a single short response.

On the other hand, consider, for example, the PIR scenario but where the
servers instead hold shares of the function fi with respect to a bitwise AND recon-
struction of output shares in the place of xor/addition. Recovery of the requested
data item xi now implies computing set intersection—and thus requires commu-
nication complexity equal to the size of the database [37]! In extending the DPF
notion to more general FSS primitives, we wish to preserve and extend this class
of applications. We thus maintain the crucial property that output shares can
be combined and compressed in a meaningful way. To do so, we remain in stride
with the linearity of output share decoding.

Our setting: Linear share decoding. In this work, we focus purely on the set-
ting of FSS where the output decoder is a linear function of parties’ shares:
specifically, the additive output decoder as in Definition 1. This clean, intuitive
structure in fact provides the desired properties discussed above: Linearity of
reconstruction provides convenient share compressibility. Output shares must
themselves be elements of the function output space, immediately guaranteeing
share succinctness. And as we show in Section 4.1, the linear reconstruction in
conjunction with basic key security directly implies function privacy.

We hence restrict our attention to this setting, and unless otherwise specified
will implicitly take an “FSS scheme” to be one with a linear reconstruction
procedure DEC defined above.

2.1 Preliminaries

In this work, we make use of several cryptographic tools. For formal definitions
of the notions of computational indistinguishability, pseudorandom generators,
and pseudorandom functions, we refer the reader to [28]. For fully homomorphic
encryption definitions and constructions, see, e.g., [10,23,25]. And, for program
obfuscation, see virtual black-box [3], indistinguishability obfuscation (iO) [3,22],
and probabilistic iO [13].

3 New Constructions

In the following section, we present several new constructions of FSS schemes
for various function families.

We begin in Section 3.1 by showing two new constructions for the family of
point functions. The first is a two-key construction that significantly reduces the
key size and computational complexity compared to all previous constructions.
The second is the first p-key construction, secure against coalitions of up to p−1
key holders, with key size a square root of what a trivial construction achieves.
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In Section 3.2, we go beyond the family of point functions in several ways. We
identify general low-level transformations that modify an existing FSS scheme
into one for a modified function class. We combine some of these general trans-
formations, in addition to existing FSS schemes, to yield constructions for more
expressive function families. In addition, we extend the previous results for point
functions to include the family of interval functions with minimal overhead.

In Section 3.3, we show that FSS for general efficient functionalities is implied
by certain forms of program obfuscation (namely, virtual black-box or sub-
exponentially secure indistinguishability obfuscation).

3.1 Point Functions

Definition 3. For a, b ∈ {0, 1}n, the point function Pa,b : {0, 1}n → {0, 1}m is
defined by Pa,b(a) = b and Pa,b(a′) = 0m for all a′ 
= a.

We begin by describing a construction for the class of two-party point func-
tions Pa,b(x) : {0, 1}n → {0, 1}m. The scheme we show, (Gen•,Eval•), reduces
the key size and the computational complexity compared to the construction of
distributed point functions in [26], from O(λnlog 3) to O(λn), making use of a
pseudorandom generator with seed length λ. (Gen•,Eval•) are given by Algo-
rithms 1 and 2.

At a high level, the scheme works as follows. Each party’s key, k0 and k1,
defines a binary tree of depth n with a pseudo-random string at each node (the
strings are the S||T ’s defined in lines 9 and 10 of Algorithm 2). The binary
trees defined by k0 and k1 are identical except for the path from the root to the
target point a = a1, . . . , an. On this path, the strings in the two trees are chosen
pseudo-randomly and independently of each other.

Eval•(β, kβ , x) traverses a path in the tree that kβ defines from the root
to x = x1, . . . , xn, computing the strings along the path. At each node with
string Sβ

0 [i]||Sβ
1 [i]||T β

0 [i]||T β
1 [i], Eval• computes the corresponding strings for its

xith child (left or right) by expanding either the left or right seed Sβ
xi

[i] using
the pseudo-random generator G(Sβ

xi
[i]), and adding in “correction” strings cs, ct

(from the key kβ) to the corresponding “s” and “t” portions of the expanded
output, as dictated by the bit T β

xi
[i].

The function of Gen•(1λ, a, b) is to ensure the correct creation of the two trees.
Specifically, it ensures that at the exact point that a prefix of x diverges from
the path to a, Eval•(0, k0, x) and Eval•(1, k1, x) compute the same strings S, T .
(Then, for any path continuing from this point, the values will always remain
equal). For prefixes that diverge at the root (i.e., a1 
= x1), each key includes
the same string since lines 2, 3 sets S1

¬a1
[1] = S0

¬a1
[1] and T 1

¬a1
[1] = T 0

¬a1
[1]

(superscript here is party id). Any other location of diverging prefixes is resolved
by setting the correct strings cs, ct in lines 6-9 of Algorithm 1.

Gen• has a negligble probability of failure (expressed by setting w ← 0),
which is a result of generating equal random values for S0

an
[n] = S1

an
[n]. It is

always possible to run Gen• again if it fails. In Algorithm 5 we show how to
obtain a scheme without any error.
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Intuitively, security holds for (Gen•,Eval•) because all information related to
the point function fa,b is encoded in the strings cs, ct, masked by pseudorandom
strings whose seeds appear only in the other party’s key. Note that the original
values S, T in lines 2,3 are completely independent of the point function.

Due to space limitations, we refer the reader to the full version of this work
for a complete proof of correctness and security of (Gen•,Eval•).

Notation 1. We use the following notational conventions in Algorithms 1 and
2. Superscripts denote the party id, and are used for strings appearing in the tree
defined by this party’s key. Square brackets denote the depth of a node in the tree,
ranging from 1 to n. One or two binary-valued subscripts are used to distinguish
between strings that are associated with a specific node in the tree (e.g., to be
used when continuing to the left or right from this node). For example Sβ

α[i] is
in the tree defined by party β’s key kβ at depth i, and is one of two strings (the
other is Sβ

¬α[i]) at a specific node in the tree.

Algorithm 1. Gen•(1λ, a, b)

1: Let G : {0, 1}λ −→ {0, 1}max{2λ+2,m} be a PRG.
2: Choose three random seeds S0

a1 [1], S1
a1 [1], S0

¬a1 [1] ∈ {0, 1}λ and set S1
¬a1 [1] ←

S0
¬a1 [1].

3: Choose four random bits T β
α [1], for α, β ∈ {0, 1}, subject to T 0

a1 [1] �= T 1
a1 [1] and

T 0
¬a1 [1] = T 1

¬a1 [1].
4: for i = 1 to n − 1 do
5: Let G(Sβ

ai
[i]) = sβ

0 ||sβ
1 ||tβ

0 ||tβ
1 , where sβ

α ∈ {0, 1}λ, tβ
α ∈ {0, 1} for α, β ∈ {0, 1}.

6: Randomly choose cs0,ai+1 , cs1,ai+1 ∈ {0, 1}λ.

7: Randomly choose cs0,¬ai+1 , cs1,¬ai+1 ∈ {0, 1}λ subject to
⊕1

β=0(csβ,¬ai+1 ⊕
sβ

¬ai+1) = 0.

8: Randomly choose ct0,ai+1 , ct1,ai+1 ∈ {0, 1} subject to
⊕1

β=0(ctβ,ai+1 ⊕ tβ
ai+1) =

1.
9: Randomly choose ct0,¬ai+1 , ct1,¬ai+1 ∈ {0, 1} subject to

⊕1
β=0(ctβ,¬ai+1 ⊕

tβ
¬ai+1) = 0.

10: Set CWβ [i] ← csβ,0||csβ,1||ctβ,0||ctβ,1 for β = 0, 1.
11: Set Sβ

α[i + 1] ← sβ
α ⊕ csτ,α for τ = T β

ai
[i] and α, β ∈ {0, 1}.

12: Set T β
α [i + 1] ← tβ

α ⊕ ctτ,α for τ = T β
ai

[i] and α, β ∈ {0, 1}.
13: end for
14: if G(S0

an
[n]) �= G(S1

an
[n]) then

15: Set w ← (G(S0
an

[n]) + G(S1
an

[n]))−1 · b with arithmetic over F2m .
16: else
17: Set w ← 0.
18: end if
19: Set kβ ← ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n − 1], CW1[n −

1]), w).
20: Return (k0, k1).
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Algorithm 2. Eval•(β, kβ , x)

1: Let G : {0, 1}λ −→ {0, 1}max{2λ+2,m} be a PRG.
2: Let the binary representation of x be x = x1, . . . , xn.
3: Parse kβ as kβ = ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n − 1]), w).
4: Set S ← Sβ

x1 [1].
5: Set T ← T β

x1 [1].
6: for i = 2 to n do
7: Parse G(S) as G(S) = s0||s1||t0||t1.
8: Parse CWT [i − 1] as CWT [i − 1] = csT,0||csT,1||ctT,0||ctT,1.
9: Set S ← sxi ⊕ csT,xi .

10: Set T ← txi ⊕ ctT,xi .
11: end for
12: Return G(S) · w with arithmetic over F2m .

A p-party protocol. For some applications, one may wish to share a function
f among several parties. In this setting, there is an additional challenge in main-
taining security against collusions of corrupted parties. Note that for any family
of functions F : {0, 1}n → {0, 1}m, we can trivially support secret sharing of F
across p parties with security against coalitions of up to p−1 keys, with key size
2n · m. Indeed, this amounts to simply secret sharing the entire evaluation table
of the function f among parties as a string: Gen(1λ, f) chooses p random strings
k1, . . . , kp ∈ {0, 1}2n·m such that

⊕p
i=1 ki[x] = f(x) for all x ∈ {0, 1}n.

We now present a scheme (Genp0 ,Evalp0) sharing a DPF Pa,b : {0, 1}n →
{0, 1}m, secure against any coalition of at most p − 1 key holders, and with
key length O(2n/2 · 2p/2 · m). For a constant number of parties p ∈ O(1), this
corresponds to a square root of the key length in the trivial solution. At a
high level, the scheme (Genp0 ,Evalp0) works as follows. Consider the 2n-entry
evaluation table of the secret function fa,b as a 2n/2 × 2n/2 grid4, where rows
and columns are indexed by the first and second n/2 bits of the input. The
algorithm Genp0 generates the following values: For each row γ′ ∈ {0, 1}n/2 in
this table, it samples 2p−1 random λ-bit strings sγ′,1, . . . , sγ′,2p−1 ∈ {0, 1}λ to be
used as seeds for a pseudorandom generator (PRG) G. In addition, it generates
2p−1 total (not per row) “correction words” cw1, . . . , cw2p−1 ∈ ({0, 1}m)2

n/2
,

as a function of the strings sγ′,� and the secret function Pa,b. Each party i
receives as its key the collection of all 2p−1 correction words and some subset of
the PRG seeds. The algorithm Evalp0 , given a party’s key and input x, parses
x = (γ′, δ′) ∈ {0, 1}n/2 × {0, 1}n/2, takes its set of PRG seeds corresponding
to the row γ′, expands each via G to a vector ({0, 1}m)2

n/2
which matches the

form of a row in the function evaluation table, takes the exclusive-or of all the
expanded vectors together with the corresponding subset of correction words
4 The dimensions of the table in the algorithm are slightly different, which results in

reducing the key size by a factor of 2p/2.
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(i.e. the subset of {cwj : j ∈ [2p−1]} for which its key contained the jth row-γ′

seed sγ′,j), and outputs the (δ′)th component of this row vector. Collectively,
this description corresponds to Step 6 of Algorithm 4.

The subset of seeds, and the generation of the correction words is chosen by
Genp0 so as to ensure the following properties:

1. For each row γ′ not equal to the special row γ, and for each of the 2p−1

PRG seeds sγ′,j corresponding to this row, it will hold that the number of
parties holding sγ′,j in their key is even. Thus, during the evaluation phase,
all contributions from G(sγ′,j) and from its corresponding jth correction
word cwj will cancel out, leaving the desired 0 evaluation.

2. For the special row γ, each sγ,j will appear in an odd number of parties’
keys. This means there will be exactly one copy of each G(sγ,j) and each
cwj remaining in the combined evaluation xor from all parties. Further, for
each party i, there is at least one seed sγ,j (in our construction, exactly one)
for which party i is the only party given sγ,j . This will be important for
security, as G(sγ,j) for the uncorrupted party will serve as a mask to hide
information on Pa,b in the correction words.

3. Given any p − 1 keys, Case (1) and (2) are indistinguishable.
4. The correction words cwj , j ∈ [2p−1] are chosen randomly subject to the

constraint
⊕2p−1

j=1 (cwj ⊕ G(sγ,j)) = eδ · b, where eδ denotes the unit vector
whose δth component is equal to 1. From Property (2), this constraint exactly
yields the required correctness guarantee. And, since the cwj are random up
to this condition, then even given any (2p−1 − 1) of the seeds sγ,j (but with
one missing), the distribution of these seeds together with all the cwj ’s is
computationally indistinguishable from random.

We now proceed to describe the scheme with these properties.
Given natural numbers p and q, it is readily apparent that for exactly qp−1

of the sequences of length p over the set {0, . . . , q −1} the sum of the p elements
modulo q is 0 and for exactly qp−1 of these sequences the sum of all the elements
modulo q is 1. (One way to deduce this statement is that given any choice of the
first p − 1 elements in {0, . . . , q − 1} there is a single choice for the last element
that makes the sum of the whole sequence 1 and a single choice that makes the
sum 0). For the special case of q = 2 we introduce the following useful notation.

Notation 2. Given p ∈ N, let Ep and Op denote subsets of binary arrays of
size p × 2p−1. Let Ep denote the set of all arrays such that the columns of each
array are all the p-bit strings with an even number of 1 bits and let Op denote
the set of all arrays such that the columns of each array are all the p-bit strings
with an odd number of 1 bits. We use A ∈R Ep (or A ∈R Op) to denote that A
is randomly sampled from Ep (Op). We use ea · b to denote a vector of length
2|a| with b in location a and 0 in all other locations.

We present the p-party FSS scheme for point functions (Genp0 ,Evalp0) in
Algorithms 3 and 4.
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Algorithm 3. Genp0(1λ, a, b)

1: Let G : {0, 1}λ −→ {0, 1}mμ be a PRG (μ is defined in line 2).
2: Let μ ← 	2n/2 · 2(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard a as a pair a = (γ, δ), γ ∈ [ν], δ ∈ [μ].
4: Choose ν arrays A1, . . . , Aν , s.t. Aγ ∈R Op and Aγ′ ∈R Ep for all γ′ �= γ.
5: Choose randomly and independently ν · 2p−1 seeds s1,1, . . . , sν,2p−1 ∈ {0, 1}λ.

6: Choose 2p−1 random strings cw1, . . . , cw2p−1 ∈ {0, 1}mμ s.t.
⊕2p−1

j=1 (cwj ⊕
G(sγ,j)) = eδ · b.

7: Set σi,γ′ ← (sγ′,1·Aγ′ [i, 1])|| . . . ||(sγ′,2p−1 ·Aγ′ [i, 2p−1]) for all 1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν.
8: Set σi = σi,1|| . . . ||σi,ν for 1 ≤ i ≤ p.
9: Let ki = (σi||cw1|| . . . ||cw2p−1) for 1 ≤ i ≤ p.

10: Return (k1, . . . , kp).

Algorithm 4. Evalp0(i, ki, x)

1: Let G : {0, 1}λ −→ {0, 1}mμ be a PRG (μ is defined in line 2).
2: Let μ ← 	2n/2 · 2(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard x as a pair x = (γ′, δ′), γ′ ∈ [ν], δ′ ∈ [μ].
4: Parse ki as ki = (σi, cw1, . . . , cw2p−1).
5: Parse σi as σi = s1,1|| . . . ||s1,2p−1 || . . . ||sν,2p−1 .
6: Let yi ←⊕1≤j≤2p−1,

sγ′,j �=0

(cwj ⊕ G(sγ′,j)).

7: Return yi[δ
′].

We informally argue that (Genp0 ,Evalp0) is an FSS scheme for point func-
tions. The scheme is correct because of the following. If Genp0(ki, x) outputs
(k1, . . . , kp) then

⊕p
i=1 Eval

p0(i, ki, x) =
⊕p

i=1 yi[δ′]. If γ′ 
= γ then Aγ′ ∈ Ep

and hence each of the terms cwj ⊕ G(sγ′,j) appears an even number of times
in

⊕p
i=1 yi, therefore canceling out and ensuring that

⊕p
i=1 y = 0. However,

if γ′ = γ then
⊕p

i=1 yi =
∑2p−1

j=1 cwj ⊕ G(sγ′,j). By the definition of the cor-
rection words cw1, . . . , cw2p−1 we have that

⊕p
i=1 yi[δ′] = 0 if δ′ 
= δ while⊕p

i=1 yi[δ′] = b if δ′ = δ, i.e. if x = a.
The scheme (Genp0 ,Evalp0) is secret because each subset of at most p − 1

keys ki includes p−1 strings σi = σi,1, . . . , σi,ν . The distribution of seeds in σi,γ′

reflects the distribution of 1 bits in the i-th row of Aγ′ . However, any p− 1 rows
of Aγ′ are distributed identically, regardless of whether Aγ′ is sampled randomly
from Ep or it is sampled randomly from Op. Therefore, the view of the strings
σi does not give any information on γ. In addition, cw1, . . . , cw2p−1 are masked
by

⊕2p−1

j=1 G(sγ,j) and there is at least one seed sγ,j which is not included in any
of the keys in the subset. Therefore, all the correction words together cannot be
distinguished from random strings of the appropriate length.

The length of a key ki that Genp0 outputs is a sum of the length of σi, which
is νλ · 2p−1 and the length of the correction words, which is μm · 2p−1. The key
size is therefore O(2n/22(p−1)/2(λ + m)).
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3.2 Supporting New Function Classes

In Sections 3.2, 3.2, and 3.2, we (1) present general transformations for obtaining
FSS for new function classes from existing ones, (2) provide an extension of
the improved DPF construction from the previous section to support the more
general class of interval functions with minimal increase in key size, and (3)
extend further to the case of many parties, where security is required to hold
against coalitions of parties.

General Transformations. We begin by describing a number of general trans-
formations to convert one or more existing function secret sharing schemes into
a new FSS scheme supporting a modified class of functions. The important met-
rics to maintain are the key size and computation time of the modified scheme,
as a function of the original(s). Slightly abusing notation, we denote by size(F)
and time(F) the corresponding values for the key size and computation time for
the FSS scheme for F (where the FSS scheme being referred to is clear from
context).

Due to space constraints, we provide here only a brief summary of the relevant
closure properties, and defer their corresponding constructions and proofs to the
full version of the paper.

1. Including the Zero Function: F → F ∪ {0}.
For any FSS scheme for class F , there exists a FSS scheme for the class F
together with the all 0s function, 0(x) = 0 ∀x. It holds that size(F ∪ {0}) =
size(F), time(F ∪ {0}) = time(F).

2. Pre-composition with Arbitrary Function: (F , g) → F ◦ g.
For any FSS scheme for function class F = {f : G1 → G}, and arbitrary
fixed public function g : G2 → G1, there exists an FSS scheme for class
F ◦ g := {f ◦ g : G2 → G|f ∈ F}, (where functions in F ◦ g are described
as the pair (f, g)). The resulting key size is equal to |g| + size(F), and the
computation time is |g| + time(F).

This transformation extends to the case where the choice of function g may
be made dependent on the secret function f , as long as the corresponding
distribution of g is computationally indistinguishable from one independent
of f . For example, g may consist of an encryption of some portion of f ;
indeed, such an approach can be used to bootstrap an FSS scheme for NC1

to one supporting all P/poly, making use of fully homomorphic encryption
(see Section 4.3).

3. Post-composition with Linear Function: (F , L) → L ◦ F .
For any FSS for function class F = {f : G1 → G} and for any fixed linear
function L : G → G0, there exists a FSS scheme for class L◦F := {L◦f |f ∈
F} of functions from G → G0 (where functions (L◦f) ∈ L◦F are described
by the pair (L, f)). The resulting scheme satisfies size(L ◦F) = size(F)+ |L|
and time(L ◦ F) = time(F) + |L|.

4. Linear Combination of FSSes: (F ,G) → F + G.
Given FSS schemes for families F ,G taking G1 → G, there exists an FSS
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scheme for class F + G := {f ⊕ g|f ∈ F , g ∈ G}, with key size equal to
size(F +G) = size(F)+size(G) and evaluation time time(F +G) = time(F)+
time(G).

5. Union of Function Families: (F1,F2) → F1 ∪ F2.
Given FSS schemes for families F ,G, there exists an FSS scheme for the class
F∪G, with key size and time complexities as in Transformation 4 (combining
with Transformation 1).

6. FSS for Small Function Classes: Arbitrary F , with time(F) ∼ |F|,
but short keys. For any class of functions F with some canonical index-
ing, and a DPF (i.e., FSS for class of point functions) with domain
size |F|, there exists an FSS scheme for F with computation time
O (|F| · time(DPF ) · maxf∈F |f |) and key size size(DPF ).

We describe useful function classes supported via combinations of the above
transformations.

1. NC0 functions
For each constant depth d ∈ N and input/output bit-lengths n,m, by Transfor-
mation 6, we obtain an FSS scheme supporting the class Cd of depth-d boolean
circuits with input {0, 1}n, output {0, 1}m, and fan-in 2. The important observa-
tion is that we may secret share the entire circuit C by independently sharing m

separate 1-bit-output sub-circuits (which each has O(n2d

) possibilities) instead

of separately treating all possible mO(n2d
) values for all of C.

Plugging in the state-of-the-art DPF instantiations (as given in Section 3.1),
the resulting (server-side) runtime of the scheme is time(Cd) ∈ O(λn2d

m), and
the key size is O(λm log n), where λ is the seed length for the underlying pseu-
dorandom generator, and the hidden constants include a factor of 2d.

2. Constant-conjunction search queries
As a consequence of Transformation 6, together with the best known DPF instan-
tiations (given in Section 3.1) with key size O(λn) for domain size 2n and PRG
seed length λ, we obtain an FSS scheme for the class Match� of data-matching
functions, for a constant number of data entries �, where each of which may take
one of polynomially many |G1| ∈ nO(1) possible values. That is, for canonical
nonzero element g ∈ G,

Match� =
{

fS,v : Gn
1 → G

}

S⊂[n],
|S|≤�,

v∈G
�
1

s.t. fS,v(x) =

{
g if xi = vi ∀i ∈ S

0 else
.

Indeed, the class Match� contains
(
n
�

)|G1|� ∈ O(n�|G1|�) different functions.
Thus, for N := (n|G1|)�, we obtain a FSS scheme supporting Match� with
evaluation time O(λN log N) and key size O(λ log N). For the case of |G1| ∈
O(1), these correspond to runtime O(λn�� log n) and key size O(λ� log n).
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3. Interval functions: Black-box from DPF
The class of interval functions consists of those functions fa,b which output a
fixed element g ∈ G precisely for inputs x that lie within the interval a < x < b,
and 0 ∈ G otherwise.

F int
n =

{
f(a,b) : {0, 1}n → G

}

0≤a
≤b<2n

, where f(a,b)(x) =

{
g a < x < b

0 else
.

Lemma 1. Based on any DPF (i.e., FSS scheme for the class of multi-bit point
functions) with key size s, there exists an FSS scheme for family F int

n , with key
sizes O(sn).

Intuitively, we express the condition x < a as the disjunction of (up to)
n mutually inconsistent exact prefix-matching conditions, such that an element
x is less than a precisely if it contains exactly one the prefixes. (Viewing the
target value a as a path down a binary tree, this amounts to the sequence of
(up to) n prefixes that agree with a up to some level i, but then continue to
0 at level i + 1 whereas a continues to 1). We thus attain the desired FSS as
a linear combination of n DPFs, each acting on a prefix of the input x (using
Transformations 2 and 4).

Two-Key FSS for Comparison and Interval Functions. We show efficient
constructions of FSS for the family F<

n of all comparison functions from {0, 1}n

to some finite group G. The class of comparison functions consists of those
functions fa,g which output a fixed element g ∈ G for inputs x that lie within
the interval 0 ≤ x < a, and 0 ∈ G otherwise.

F<
n =

{
fa,g : {0, 1}n → G

}

0≤a<2n
, where fa,g(x) =

{
g x < a

0 else
.

Note that (by Transformation 4 above), supporting comparison functions also
directly yields FSS for interval functions, with a factor of 2 overhead. We describe
a two-key construction which is a natural extension of the two-party DPF con-
struction in Algorithms 1 and 2. The key size of this construction is larger by an
additive factor of n log |G| compared to the key size of the DPF construction.

The scheme for comparison functions has a similar structure to the scheme
for DPF. Again, each of the keys k0, k1 generated by Gen<(1λ, a, g) represents
a binary tree of depth n, and Eval<(β, kβ , x) traverses the tree defined by kβ to
the leaf x = x1, . . . , xn.

However, there are several key differences between the scheme for compari-
son functions and the DPF scheme. First, the objects in each node of the tree
are group elements, generalizing the approach in the DPF scheme. In addition,
similarly to the DPF scheme, when the path to x diverges from the path to a,
if x ≥ a then the sum of the two group elements generated by Eval<(0, k0, x)
and Eval<(1, k1, x) is 0 for any node from the point of divergence to the leaf.



Function Secret Sharing 355

However, if x < a then the sum of the two group elements in every node is g.
Finally, the current Gen algorithm returns correct keys with probability 1.

Notation 3. Let G be an abelian group with group operation + (while ⊕ denotes
the exclusive-or of bits), let 0 ∈ G denote the identity element, let g ∈ G and
let −g denote the inverse of g in the group. Let ea · g denote a sequence of 2|a|

elements in G such that the element at location a is g and all other elements
in the sequence are the identity element. We assume that the length of ea is
determined by the domain of a.

Notation 4. Let G be a group, let g ∈ G and let b ∈ −1, 0, 1. We denote by g · b
a group element that is the identity unit 0 if b = 0, is equal to g if b = 1 and is
equal to −g if b = −1. Let ca · g be a sequence in of 2|a| elements with g in every
location a′ such that a′ < a and 0 in every other location. We assume that the
length of ca · g is determined by the domain of a.

Notation 5. Let Ep,q (Op,q) be the set of all p × qp−1 arrays over the set
{0, . . . , q − 1} such that the sum of elements in every column is 0 modulo q
(1 modulo q) and every column appears exactly once in the array.

We prove the correctness and security of (Gen<,Eval<) via the following
sequence of claims. Due to space limitations, we omit proofs of these claims, and
refer the reader to the full version of this paper.

Lemma 2. For every n ∈ N, every a, x ∈ {0, 1}n, every finite abelian group G,
every g ∈ G and every i, 1 ≤ i ≤ n,

1. If (x1, . . . , xi) = (a1, . . . , ai) then for β = 0, 1, the values Sβ and T β that
Eval<(β, kβ , x) computes are equal to the values Sβ

ai
[i] and T β

ai
[i] (respec-

tively) that Gen<(1λ, a, g) computes; in addition, T 0 ⊕ T 1 = 1.
2. If (x1, . . . , xi) 
= (a1, . . . , ai) then S0 = S1 and T 0 = T 1.

Building atop Lemma 2, we arrive at the desired correctness guarantee:

Proposition 1 (Correctness). For every n ∈ N, every a, x ∈ {0, 1}n, every
finite abelian group G and every g ∈ G, if (k0, k1) ← Gen<(1λ, a, g) then
Eval<(0, k0, x) ⊕ Eval<(1, k1, x) = f<

a,g(x).

Theorem 6. For every n ∈ N, a ∈ {0, 1}n, every security parameter λ ∈ N

and every finite abelian group G, (Gen<,Eval<) is a two-key FSS scheme for the
family of comparison functions from {0, 1}n to G, with key size O(n(λ+log |G|)).

We remark that, via a simple transformation, the constructed FSS for com-
parison functions also directly yields an FSS scheme for point functions over a
general abelian group G.

Corollary 1. For every n ∈ N, every security parameter λ ∈ N and every finite
abelian group G there exists a two-key scheme for the family of point functions
from {0, 1}n to G, without errors and with key size O(n(λ + log |G|)).
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Algorithm 5. Gen<(1λ, a, g)

1: Let G : {0, 1}λ −→ {0, 1}2λ+2 log |G|+2 be a PRG.
2: Choose three random seeds S0

a1 [1], S1
a1 [1], S0

¬a1 [1] ∈ {0, 1}λ and set S1
¬a1 [1] ←

S0
¬a1 [1].

3: Choose random bits T β
α [1], α, β ∈ {0, 1}, subject to T 0

a1 [1] �= T 1
a1 [1] and T 0

¬a1 [1] =
T 1

¬a1 [1].
4: Choose random elements V β

α [1] ∈ G, α, β ∈ {0, 1}, subject to V 0
a1 [1]+(−V 1

a1 [1]) = 0
and V 0

¬a1 [1] + (−V 1
¬a1 [1]) = g · a1.

5: for i = 1 to n − 1 do
6: Let G(Sβ

ai
[i]) = sβ

0 ||sβ
1 ||tβ

0 ||tβ
1 ||vβ

0 ||vβ
1 , where sβ

α ∈ {0, 1}λ, tβ
α ∈ {0, 1} and vβ

α ∈
G for α, β = 0, 1.

7: Randomly choose cs0,ai+1 , cs1,ai+1 ∈ {0, 1}λ.

8: Randomly choose cs0,¬ai+1 , cs1,¬ai+1 ∈ {0, 1}λ s.t.
⊕1

β=0(csβ,¬ai+1 ⊕sβ
¬ai+1) =

0.
9: Randomly choose ct0,ai+1 , ct1,ai+1 ∈ {0, 1} s.t.

⊕1
β=0(ctβ,ai+1 ⊕ tβ

ai+1) = 1.

10: Randomly choose ct0,¬ai+1 , ct1,¬ai+1 ∈ {0, 1} s.t.
⊕1

β=0(ctβ,¬ai+1 ⊕tβ
¬ai+1) = 0.

11: Randomly choose cv0,ai+1 , cv1,ai+1 ∈ G s.t.
∑1

β=0(cvτ,ai+1 + vβ
ai+1) · (−1)β = 0,

for τ = T β
ai

[i].
12: Randomly choose cv0,¬ai+1 , cv1,¬ai+1 ∈ G s.t.

∑1
β=0(cvτ,¬ai+1 + vβ

¬ai+1) ·
(−1)β = g · ai+1, for τ = T β

¬ai
[i].

13: Set CWβ [i] ← csβ,0||csβ,1||ctβ,0||ctβ,1||cvβ,0||cvβ,1 for β = 0, 1.
14: Set Sβ

α[i + 1] ← sβ
α ⊕ csτ,α for τ = T β

ai
[i] and α, β ∈ {0, 1}.

15: Set T β
α [i + 1] ← tβ

α ⊕ ctτ,α for τ = T β
ai

[i] and α, β ∈ {0, 1}.
16: end for
17: Set kβ ← ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1], V β

0 [1], V β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n − 1])).
18: Return (k0, k1).

Algorithm 6. Eval<(β, kβ , x)

1: Let G : {0, 1}λ −→ {0, 1}2λ+2 log |G|+2 be a PRG.
2: Let the binary representation of x be x = x1, . . . , xn.
3: Let kβ = ((Sβ

0 [1], Sβ
1 [1], T β

0 [1], T β
1 [1], V β

0 [1], V β
1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n − 1])).
4: Set Sβ ← Sβ

x1 [1].
5: Set T β ← T β

x1 [1].
6: Set V β ← V β

x1 [1].
7: for i = 2 to n do
8: Parse G(Sβ) as G(Sβ) = s0||s1||t0||t1||v0||v1.
9: Let CWT β [i − 1] = csT β ,0||csT β ,1||ctT β ,0||ctT β ,1||cvT β ,0||cvT β ,1.

10: Set Sβ ← sxi ⊕ csT β ,xi
.

11: Set T β ← txi ⊕ ctT β ,xi
.

12: Set V β ← V β + (vxi + cvT β ,xi
).

13: end for
14: Return V β · (−1)β .
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Proof. A point function is a linear combination of two comparison functions.
Specifically, Pa,g(x) = f<

a+1(x)+(−f<
a (x)), where −f<

a (x) is the inverse of f<
a (x)

in G. The corollary follows from Theorem 6 and the linear combination of FSS
schemes in Section 3.2.

Extending to the Many-Party Setting. We construct a scheme for the
family of comparison functions from {0, 1}n to an abelian group G that is secure
against coalitions of all but one of the keys. The scheme, defined in Algorithms
7 and 8, has a similar structure to Algorithms 3 and 4.

There are several differences between the current scheme and the DPF scheme.
The scheme for comparison functions is over G and the choice of arrays Aγ′ is
from the sets Ep,q and Op,q, for q = |G|, instead of choosing the arrays from
Ep or Op. The correction words, cw1, . . . , cwν , are chosen in a different way in
line 6 of Algorithm 7 and additional group elements, v1, . . . , vν , are used in line
7 of Algorithm 7 and line 6 of Algorithm 8. The reason for the differences in
cw1, . . . , cwν and v1, . . . , vν is that f<

a,g(x) = g for any x < a, while Pa,b(x) = 0
for any x < a.

Theorem 7. For every security parameter λ ∈ N, every n, p ∈ N, every abelian
group G, |G| = q, every a, x ∈ {0, 1}n and every g ∈ G, the pair of algo-
rithms (Genp,Evalp) is an FSS scheme for the family of all comparison func-
tions from {0, 1}n to G, such that Gen outputs p keys (k1, . . . , kp), the scheme
is secure against any coalition of at most p − 1 keys and the key size is O(2n/2 ·
q(p−1)/2 log q).

Corollary 2. For any abelian group G = G1 × . . . ×Gr, such that |Gi| = qi for
i = 1, . . . , r, there exists an FSS scheme for the family of comparison functions
from {0, 1}n to G that generates p keys and is secure against coalitions of up to
p − 1 keys with key size O(2n/2 · q(p−1)/2

∑p
i=1 log qi). This result is obtained by

running (Genp,Evalp) separately on each component Gi.

Proposition 2 (Correctness). For every security parameter λ ∈ N, every
n, p ∈ N, every abelian group G, every a, x ∈ {0, 1}n and every g ∈ G, if
(k1, . . . , kp) ← Genp(1λ, a, g) then

∑p
i=1 Eval

p(i, ki, x) = f<
a,g(x).

3.3 General FSS from Obfuscation

In this section, we provide general positive constructions of FSS based on program
obfuscation. We first obtain FSS schemes for P/poly given access to a program
obfuscator that satisfies a virtual black-box (VBB) notion of security [3]. We then
build on top of recent advances in indistinguishability obfuscation (iO) [3,22] to
demonstrate a similar conclusion from iO with sub-exponential hardness.

In particular, building atop recent candidate obfuscation constructions, these
provide us with heuristic constructions of FSS for any efficiently computable
function class of choice. Further, it yields provably secure solutions within ide-
alized models, for which secure constructions of VBB obfuscation have been
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Algorithm 7. Genp(1λ, a, g)

1: Let G : {0, 1}λ −→ G
μ be a PRG (μ is defined in line 2).

2: Let μ ← 	2n/2 · q(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard a as a pair a = (γ, δ), γ ∈ {0, 1}ν , δ ∈ {0, 1}μ.
4: Choose ν random arrays A1, . . . , Aν , s.t. Aγ ∈ Op,q and Aγ′ ∈ Ep,q for all γ′ �= γ.
5: Choose ν · qp−1 random seeds s1,1, . . . , sν,qp−1 ∈ {0, 1}λ.

6: Randomly choose cw1, . . . , cwqp−1 ∈ G
μ s.t.

∑qp−1

j=1 (cwj + G(sγ,j)) = cδ.
7: Select v1, . . . , vp ∈ G

ν randomly s.t.
∑p

i=1 vi = cγ · g.
8: If Aγ′ [i, j] �= 0 set σi,γ′,j ← (sγ′,j , Aγ′ [i, j]), otherwise σi,γ′,j ← (0, 0), for all

1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν, 1 ≤ j ≤ qp−1.
9: Set σi,γ′ ← (σi,γ′,1|| . . . ||σi,γ′,qp−1), for all 1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν.

10: Set σi = σi,1|| . . . ||σi,ν for 1 ≤ i ≤ p.
11: Let ki = (σi, vi, cw1, . . . , cwqp−1) for 1 ≤ i ≤ p.
12: Return (k1, . . . , kp).

Algorithm 8. Evalp(i, ki, x)

1: Let G : {0, 1}λ −→ G
μ be a PRG (μ is defined in line 2).

2: Let μ ← 	2n/2 · q(p−1)/2
 and let ν ← 	2n/μ
.
3: Regard x as a pair x = (γ′, δ′), γ′ ∈ {0, 1}ν , δ′ ∈ {0, 1}μ.
4: Parse ki as ki = (σi, vi, cw1, . . . , cwqp−1).
5: Parse σi as σi = (s1,1, A1[i, 1])|| . . . ||(s1,qp−1 , A1[i, q

p−1])|| . . . ||(sν,qp−1 , Aν [ν, qp−1]).
6: Let yi ← vi[γ

′] +
∑

1≤j≤qp−1

Aγ′ [i,j] �=0

Aγ′ [i, j] · (cwj + G(sγ′,j)).

7: Return yi[δ
′].

constructed [2,9], e.g. in the generic multilinear map model, or in settings with
secure hardware.

For purposes of space limits, we describe only the high-level intuition and
defer complete constructions and proofs of security to the full version.

General FSS from Virtual Black Box (VBB) Obfuscation

Proposition 3. Assume the existence of an ideal virtual black-box obfuscation
oracle for P/poly, and the existence of one-way functions. Then there exists an
FSS scheme supporting P/poly.

Intuitively, the FSS construction works by obfuscating (1) a pseudorandom
function (PRF) Fs for one party, and (2) (C − Fs) for the desired circuit C for
the second party. The VBB property enables a party’s key to be simulated given
black-box access to the underlying program, which can in turn be simulated (by
the security of the PRF) by a truly random sequence of outputs.

General FSS From Sub-Exponential iO. Our construction relies on a recent
work of Canetti et al. [13] which demonstrates that sub-exponential iO implies
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a notion of probabilistic iO (piO). Loosely, piO converts a randomized program
into a deterministic obfuscated program, and provides the guarantee that it
is hard to distinguish obfuscations of two (randomized) circuits whose output
distributions at each input are computationally indistinguishable, possibly in the
presence of auxiliary input. We refer the reader to [13] for a full definition.

Theorem 8. Assume the existence of sub-exponentially secure indistinguisha-
bility obfuscation and sub-exponentially secure one-way functions. Then there
exists an FSS scheme supporting P/poly.

The construction makes use of a piO-obfuscated (randomized) program P
that takes as input x, samples a random value R, and outputs encryptions of the
values R and f(x) − R for the secret function f , under two different hardcoded
public keys (i.e., EncpkA

(R) and EncpkB
(f(x) − R)), as described in Figure 1.

Recall that while this program P is randomized, its piO-obfuscation P̃ is a
deterministic circuit. A party’s FSS key for f ∈ F will consist of this obfuscated
program P̃ , together with one of the secret keys skA or skB . To evaluate his
FSS share on an input x, the party runs P̃ (x), and decrypts his corresponding
output. We remark that (sub-exponentially) secure public-key encryption (PKE)
is implied by (sub-exponentially) secure indistinguishability obfuscation together
with (sub-exponentially) secure one-way functions [43].

Program FSSf,pkA,pkB

Hardcoded: f ∈ F , public keys pkA, pkB .
Input: x ∈ {0, 1}n. Randomness: R, rA, rB .

1. Encrypt R under pkA, as ŷA ← EncpkA
(R; rA).

2. Encrypt f(x) − R under pkB , as ŷB ← EncpkB
(f(x) − R; rB).

3. Output (ŷA, ŷB).

Fig. 1. Real program obfuscated in Gen(1λ, f)

Correctness of the scheme follows by the correctness of the encryption and
the piO: since the original program P outputs value pairs (ŷA, ŷB) for which
DecskA

(ŷA)+DecskB
(ŷB) = f(x), the same property (which is efficiently testable

given auxiliary input skA, skB) must hold for the outputs of P̃ . By the security
of the PKE, a party learns nothing from the second encrypted output, and thus
his own decrypted shares (either R or f(x) − R) appear indistinguishable from
random values. This is formalized in the proof by replacing the obfuscated pro-
gram P̃ with an obfuscation of a fake program which instead outputs EncpkA

(R)
and EncpkB

(R′) for a second independent random value R′.

4 Relation to Other Primitives

In this section, we explore the relation between FSS and other cryptographic
primitives. We first demonstrate in Section 4.1 that once the supported function
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class F becomes reasonably rich, each share of function f ∈ F must be a pseudo-
random function. This holds in particular for the special case of point functions.
We next provide evidence in Section 4.2 that achieving FSS for certain function
classes (beginning as low as AC0) is likely to require cryptographic tools heavier
than one-way functions or even oblivious transfer. This is done by showing that
such FSS schemes imply low-communication general secure computation proto-
cols that rely on reusable preprocessing. Such protocols are currently only achiev-
able using stronger cryptographic primitives, namely somewhat-homomorphic
encryption or reusable garbled circuits. Finally, in Section 4.3 we show that,
assuming fully homomorphic encryption (FHE) with decryption in NC1 (as is
the case for nearly all existing constructions, e.g. [8,10,25]), FSS for general
functions is implied by the existence of FSS for NC1.

4.1 Key Functions Are Pseudorandom Functions

Parties’ keys in the FSS each define their own function, taking inputs x to output
shares Eval(b, kb, x). This function serves as one piece of the secret function being
shared. A natural question is: what can we say about these functions? Can they
have any sort of structure? Or, does the security property of the FSS together
with the linearity of the output decoding procedure directly enforce a particular
structure on the output share functions themselves?

We show that, in fact, if the supported class F is sufficiently rich, in the
sense that it “efficiently spans” the whole function space, then it must be that
the parties’ output share functions Eval(b, kb, x) themselves are pseudorandom
functions (PRFs). We formalize this condition on F as “poly-spanning.”

Definition 4. A family of functions F = {f : Gn → Gm} is said to be poly-
spanning if for each polynomial p(n) there exists a polynomial q(n) and effi-
cient procedure P : ({0, 1}n × {0, 1}m)p(n) → Fq(n) mapping p(n) pairs
of input-output assignments to a collection of q(n) functions from F , with
P

(
(xi, yi)i∈[p(n)]

)
= (fj)j∈[q(n)] such that the function f ′ :=

∑
j∈[q(n)] fj sat-

isfies f ′(xi) = yi for every i ∈ [p(n)].

Remark 3 (Examples of poly-spanning function families).

– Multi-bit Point Functions. The class of functions {fx∗,y∗} over x∗ ∈
{0, 1}n, y∗ ∈ {0, 1}m where fx∗,y∗(x) = y∗ if x = x∗ and 0 otherwise.
Indeed, the desired procedure P is simply given by P

(
(xi, yi)i∈[p(n)]

)
=

(fxi,yi
)i∈[p(n)].

– Comparison Functions. The class of comparison functions F≤
n . Indeed,

the desired procedure P is given as follows:
1: Initialize S ← ∅.
2: Sort inputs x1, . . . , xp(n) ∈ [2n] as x′

1 ≤ . . . ≤ x′
p(n). Denote their outputs

as y′
i.

3: for i = p(n) to 1 do
4: if y′

i 
= y′
i+1 (where y′

p(n)+1 := 0) then
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5: Include the new function f≤
x′

i
(to flip the output of the sum):

S ← S ∪ {f≤
x′

i
}

6: end if
7: end for
8: return S

We now introduce notation for the output share function that we study.

Definition 5. Let (Gen,Eval) be an FSS scheme w.r.t. function class F . Then
for each f ∈ F and b ∈ {0, 1}, we denote by OutputSharef,b the function family
{Eval(b, kb, ·)}kb

defined by sampling and evaluation procedures:

– Sample: Outputs a key kb, where (k0, k1) ← Gen(1λ, f).
– Evaluate: On input x, computes Eval(b, kb, x).

Theorem 9. Let (Gen,Eval) be a FSS scheme (as per Definition 2) w.r.t. a
poly-spanning function class F . Then for every f ∈ F and every b ∈ {0, 1}, the
function family OutputSharef,b as given in Definition 5 is a PRF family (against
nonuniform adversaries).

Proof. Intuitively, we first show that oracle access to a randomly sampled party
key function OutputSharef,b (over the randomness of Gen) must be computation-
ally indistinguishable from oracle access to the distribution (OutputSharef,b +∑

i∈S fi) for any fixed polynomial-size subset S of functions fi ∈ F in the sup-
ported function class. Then, we show that if F is poly-spanning, then for any
possible PRF distinguishing adversary A, we can fool this A, guaranteeing that
he cannot succeed in distinguishing from a random function, with an appropriate
carefully tailored choice of functions {fi}i∈S ⊂ F .

We defer the full proof of Theorem 9 to the full version of this paper.

4.2 Barriers Toward FSS for Expressive Function Classes

We now turn to exploring likely barriers in constructing FSS for certain function
classes based on lightweight cryptographic tools. Our results in this section take
the following form: Assume there exists FSS for a class of functions containing
F ◦Dec, where F is some function class and Dec corresponds to the complexity of
decryption of a symmetric-key encryption scheme. Then there exists a particular
form of highly communication-efficient secure computation for functions in F ,
which is currently only known to exist based on F-homomorphic encryption5 or
reusable garbled circuits for F . In particular:

– At the high end, FSS for P/poly implies a form of secure computation whose
only known constructions rely on fully homomorphic encryption or reusable
garbled circuits for P/poly. We conclude that FSS for P/poly is likely to
require heavy cryptographic machinery.

5 That is, semantically secure encryption supporting compact homomorphic evaluation
of the function class F .
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– At the low end, FSS for AC0 in combination with any symmetric-key encryp-
tion scheme with decryption in AC0 together imply a form of secure compu-
tation only currently known to exist based on existence of AC0-homomorphic
encryption or reusable garbled circuits for AC0.

In particular, symmetric-key encryption with decryption in AC0 is implied
by sub-exponential hardness of Learning Parity with Noise (LPN) [7]. How-
ever, despite significant efforts in the cryptographic community, it is unknown
even how to build from this assumption collision resistant hashing, much
less stronger primitives like homomorphic encryption that imply them [35].
Indeed, all proposed constructions to date of homomorphic encryption and
reusable garbled circuits (even for the restricted class AC0), such as those
from [10,11,33], rely on Learning With Errors (LWE) [42] or similar lattice-
based assumptions; a construction under weaker or significantly different
assumptions such as LPN would be considered a major result. We conclude
that FSS for AC0 is unlikely to be achieved based on sub-exponential LPN
(or any weaker) assumption alone.

We contrast this conclusion with our construction of FSS for various strict
subclasses of AC0 in Section 3.2 based on one-way functions.

We now formalize the above discussion. Concretely, we demonstrate that
FSS for a function class F ◦ Dec (formally defined below) yields a construction
of exceedingly communication-efficient (semi-honest) secure multiparty compu-
tation (MPC) in the preprocessing model, for the function class F . That is, given
an offline setup phase independent of parties’ inputs, the parties A,B can reuse
this setup to achieve secure evaluation of a fixed f ∈ F on arbitrarily many
input pairs (xA

1 , xB
1 ), (xA

2 , xB
2 ), . . . in the online phase with communication that

depends only on the size of the inputs and outputs of f , and not on the size
of f itself. To date, the only other known approaches to achieving MPC with
this efficiency feature (even when allowing reusable preprocessing) rely on strong
cryptographic tools: either fully homomorphic encryption for F (as in [1,23]) or
reusable garbled circuits for F (as in [33].6)

Intuitively, the FSS enables communication efficiency as follows. Suppose we
wish to achieve secure computation of a function f ∈ F . In the offline phase,
the parties A,B will each receive7 a secret key skA, skB for the symmetric key
encryption scheme, and FSS keys of a function f̂sk ∈ F◦Dec that depends on both
skA and skB . This function f̂sk will take as input a pair of ciphertexts (x̂A, x̂B),
decrypts each with respect to the corresponding hardcoded secret key skA or skB ,
and then evaluates the function f on the resulting values. In the online phase,
6 Loosely, the offline phase will result in one party receiving a reusable garbled circuit

of f and the second will receive the information to generate garbled input labels; the
offline phase will only require communication on order the size of the garbled input
and output labels, and not the size of f itself.

7 For simplicity, we treat the offline setup phase as correlated randomness generated
and given to the two parties by some trusted source; in practice, this can be imple-
mented by running a standard MPC protocol between the two parties to securely
generate these values.
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for each desired input pair (xA
i , xB

i ), the parties exchange encryptions of their
private inputs under their respective secret keys. They then use their FSS keys to
compute output shares of f̂sk evaluated on input this pair of ciphertexts (x̂A

i , x̂B
i ).

Finally, the computed output shares are exchanged, and the value of f̂sk(x̂A
i , x̂B

i )
is reconstructed. By the correctness of the FSS scheme and the choice of f̂sk, this
will exactly allow the parties to compute the desired value f(xA

i , fB
i ). And by

the security of the FSS and the encryption scheme, no additional information
on the inputs will be revealed.

We now formalize these intuitions.

Remark 4 (MPC Security). Recall that MPC security is defined with respect to
the real/ideal world paradigm. Very loosely, for every PPT adversary A in a real-
world execution of the protocol, there exists a PPT simulator in the ideal-world
execution (receiving only the function output(s)) who can consistently simulate
the experiment output. We refer the reader to e.g. [30,46] for a formal definition.

Definition 6 (Communication-Efficient Online MPC for F). It is said
that communication-efficient online MPC for the function class F exists if for
any f ∈ F , there exists a distribution of correlated randomness (DA,DB), poly-
nomial p, and a two-party protocol Π in the correlated randomness model such
that, for any � ∈ N, and any sequence of (possibly adaptively chosen) inputs
(xA

1 , xB
1 ), . . . , (xA

� , xB
� ), the protocol Π achieves secure evaluation of f on the

input pairs in the semi-honest model, with (online) communication complexity
O

( ∑�
i=1

(|xA
i | + |xB

i | + |f(xA
i , xB

i )|) · p(λ)
)
, where λ is the security parameter.

In particular, the online communication complexity is independent of the size of
the description of f .

Definition 7. For a given symmetric encryption scheme (Gen,Enc,Dec) and
function class F , we define the function class F ◦Dec := {f ◦ (DecskA

×DecskB
) :

f ∈ F , skA, skB ∈ Supp(Gen(1k))}.
Theorem 10. Assume the existence of symmetric-key encryption with decryp-
tion Dec, and FSS for F ◦ Dec (as in Definition 7). Then there exists
communication-efficient online MPC for the class F , as in Definition 6.

Due to space limitations, we defer the proof of Theorem 10 to the full version
of this paper.

Remark 5. We note that the proof of Theorem 10 does not rely directly on the
linearity of the output decoding procedure of the FSS scheme. Rather, the same
result holds identically for any output decoding function that still guarantees
function privacy (to preserve security of the MPC) and succinctness (to maintain
communication efficiency in the online phase).

We now address the implications of Theorem 10 to two specific function
classes F ◦ Dec.
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Corollary 3 (FSS for P/poly). Assuming FSS for P/poly, there exists
communication-efficient online MPC for all P/poly.

Proof. By Theorem 9, FSS for P/poly implies the existence of pseudorandom
functions, which thus implies secure symmetric-key encryption with decryption
in P/poly. The corollary hence follows directly from Theorem 10.

Corollary 4 (FSS for AC0). Assuming FSS for AC0 and sub-exponential
hardness of LPN, there exists communication-efficient online MPC for AC0.

Proof. Follows from Theorem 10 and [7].

4.3 Bootstrapping with Fully Homomorphic Encryption

We show that FSS schemes enjoy a convenient bootstrapping property, when
paired with fully homomorphic encryption (FHE). Namely, assuming the exis-
tence of FHE with decryption in NC1 (as is the case for essentially all existing
constructions, e.g. [8,10,25]), then any FSS scheme supporting the class NC1

directly implies an FSS for the class of all circuits, where the FSS key size grows
with the size of the circuit being secret shared.8

Proposition 4. Assuming the existence of fully homomorphic encryption with
perfect correctness and decryption in NC1, and FSS for NC1, then there exists
a secure FSS scheme for P/poly.

Proof. Intuitively, the new FSS construction will work by sampling FSS keys in
the underlying NC1-supported scheme for the FHE decryption function Decsk for
random, secret sk, and additionally providing an encryption Ĉ of a description
of the desired circuit C ∈ P/poly. To evaluate, the parties first homomorphically
evaluate C on their input x using Ĉ, and then use this evaluated ciphertext as
the input to the FSS for Decsk.

We defer the full proof of Proposition 4 to the full version of this paper.
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