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ABSTRACT
Multiview video super-resolution provides a promising solu-
tion to the contradiction between the huge data size of mul-
tiview video and the degraded video quality due to mixed-
resolution compression. This algorithm consists of two dif-
ferent functional layers. An information extraction layer
draws relevant high-frequency information from the high-
resolution views via depth-image-based rendering and inter-
polation. A merging layer fuses multiview high-frequency
information to refine the low-resolution view. In this paper,
we introduce kernel regression and non-local means to im-
prove the two layers, respectively. Kernel regression adapts
to the local image structure and thus outperforms basic in-
terpolation methods. Non-local means exploits the similari-
ty between different views of multiview videos to restore the
high-frequency component of a low-resolution image. We
constrain non-local means by limiting the pixels used to re-
store a pixel. The experimental results show the effective-
ness of the proposed algorithm.
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1. INTRODUCTION
Super-resolution (SR) algorithms aim at recovering the

high-frequency component of a low-resolution (LR) image
and creating its high-resolution (HR) counterpart. Since the
rediscovery by Huang et al. [9], SR algorithms have shown
a promising prospect in medical image processing, video
compression, three-dimensional television (3DTV), and free-
viewpoint television (FTV). Compared with expensive hard-
ware capture system, SR algorithms provide an economic
alternative to generate HR images and videos.
SR algorithms are divided into reconstruction-based meth-

ods and example-based methods [13]. Reconstruction-based
methods use subpixel displacement among successive LR im-
ages. Goldlueche et al. first proposed a 3D multiview SR
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approach that led to a total variation energy for the texture
map [7]. By solving the Euler-Lagrange equation on the sur-
face, the texture map could be recovered. Example-based
methods establish a library from a set of training samples,
which guides the learning phase of the SR algorithm [4].

When applied to a video sequence, SR algorithms exploit
the temporal or spatial redundancy of the video instead of
establishing libraries from irrelevant training samples. Bran-
di et al. proposed an algorithm that super-resolved non-key
frames of a video sequence with the assisted information
from key frames [2]. Ancuti et al. used HR still photograph-
s of the same scene to refine a LR video [1]. In addition,
mixed-resolution (MR) multiview video allows one to exploit
the spatial redundancy of videos to increase the sharpness
of a LR view [6]. MR video coding is proposed to save the
cost and bandwidth used to capture, transmit, and store
multiview videos. However, this video format fails to offer
satisfactory viewing experience in different perspectives due
to the inherent LR views. Fortunately, multiview video SR
algorithms solve the problem [6,12].

Multiview video SR methods mainly contain an infor-
mation extraction layer and an information merging layer.
The extraction layer is based on depth-image-based render-
ing (DIBR) that projects high-frequency content from a HR
view to a LR view [3, 6]. On the other hand, the merging
layer is a mechanism that fuses all of the available high-
frequency information to recover a LR view. Since the algo-
rithm proposed by Garcia et al. resulted in projection errors
in case of noisy depth map [6], Richter et al. proposed an al-
gorithm that was based on displacement-compensated high
frequency synthesis and aimed at correcting the errors [12].
Besides the algorithms extracting information in spatial do-
main, Fu et al. extracted high-frequency content in discrete
cosine transform (DCT) domain and devised an optimal
weight distribution to merge multiview information [5]. Jin
et al. proposed a decision mechanism to determine whether
to fill the missing pixels in the super-resolved frame by HR-
view pixels or by interpolated LR-view pixels [10].

In this paper, we propose to use kernel regression and non-
local means (NLM) to improve the two functional layers of
multiview SR algorithms, respectively. Kernel regression is
based on the assumption of the local continuity of natural
images and changes the shape of the kernel according to the
local image structure [8]. Thus, it can avoid introducing
irrelevant pixels into predicting an unknown pixel and im-
proves the performance of the extraction layer. Due to the
occlusion of objects and the displacement of cameras, the
derived images by the extraction layer usually contain holes
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Figure 1: Flowchart of the proposed algorithm.

and cracks that cannot be filled by a single view. Thus, the
information merging layer is needed to fuse the multiview
images. Contrary to the assumption of local continuity of
kernel regression, NLM assumes that a similar patch can re-
peat within a non-local area of an image [11]. We impose
constraints on the number of available pixels to reject the
dissimilar ones which may be misused to recover a pixel.
The rest of the paper is organized as follows. Section 2

describes the proposed algorithm in detail. Section 3 shows
the experimental results. Section 4 concludes the paper.

2. THE PROPOSED ALGORITHM
Multiview video plus depth (MVD) format is used for the

SR algorithm. Let In be the LR image, In−1 and In+1 be the
HR images in the adjacent view. In addition, each view is
provided with a depth mapD (See Fig. 1). The video format
is not limited to just two HR views and can be extended to
any possible HR configurations. Since the operations of In−1

and In+1 are symmetric, we mainly talk about In−1.
The proposed algorithm contains two layers: an informa-

tion extraction layer and a merging layer. In the informa-
tion extraction layer, the LR image is enlarged by bicubic
interpolation, resulting in its full-resolution counterpart ILn .
However, ILn lacks high-frequency information and needs to
be enhanced with the aid of In−1 and In+1. Thus, the HR
images undergo view projection, kernel regression. View
projection establishes coordinate correspondences between
ILn and In−1 and projects high-frequency information from
In−1 to the image plane of ILn . As is shown in Fig. 2,
the derived coordinates are irregular samples (blue stars)
instead of the regular samples (red points). Thus, kernel re-
gression is used to restore the regular samples. Meanwhile,
component separation is implemented along with kernel re-
gression, resulting in a high-frequency component IKH

n−1 and
a low-frequency component IKL

n−1.
The primitively refined images by kernel regression have

some unavoidable holes and cracks. Therefore, the merging
layer is used to combine the multiview images and to alle-
viate the cracks and holes. The high-frequency component
IKH
n−1 and the low-frequency component IKL

n−1 are used dif-
ferently in NLM, which is detailed in Subsection 2.2. After
NLM, the derived detail information and structure informa-
tion are added to complete the whole algorithm.

Figure 2: Regular samples (red points) and irregular
samples (blue stars).

2.1 The Information Extraction Layer

2.1.1 View Projection
View projection is a fundamental technology in MR-MVD

processing. It establishes coordinate correspondences be-
tween a LR view and its adjacent HR view.

We assume a basic pinhole model where points in space
and points in an image plane are linked via central projec-
tion. To start with, a point (x1

′, x2
′) in the HR image plane

of In−1 is projected to its space position

(u1, u2, u3)
T = R−1

n−1A
−1
n−1D(x1

′, x2
′)(x1

′, x2
′, 1)T + tn−1

(1)
where An−1, Rn−1, and tn−1 are the intrinsic matrix, ro-
tation matrix, and translation vector of the camera, respec-
tively. D(x1

′, x2
′) is the physical depth which can be derived

from the depth map, i.e.

1

D(x1
′, x2

′)
=

d(x1
′, x2

′)

255
(

1

Dmin
− 1

Dmax
) +

1

Dmax
(2)

where d(x1
′, x2

′) is the 8-bit entry in the depth map, Dmax

and Dmin define the physical depth range. Then the space
point is projected onto the image plane of ILn , i.e.

w(x1, x2, 1)
T = AnRn

[
(u1, u2, u3)

T − tn
]

(3)

Therefore, a point (x1
′, x2

′) in In−1 is uniquely associated
with a point (x1, x2) in the image plane of ILn . Ideally, the
pixel information of (x1

′, x2
′) can be directly used to recover

that of (x1, x2). However, the derived points are irregular
samples(Fig. 2). In order to obtain the regular samples,
different methods are used. Fu et al. directly rounded ir-
regular samples to their regular positions, thus incurring at
most half-pixel error along each axis [5]. Garcia et al. ob-
tained regular samples via bilinear interpolation [6]. In the
following subsection, we will introduce kernel regression to
obtain regular samples.

2.1.2 Kernel Regression
Kernel regression assumes the local continuity of natural

images and exploits this local regularity to restore images
and videos. It’s suitable not only for interpolation of regu-
larly sampled images but also for restoration of irregularly
sampled images. We discuss recovering regular samples from
irregular samples here (Fig. 2). For the simplicity of nota-
tion, we use a coordinate vector x to denote a pixel position.
Kernel regression is generalized as a least-square optimiza-
tion problem, i.e.

ẑ(xi) = argmin
z

∑
xj∈N (xi)

(In−1(xj)− z)2Kxi(xj − xi) (4)
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where Kxi(x−xi) is the steering kernel, N (xi) is the neigh-
borhood of xi, xi and xj denote the regular and irregular
samples. Solving the optimization problem gives

ẑ(xi) =

∑
xj∈N (xi)

In−1(xj)Kxi(xj − xi)∑
xj∈N (xi)

Kxi(xj − xi)
(5)

Thus, the irregular neighbors xj constitute the regression
basis of xi. The essence of kernel regression is to develop a
steering kernel adapted to the local structure of an image.
An adaptive Gaussian kernel can be constructed, i.e.

Kxi(x− xi) =
{det(Ci)}1/2

2πσ2
k

exp

{
(x− xi)

TC−1
i (x− xi)

−2σ2
k

}
(6)

where Ci is the diffusion tensor at xi controlling the shape
of the kernel, σk controls the bandwidth of the kernel [15].

2.1.3 Component Separation
The bicubic interpolation ILn of the LR image offers con-

vincing low-frequency (structure) information although it
lacks high-frequency (detail) information. Instead of restore
the overall pixel value, one only need to recover the detail
information of the LR image In. Therefore, a proper sep-
aration of the detail and structure information becomes an
important task for the information extraction layer.
The component separation of regular samples is imple-

mented simultaneously with kernel regression, i.e.

ẑ(xi) = IKL
n−1(xi) + IKH

n−1(xi) (7)

where IKL
n−1(xi) and IKH

n−1(xi) are the detail and structure
components of xi. These two components are computed as

IKL
n−1(xi) =

∑
xj∈N (xi)

ILn−1(xj)Kxi(xj − xi)∑
xj∈N (xi)

Kxi(xj − xi)
(8a)

IKH
n−1(xi) =

∑
xj∈N (xi)

IHn−1(xj)Kxi(xj − xi)∑
xj∈N (xi)

Kxi(xj − xi)
(8b)

where ILn−1 and IHn−1 are the low-frequency and high-frequency
parts of the HR image In−1. ILn−1 is derived from In−1 by
blurring, decimation, and interpolation. IHn−1 is the differ-
ence between In−1 and ILn−1 [2]. In the information extrac-
tion layer, the low-frequency component guides the fusion of
multiview high-frequency components.

2.2 The Information Merging Layer

2.2.1 Image Merging
The images derived from kernel regression have annoying

artifacts of holes and cracks. For example, Fig. 3 shows
this phenomenon in two complementary views. Each of the
views has artifacts that cannot be filled with information
from a single HR view. However, if the two images in Fig. 3
are merged, the resultant image will overcome this problem.
Since ILn has convincing low-frequency information, we on-
ly need to merge multiview high-frequency information via
NLM.
In MR multivew setup, NLM exploits the similarity be-

tween a LR image and its adjacent HR views to recover

(a) (b)

Figure 3: (a) and (b) are two complementary views.

the missing high-frequency information of ILn . For a pixel in
ILn , its high-frequency component is computed as a weighted
sum of those of its neighbors in the HR images, i.e.

IHn (xk) =

∑
v

∑
xl∈S(xk,v)

IKH
v (xl)ω(xk,xl, v)∑

v

∑
xl∈S(xk,v)

ω(xk,xl, v)
(9)

where S(xk, v) is the similarity patch that contains the neigh-
bors of pixel xk in the HR view v, xl is a pixel in the patch,
and ω(xk,xl, v) is a weight that reflects the similarity of
xk and xl. The weight is computed by comparing the two
low-frequency parts, i.e.

ω(xk,xl, v) = exp

(
−
∥∥(RxkI

KH
v −RxlI

L
n )Gσ

∥∥2
2

2σ2
l

)
(10)

where the operator Rx extracts a patch around x, σl is a
smoothing factor, Gσ is a Gaussian kernel with standard
deviation σ.

2.2.2 Constrained NLM
One major problem of the described algorithm is that it

involves too many pixels in the recovery of a pixel in the LR
image. Although a dissimilar pixel can be assigned with a
small weight, it still participates in the weighted-averaging
process. In the extreme case, considerable dissimilar pixels
that are used to recover a pixel will accumulate restoration
errors. Thus, we choose no more than ρ pixels in the weight-
ing process to reject the dissimilar pixels. The selected ρ
pixels are those with the largest possible weights.

2.3 Discussion
From (5) and (9), kernel regression and NLM have simi-

lar computing structures. However, they act differently in
the method. First, the basic assumption of the two meth-
ods are different. Kernel regression uses local continuity
and smoothness to interpolate regular samples while NLM
exploits the similarity of multiview video. Second, as men-
tioned above, they play different roles in the proposed method.

Some other work is also related to combining the advan-
tages of kernel regression and NLM [15, 16]. However, the
multiview setup makes the discussed algorithm distinct. The
MR format allows the algorithm to learn detail information

Table 1: Parameter Setup
Parameter σk σl σ ρ N (x) size S(x) size
Value 2.6 1.6 1 12 3 7
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Table 2: Comparison of Intermediate Results and
the Final Result

Method PSNR(dB) SSIM
Bilinear Interpolation 36.6643 0.9882
No separtion, no constraint 36.6854 0.9709
Only Constraint 37.1654 0.9806
Final Result 38.7299 0.9925

Table 3: PSNR (dB) and SSIM of Frame 20

Method
Ballet Breakdancers

PSNR/SSIM PSNR/SSIM
Bicubic 37.0085/ 0.9890 36.8104/0.9883
SRTD 37.3724/ 0.9893 37.1304/0.9884
SRDM 38.5339/ 0.9927 38.0414/0.9894
Proposed 39.0107/ 0.9933 38.8205/0.9925

from the HR view although no learning library is trained.
View projection establishes relative accurate coordinate cor-
respondences, which makes it possible for kernel regression
to compute regular samples. Component separation guar-
antees accurate high-frequency information is extracted.

3. EXPERIMENTAL RESULTS
In this section, we validate the proposed approach by ex-

perimental results. We use the sequences Ballet and Break-
dancers for our tests [17]. The parameter setups are given
in Table 1. For all of the SR algorithms, View 3 is the LR
view to be refined with the aid of HR View 0, View 2, View
4, and View 6. In order to simulate the LR view, the origi-
nal full-resolution images in View 3 are down-sampled with
a sampling rate of 2.
We conduct two experiments with different purposes. The

first experiment compares the intermediate results and the
final result of the proposed algorithm to show how each tech-
nique improves the method’s performance. The results in
comparison are bicubic interpolation, result without compo-
nent separation and constrained NLM (No separtion, no con-
straint), result only with constrained NLM (Only Constrain-
t), and the final result. The Peak Sigal-to-Noise Rate (P-
SNR) and Structure SIMilarity (SSIM) [14] of Breakdancers
are shown in Table 2.
In the second experiment, we compare the proposed algo-

5 10 15 20 25
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Figure 4: PSNR (dB) of 30 frames for Ballet

(a) (b) (c) (d)

Figure 5: (a) - (d) are the details of bicubic inter-
polation, SRTD, SRDM, and the proposed method
for Breakdancers.

(a) (b) (c) (d)

Figure 6: (a) - (d) are the details of bicubic inter-
polation, SRTD, SRDM, and the proposed method
for Ballet.

rithm with bicubic interpolation, SR in transform domain
(SRTD) [5], and SR for multiview images using depth map
(SRDM) [6]. Table 3 shows the PSNR and SSIM results
of Frame 20 of the two sequences. SRTD can only pro-
vide limited improvement over bicubic interpolation. The
PSNR gains are only 0.3639dB and 0.33dB for Ballet and
Breakdancers, respectively. Compared with SRTD, SRDM
has relative better result. Among the SR algorithms, the
propsed has the best performance. The PSNR gain of the
proposed algorithm over the other methods are 2.0022dB,
1.6381 dB and 0.4768 dB for Ballet. Fig. 4 shows the PSNR
result of 30 frames of Ballet. The proposed algorithm has
the best performance under all the circumstances.

Fig. 5 and Fig. 6 shows the details of the SR images. Both
SRDM and the proposed algorithm can recover satisfacto-
ry high-frequency information for the LR image. However,
SRDM has some artifacts around the edges of the images.

4. CONCLUSION
In this paper, we proposed a multiview SR algorithm that

improves the performance of the information extraction lay-
er and the merging layer. Kernel regression adapted to the
local structure extracts more accurate high-frequency infor-
mation, compared with basic interpolation. NLM is used
to merge the extracted high-frequency information from HR
views. The constraints imposed on the number of avail-
able pixels avoid incorporating mismatched pixels into the
restoration of a pixel. The experimental results show the
effectiveness of the main techniques used in the proposed
algorithm. The comparison with other multiview SR algo-
rithms shows the improvement of the proposed algorithm.
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