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ABSTRACT
In this paper, we propose an entity centric region of interest detec-
tion and visual-semantic pooling scheme for complex event detec-
tion in YouTube-like videos. Our method is based on the hypothe-
sis that many YouTube-like videos involve people interacting with
each other and objects in their vicinity. Based on this hypothesis,
we first discover an Area of Interest (AoI) map in image keyframes
and then use the AoI map for localized pooling of features. The
AoI map is derived from image based saliency cues weighted by
the actionable space of the person involved in the event. We ex-
tract the actionable space of the person based on human position
and gaze based attention allocated per region. Based on the AoI
map, we divide the image into disparate regions, pool features sep-
arately from each region and finally combine them into a single
image signature. To this end, we show that our proposed seman-
tically pooled image signature contains discriminative information
that detects visual events favorably as compared to state of the art
approaches.

1. INTRODUCTION
Visual event detection is the problem of categorizing videos into

certain pre-defined events. According to NIST [2], an event is "a
happening that involves people engaged in process-driven actions
with other objects". In this paper, we consider events captured in
user generated, Youtube-like web videos. We are particularly in-
terested in events involving people interacting with objects in their
vicinity, for example, a person "blowing off candles" in a birthday
party or a tutorial style video showing how to "change a vehicle
tire". Figure 1 illustrates shots from some of these events.

Event detection in videos is a challenging problem owing to
complex visual representation of participating objects as well as the
semantic gap between event description and the visual components.
Bags of features (BoF) strategies that represent video keyframes as
orderless vectors of local feature occurrences have shown remark-
able success in this domain [13]. This is mostly attributed to the
spatial pooling step, which is agnostic to the spatial layout of the
image and combines features from the whole image into a single
BoF vector. However, recent advances suggest that augmenting
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Figure 1: Video keyframes showing person-object interaction in events. The
human centric actionable space is marked in magenta.

BoF with spatially constrained feature pooling can improve detec-
tion and reduce semantic gap. A pre-dominant approach in this di-
rection is the spatial pyramid model [9] (SPM) that performs pool-
ing over spatial grids or horizontal bands and combines them by
concatenation of the individual BoF vectors. An alternative tech-
nique of randomized spatial partition presented in [7] shows im-
proved performance over SPM. In it, images are randomly parti-
tioned multiple times to obtain several independent patterns fol-
lowed by retroactive selection of best partition pattern. These re-
search endeavours clearly show that the region of interest selection
for feature pooling strongly influences the overall performance of
bag of features.

In contrast to spatial pooling from uniform or randomized re-
gions of interest, semantics driven pooling depend on pre-trained
object detectors to spatially localize individual objects [4, 6]. In [6],
task-dependent objects such as water, cup and bread are detected in
order to recognize the corresponding kitchen events. In Detection
Bank [4], the image is first processed with a large number of object
detectors and then the statistics of co-occurring objects are pooled
into a spatial pyramid.

Recently, studies have shown that partitioning an image into ob-
ject and non-object regions and pooling from each channel sepa-
rately can improve classification accuracy of objects [14, 11]. These
methods are similar to SPM, where a single image signature is gen-
erated by concatenating individual BoFs per region. However, the
pooling is performed on image based object and background re-
gions rather than pre-defined or randomized partitions. The study
by Uijlings et al. [14] showed that by knowing the ideal bounding
boxes of objects in images, the accuracy of object detection can be
greatly increased. In general, objects are key to understanding an
event and hence searching for relevant objects could enhance de-
tectability of a video. However, object categorization is itself a dif-
ficult task, especially in a cluttered environment. Second, objects
need to be prioritized according to their importance to the event.
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Figure 2: A walkthrough example on a cooking event in which the grasping hand and countertop objects are localized as Area of Interest. Best viewed in color.

Finally, objects pertaining to events are often ambiguous and are
less likely to have rigid, well-defined boundaries.

Inspired by these developments, we propose an entity centric
area of interest based feature pooling strategy1. We observe that
some entities such as humans are easy to detect while event spe-
cific objects of interest are often hard to detect. Thus, by using
the known entities as anchors, we first discover an Area of Interest
(AoI) map in image keyframes and then use the AoI map to en-
hance event detection. Specifically, the AoI map is derived from
the visual salience in the image which is weighted by the action-
able space of the person involved in the event. We measure visual
salience in terms of generic object-level region contrast and bound-
ary completeness cues. The actionable space is defined as the space
surrounding the human body that has potential for action [8], either
by active interaction with the objects or by passive allocation of
gaze-based attention. We model the actionable space and gaze di-
rection using the detected human position and the face pose in the
image. We posit that the visual and actionable spaces intersect to
result in the AoI map that contains event-specific information. The
AoI map is used to divide the image space into disparate regions
from which features are pooled separately and concatenated into a
single image signature. The main novelty of our paper is the visual-
semantic feature pooling strategy that combines category indepen-
dent, object-level salience in images with people-object interaction
understanding in a single framework. We show that our approach is
able to capture discriminative information that improves upon the
state of the art for complex event detection.

2. OBJECTS IN ACTIONABLE SPACE
The pipeline of our approach are summarized in Figures 2 and

3. Given a video, we sample keyframes and densely extract patch-
level features. Next, we sample a large number of rectangular re-
gions based on object-level salience. We also perform face pose
detection and use it to delineate the gaze and actionable space of
the person in the event. The visual and the person-centric salience

1This work has been supported by the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Interior Na-
tional Business Center contract number D11-PC20066. The U.S.
Government is au- thorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and con- clusions contained herein are those
of the authors and should not be in- terpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or
implied, of IARPA, DOI/NBC, or the U.S. Government.

Figure 3: Overall pipeline

maps are combined into an AoI map, which is used for spatially
localized feature pooling.

2.1 Object proposals
In our method, we bypass the notoriously difficult problem of

precise object labeling and rely on a generic objectness measure
to propose large number of object candidates in a bottom-up man-
ner. We use the objectness algorithm [3], which quantifies how
likely it is for an image window to contain an object of any class.
The characteristics captured are general properties related to most
objects, i.e., that objects appear different from their surroundings
and having a closed boundary. They are modeled by a combina-
tion of multiple cues i.e., frequency domain multi-scale saliency,
center-surround color contrast, boundary edge density and super-
pixel straddling (superpixels crossing over object windows), whose
parameters have been optimized on the VoC PASCAL dataset. We
found in our experiments that objectness adequately fires on many
individual objects as well as on collections of objects of similar di-
mensions. This is useful for capturing the spatial extent of multiple
objects of interest jointly, e.g., countertop items in Figure 2. In our
pipeline, we sample a large number of windows from the objectness
distribution according to non-maxima sampling procedure and rank
them according to the scores. To generate an objectness map, we
compute the pixel-wise objectness score by summing over all the
windows that contains the pixel. Such a heat map is illustrated in
Figure 2.

2.2 Human actionable space
The actionable space of a person involved in an event (i.e.,actor)

is the area spatially surrounding the body and within the camera
personś view. This is the area containing event-specific objects that
the actor is most likely to influence. There is psychological ev-
idence that objects within the actionable space are encoded in a
body-centered reference frame [8]. Inspired by this theory, we de-
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lineate the near space of the human into eight functional regions to
form an actionable map, as shown in Figure 4. These regions en-
code objects based on their spatial relationship to the human body.
The side regions R1 to R4 encode objects that appear in the space
situated next to the actor, e.g., when "repairing an appliance". The
below-torso regions R5 to R7 encode objects that appear when the
actor is standing in front or behind a table top e.g., while "making
a sandwich". The torso region R8 encodes objects that the actor
holds close to the body e.g., an animal or a baby. The size of each
region is proportional to estimated body dimensions. Based on the
face size, we estimate the standing height and the arm span of the
human, assuming standard adult body proportions [1]. Each region
is delineated based on the extent of arm span and torso. Because of
its dependence on body dimensions, the size of the regions depend
on the camera’s viewing distance; when the person is far from the
camera, the regions cover a small area in the image and vice versa.
Also, based on the human position and image dimensions, if the
visibility of certain regions are below a threshold, these are turned
off in the actionable map.

Figure 4: Left: Functional regions R1-R8 form the human actionable map.
Right: Modulation by gaze direction.

2.3 Gaze based filtering
While performing an activity, one is likely to focus gaze at the

objects of interest. To incorporate this bias spatially, we model the
gaze direction of the actor using two types of distributions: (a) a
gaze map that modulates the functional regions and (b) a gaze vol-
ume that modulates the objectness regions. The role of the gaze
map is to selectively activate functional regions that intersect with
the gaze direction. To model it, we consider the estimated Euler
angles of face pose, i.e., the roll (up-down) and yaw (sideways) an-
gles. We measure the angular deviations from frontal view (-90 to
+90 degs.) and quantize each into five bins to generate a 5x5 grid.
The responses over all keyframes are summed up and thresholded
to find the quantized direction of maximum gaze in the video. Next,
the role of the gaze volume is to selectively activate objectness re-
gions. We model the gaze volume as a cone shaped distribution
along the gaze ray, with the apex at the center of the eyes [10]. The
gaze ray is a 3D ray emanating from the center of the eyes and per-
pendicular to the face plane. The cone shape of the gaze volume is
simulated by concatenating 2D Gaussian distributions centered on
gaze ray and of increasing covariances. This is then projected onto
the 2D image space to find the gaze area of interest. The objectness
regions that intersect the gaze area are selected for activation. The
contour of a 1/3 gaze area is shown in Figure 4.

2.4 Multicue combination for AoI
In this step, we fuse the objectness with the actionable space,

modulated by a gaze direction. Based on where the person looks,
there are two cases to consider. (1) When the actor faces the cam-
era, i.e., the center bin of the gaze map is maximum and the gaze

area is a Gaussian that projects back on the person’s face. Under
these conditions, the gaze is non-informative, i.e., all the functional
regions are equally likely. The objectness regions are activated if
they intersect the actionable map (case 1 of Equation 1). (2) When
the actor faces away from the camera. Based on which of the off-
center columns of the gaze map are activated, the functional regions
coincide with the gaze direction are selectively activated. For ex-
ample, in Figure 4, regions R1,R2 and R5 are deactivated because
the person looks leftwards. Under this condition, the gaze volume
backprojects onto some region in the image. The objectness re-
gions that intersect both this area and the actionable map are acti-
vated (case 2 of Equation 1). This combination rule for each pixel
in the AoI map is mathematically summarized as follows.

Gm[3, 3] =


1

∑
p:p∩Fn

1 ◦
∑

p:p∩Obj

oi

otherwise,
∑

p:p∩F̂n

1 ◦
∑

p:p∩Obj

oi ◦
∑

p:p∩Gaze

gi

(1)
where the notations areGm[.] for gaze map coordinates, p is a pixel
in the AoI map, Fn denotes all functional regions and F̂ n are the
gaze coincident regions, oi and gi are objectness and gaze score,
resp. The contours of AOI are illustrated for a few sample images
in Figure 5.

3. EXPERIMENTS

3.1 Dataset
We evaluate our model on the person-object interaction clips de-

rived from the NIST TRECVID corpus [2]. This dataset consists of
video clips from seven events. The background dataset consists of
5000 miscellaneous videos clips sampled from non event videos.
Each clip is about 9 secs. in duration. We process keyframes
sampled at 2 frames per second. The number of videos from each
category are as follows: background (2746), woodworking (138),
blowing off candles (162), changing vehicle tire (68), grooming an
animal (58), making a sandwich (82), repairing an appliance (73)
and sewing (57). The dataset is evaluated over ten folds with 60%
train and 40% test instances, generated by random sampling with
replacement.

3.2 Data representation
We extract four types of features: (a) patch-level visual features

extracted densely over the image grid, (b) objectness windows and
(c) actionable map, (d) gaze map and volume. The processing time
is about 2 secs. per keyframe. For patch-level representation, we
consider two types of visual descriptors- Dense Trajectory Features
with Histogram of Oriented Gradients (DTF-HoG) [15] and Dense
Scale Invariant Feature Transform (Dense SIFT). We extract fea-
ture descriptors, quantize them using k-means to model a discrete
codebook of visual words and finally encode the features into a
fixed length vector per keyframe. We use a codebook vocabulary
size of 10,000 words. A video feature is represented by the average
over all the keyframe feature vectors.

For objectness, we use the publicly available software from the
author’s website [3]. We include the optional steps of color contrast
and superpixel based processing along with multi-scale saliency
within the sliding window mechanism. For the posterior object
score, we set the Bernoulli probability of objectness p(obj) to 0.10.
We also use the author recommended 1000 windows for proper
coverage. We tested non-maxima suppression (nms) and multino-
mial sampling of windows. We found that multinomial sampling
tends to give better coverage, but extracts large windows while nms
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sampling fired more frequently on medium sized objects. We chose
nms because it was better suited for AoI localization in our case.

We apply Pittpatt software for face pose detection. The parame-
ters are set to meet about 90% precision in face detection. In case
of multiple face detections, we consider the center-most face for
extracting the human centered actionable map. We assume human
adult proportions with body height and arm length set to three and
seven times the face size, resp. [1]. The gaze map is 5x5 spatial
grid. For the gaze volume, we assume that the center of eyes is
located at the origin and a point at a arbitrary distance on the gaze
ray is at (0,0,z). The variance of gaze is a 3D Gaussian centered
at (0, 0, z) ∼ N(0, σx,y,z), which is backprojected to obtain a 2D
distribution. We model the cone divergence angle as a function of
the face size as well as the image size to incorporate the viewing
distance in the estimation.

We perform one versus all max-margin classification to catego-
rize each video into one of the seven events or background. We
use libSVM [5] software with the histogram intersection kernel and
a pre-defined penalty c as 1. The same settings were maintained
across all the experiments for consistency. Unless otherwise men-
tioned, performance is measured by the mean average precision of
the ranked list of SVM decision scores.

3.3 Comparison between SP-FP and AS-FP
We first compare image-centered spatial pyramid (SP-FP) and

human-centered actionable space (AS-FP) for feature pooling. We
consider a two-levelled pyramid. Level 1 is the standard visual
word histogram from the whole image. Level 2 in the spatial pyra-
mid is a symmetric 3x3 grid. In the actionable space, level 2 con-
sists of the functional region partitions R1 to R8 (Fig. 3). If a partic-
ular region is absent, its contribution is set to zero. We pool dense
SIFT features and normalize them to generate independent feature
histograms per region. Next, we concatenate them with level 0 his-
togram and compute the video average. These video features are
inputs to the classifier. The results are shown in Table 1. Over-
all, our average accuracy of 44.4% is about 3% higher than SP-FP.
However, there is varying influence of the pooling strategy across
events. "Woodworking", "blowing off candles" (renamed birth-
day, for short) and "making sandwich" benefit most from human-
centered pooling, with a gain of about 7%. This could be attributed
to a distinct relative spatial geometry that exists between person
and objects relevant to these events which can not be captured by
the symmetric image-centered geometry of spatial pyramid.

Table 1: Average precision scores comparing proposed actionable space
(Figure 4) and spatial pyramid [9] based feature pooling.

3.4 Comparison between AOI, Dense and Ran-
dom sampling techniques

It is possible that the above approach over-partitions the feature
space, which leads to sub-optimal performance. To verify this intu-
ition, in the next experiment we combine gaze and objectness cues
with the actionable map and partition the feature space into two

Figure 5: Contours of AOI map modulated by object proposals, gaze and
actionable space based filtering.

regions, an AoI foreground and a background region. The features
within each region are pooled separately and concatenated. To eval-
uate the performance of this bi-region pooling, we also compare
against two baselines: dense pooling (Dense) and random spatial
pooling (Rand.) [12]. Dense representation is the typical average
pooling of bag of features for the whole video. For random repre-
sentation, we pool 10K randomly sampled patches per video. We
also compare the efficacies of two different features: DTF-HoG and
Dense SIFT. The results are shown in Tables 2 and 3.

Table 2: Comparison between AOI and dense pooling using DTF-HoG

Overall, the performance of Dense SIFT, which represents tex-
ture and shape, exceeds that of DTF-HoG, which captures motion.
This may be attributed to the inability of motion features to capture
subtle movements in person-object interactions. Also, the overall
standard deviation across 10 folds is low. We observe that "wood-
working" and "making sandwich" always benefit from spatially lo-
calized pooling. For other events, there is great increase in accuracy
when AOI based pooling is applied. The largest AP gain, greater
than 100%, is seen for "grooming animal" which increases from 9%
to 20%, followed by "repairing appliance" (54%), "changing tire"
(23%) and "blowing off candles" (13%)2. This could be attributed

2APgain = (APfinal-APinitial)/APinitial
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Table 3: Comparison between AOI, dense and random pooling using Dense
SIFT.

to the focussed search performed by our method for relevant ob-
jects in the vicinity of the person. "Sewing" is the only event that
shows negative performance under spatial pooling. This could be
due to a large intra-class variation, where a person is involved in ei-
ther using a sewing machine, cloth cutting or displaying garments.

Table 4: Pearson correlation between informative gaze and precision @ top
50 detections. This implies that for AoI pooling, the highly ranked correctly
detected videos are more likely to contain informative gaze.

Table 5: Pearson correlation between learned classifier weights of corre-
sponding dimensions from AoI and background. There is negligible corre-
lation between weights of the same visual words.

3.5 Impact of AoI priors
We provide a novel way of analyzing the contributions of dif-

ferent priors used in our model. Specifically, we study the classi-
fier outputs vis-a-vis the gaze and AoI prior assumptions. Table 4
shows the measure of Pearson correlation between informative gaze
prior and precision at top 50 detections. A gaze pattern is informa-
tive if it is used in the AoI region selection (Sec. 2.3). We observe
that there is a direct correlation (mostly positive) between avail-
ability of informative gaze and correct detections in the AoI based
approach, whilst the same prior is uncorrelated with the dense de-
tections. We can conclude that gaze drives proper selection of AoI,
which in turn improves event detection. Next, Table 5 shows the
correlation between the learnt classifier weights for corresponding
features appearing in the AoI and background dimensions. I.e.,
since the AoI pooling is formed by concatenation, the same features
are considered twice, once as part of the AoI and second, as part of
the background. Hence, the correlation measure should verify that
the same features are not simply reinforced across the two dimen-
sions. We see that there is negligible correlation between weights
of the same visual words, from which we may conclude that com-
plementary information is learnt from the two spaces, leading to an
improvement in event detection.

4. CONCLUSION
In this paper, we proposed a human centric region of interest

detection and visual-semantic pooling scheme for complex event
detection. We discovered an Area of Interest (AoI) map in image
keyframes, which is used for differential pooling of features. Our
experiments shows that our proposed semantic feature pooling is
able to surpass the performance of state of the art approaches. We
also show that the method’s high accuracy is directly correlated
with the human actionable priors which are used for differential
pooling. In the future, we hope to extend our approach to include a
wider range of entities to spatial ground the search for discrimina-
tive information in event detection.
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