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ABSTRACT
Air pollution has raised people’s intensive concerns especial-
ly in developing countries such as China and India. Different
from using expensive or unreliable methods like sensor-based
or social network based one, photo based air pollution esti-
mation is a promising direction, while little work has been
done up to now. Focusing on this immediate problem, this
paper devises an effective convolutional neural network to
estimate air’s quality based on photos. Our method is com-
prised of two ingredients: first a negative log-log ordinal
classifier is devised in the last layer of the network, which
can improve the ordinal discriminative ability of the model.
Second, as a variant of the Rectified Linear Units (ReLU), a
modified activation function is developed for photo based air
pollution estimation. This function has been shown it can
alleviate the vanishing gradient issue effectively. We collect
a set of outdoor photos and associate the pollution levels
from official agency as the ground truth. Empirical experi-
ments are conducted on this real-world dataset which shows
the capability of our method.

1. INTRODUCTION
Air pollution is becoming more and more serious in many

developing countries, which influences the human health and
life significantly [22]. Thus, how to reduce the air pollu-
tion becomes an urgent problem in these countries. In order
to achieve this goal, air quality estimation is an effective
way to monitor the air pollution and can provide recom-
mendations for decision makers. In the past, many methods
have been proposed for predicting air quality. Chung [5] u-
tilizes the satellites to detect the air pollution and its trans-
port. Hodgeson et al. [10] use the spectroscopic technique
to solve the complexity of the monitoring problems. Oth-
er works include filter-based gravimetric method [7], optical
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information of the atmospheric aerosol [23], social network
based method [4], and mobile information based method
[19]. However traditional air quality monitoring needs pro-
fessional sensors or equipments deployed at representative
sites, which is expensive in the cost. More importantly, their
coverage is geographically limited, and thus the air pollution
levels in those places far from air quality monitor sites can
not be measured accurately. With the rapid development
of smartphone, directly estimating air pollution from pho-
tos starts to gain the potential of being a convenient and
less expensive approach because it can cover more areas in a
crowd-sourcing manner. However, little work has been done
for photo based air pollution estimation.

Feature learning based on convolutional neural network-
s (CNN) has been intensively studied in recent years, and
many promising progresses have been made for solving typ-
ical computer vision problems [12]. In CNN based methods,
designing a task-specific network structure is rather chal-
lenging. In this paper, we explore the way for how to design
a CNN model for estimating air pollution by photos from
mobile-phone. In particular, this paper focuses on two as-
pects in the CNN model design. First, one popular classifier
in CNNs is Softmax [9] which is the generalization of the
logistic regression. In addition, Softmax regression is a su-
pervised learning algorithm, which can utilize the features
derived from deep learning networks as input for prediction.
Such combination has achieved prominent success in many
tasks such as MNIST digit, CIFAR10 and CIFAR100 clas-
sification. However multinomial regression model like Soft-
max does not consider the ranking information at all dur-
ing learning while ranking information is very important for
ranking or regression problems [14, 15]. Therefore, design-
ing a network structure to preserve the ranking information
is necessary for air quality prediction.

Second, the activation function is another critical part for
the success of CNN applications. The sigmoid suffers from
the vanishing gradient problem [3]. The mean of ReLU [20]
activation is larger than zero which may lead to bias for the
next layer. PReLU [8] and LReLU [18] consider the nonzero
slope for negative part but they do not consider change the
slope of the positive part to improve model’s flexibility.

In this paper, we propose a CNN based Photo Air Pollution
Level Estimation algorithm, called PAPLE, for air pollution
estimation. Specifically, a new function with two parame-
ters θ = {α, β} is first introduced as the activation operator
followed by each convolutional layer. The positive parts α is
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the slope and the negative part β < 0 is the constant term.
The new activation layer enables our CNN model to be more
flexible, less time-consuming and overcome the bias problem
for the next layer. In the proposed convolutional neural net-
work model, there are nine convolution layers, two pooling
layers and two dropout layers. To capture the ranking in-
formation of the categories, we then involve in the ordinal
classifier [6] in the last layer of network. Because most day’s
pollution levels are low and thus the cumulative probability
for lower parts is high, we choose negative log-log as our link
function [21].

In a nutshell, the main bullets of our method are:

• This paper is one of the first work for estimating the
air pollution via image content. We collect a labeled
dataset involving both photos taken in different air
conditions and the pollution measurements from of-
ficial agency. Empirical results show the feasibility of
image based pollution estimation.

• A novel convolutional neural network is tailored to
the air pollution estimation task with two ingredients.
First, a modified activation function is introduced to
effectively mitigate the problem of vanishing gradien-
t and the bias for the next layer. Second, instead of
the widely used Softmax classifier, a negative log-log
ordinal classifier is adopted to better fit the pollution
estimation problem.

2. POLLUTION ESTIMATION BY CNN

2.1 Convolutional Features Extractor
We first present the CNN features used in this work. The

operator of the convolution layer can be summarized as

Li = poolP (σ(Li−1 ∗Wi + bi)) (1)

where Li−1 is the input feature layer, Wi are the weights
and bi are the biases. θi = {Wi, bi} is the learned parameter
set. The function pool is a sub-sampling operation. P is
the size of the pooling region. ∗ represents the convolution
operator, and σ is the activation function.

ReLU [20] has been proposed to replace saturated coun-
terpart (e.g. sigmoid and tanh) activation function and
achieves excellent performance. However, ReLU’s mean ac-
tivation is larger than zero which may lead to bias for the
next layer. And ReLU’s slope is 1 which is not flexible.
Thus, we define a new activation as followed:

f(x) =

{
β, if x < 0
αx, otherwise

(2)

where θ = {α, β} are the parameters. α is the slope and
β < 0 is the constant term. The new activation only has two
parameters and it is fast to train the model. Our proposed
activation is similar to other ReLU family activation, like
PReLU [8], LReLU [18]. But our function has one negative
constant value. This simplifies our model and the slope pa-
rameter for positive part renders our function more flexible.
Specifically when α = 1 and β = 0, our activation function is
reduced to standard ReLU. Fig.1 shows the shape of ReLU
and our proposed activation function. The first derivative is
derived as

f ′(x) =

{
0, if x < 0
α, otherwise

(3)

Figure 1: ReLU vs. the proposed activation func-
tion. The parameter θ = {α, β}, where α is the slope
and β is the negative part.

The new activation function can be trained by backprop-
agation [13], the update rule for θ = {α, β} is obtained from
chain rule:

∂O

∂θ
=
∑
xi

∂O

∂f(xi)

∂f(xi)

∂θ
(4)

where O denotes the objective function, ∂O
∂f(xi)

is the gra-

dient propagated from the higher layers. For the channel-

shared variant, the gradient of θ is ∂O
∂θ

=
∑
i

∑
xi

∂O
∂f(xi)

∂f(xi)
∂θ

.

The gradients for the parameters α and β are

∂f(xi)

∂α
=

{
0, if x < 0
xi, otherwise

(5)

∂f(xi)

∂β
=

{
1, if x < 0
0, otherwise

(6)

The momentum algorithm is used to update the θ = {α, β}

∆θ := µ∆θ + ε
∂O

∂θ
(7)

where µ is the momentum and ε is the learning rate.
To obtain features from CNN, we introduce a CNN based

network structure: Estimation of Photo Air Pollution Level
Network (EPAPLN). Its structure is summarized in Table 1.
Our convolutional neural network includes 9 convolution lay-
ers, 2 pooling layers and 2 dropout layers. Our proposed ac-
tivation function is used in each convolutional layer. In each
convolution layer the first part shows the filter shape and
the second part shows number of filters. The size of filters
of pooling layers is set to 3 × 3. We utilize dropout [24] as
the regularization method to prevent neural networks from
overfitting. We set the probability of retaining a hidden unit
to 0.5.

Stochastic gradient descent is applied to learn EPAPLN.
The last two layers are used to represent the features because
the high-level layers are more related to semantics [17].

2.2 Negative Log-log Ordinal Classifier
Softmax ignores data’s order and treats all the categorical

variables as nominal ones, which introduces bias for ordinal
regression tasks. Hence we adopt the ordinal classifier to
estimate the pollution level. Because pollution levels for
most days are low and the cumulative probability for lower
parts is high, we choose negative log-log as our link function.
The negative log-log ordinal regression model is:

− log (− log (P (Y 6 j))) = αj +
∑

ωixi (8)

The log-likelihood function can be derived as below:

` =

J−1∑
j=1

j∑
k=1

nk log(

∑j
l πl

πj+1
) −

j+1∑
k=1

nk log(

∑j+1
l πl

πj+1
) (9)
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Table 1: Network structure: each layer is a convo-
lutional layer if not otherwise specified. Activation
function is followed by each convolutional layer.

Input Size EPAPLN (our model)
64×64 3×3, 32
64×64 3×3, 32
64×64 3×3, max pooling, /2
32×32 dropout, 0.5
16×32 3×3, 64
32×32 3×3, 64
32×32 3×3, 64
32×32 3×3, avg pooling, /2
16×8 dropout, 0.5
16×16 3×3, 96
16×16 3×3, 96
16×16 3×3, 96
16×16 3×3, 96

where n is the sum of all frequency weights. We denote
the parameter vector as θ, which has J − 1 + p parameters.
J = 6 is the level count and p is the feature number.

Newton-Raphson method can be used to estimate the pa-
rameters and let thetas be the parameter vector at step s
and let As be a (J − 1 + p)× (J − 1 + p) matrix.

[As]de = −
∂2`

∂θd∂θe
(10)

For step s + 1, the parameter vector θs+1 can be obtained
by:

Asθs+1 = Asθs + γ
∂`

∂θs
(11)

where γ is the stepping scalar.
The first derivative of the log-likelihood regarding θ is:

∂`

∂θd
=

J−1∑
j=1

 j∑
k=1

nk −
j+1∑
k=1

nk

∑j
l=1 πl∑j+1
l=1 πl

 ∑j+1
l=1 πl∑j

l=1 πlπj+1∂(αj+1 +
∑
ωixi)

∂θd

∑j
l=1 πl∑j+1
l=1 πl

j+1∑
l=1

πl log(

j+1∑
l=1

πl)

−
∂(αj +

∑
ωixi)

∂θd

j∑
l=1

πl log(

j∑
l=1

πl)

 (12)

where we set ∂(αJ+
∑
ωixi)

∂θ
= 0,

∑J
l=1 πl log(

∑J
l=1 πl) = 0

and j = 1, · · · , J − 1, d = 1, · · · , J − 1 + p.
The second derivative of the log-likelihood w.r.t. θ is:

∂2`

∂θd∂θe
=

J−1∑
j=1

(F1 − F2 + F3F4) (13)

where F1, F2, F3, F4 can be computed as follows:

F1 = Qje

(
j+1∑
k=1

nk

∑j
l=1 πl∑j+1
l=1 πl

−
j∑

k=1

nk

)
(14)

(
1

(
∑j
l=1 πl)

2

∑j+1
l=1 πl∑j

l=1 πlπj+1

Qjd

+
1

π2
j+1

( ∑j+2
l=1 πl∑j+1

l=1 πlπj+2

Q(j+1)d −
∑j+1
l=1 πl∑j

l=1 πlπj+1

Qjd

))

F2 =

∑j+1
k=1 nk∑j+1
l=1 πl

∑j+1
l=1 πl∑j

l=1 πlπj+1

QjdQje (15)

F3 = −

j+1∑
k=1

nk

∑j
l=1 πl∑j+1
l=1 πl

−
j∑

k=1

nk

 ∑j+1
l=1 πl∑j

l=1 πlπj+1

(16)

F4 =
∂(αj +

∑
ωixi)

∂θe

1 + log

j∑
l=1

πl


j∑
l=1

πl log(

j∑
l=1

πl)
∂(αj +

∑
ωixi)

∂θd

+
∂(αj+1 +

∑
ωixi)

∂θe

Qjd∑j+1
l=1 πl

j+1∑
l=1

πl log(

j+1∑
l=1

πl)

+
∂(αj+1 +

∑
ωixi)

∂θd

∑j
l=1 πl∑j+1
l=1 πl

1 + log

j+1∑
l=1

πl


j+1∑
l=1

πl log(

j+1∑
l=1

πl)
∂(αj+1 +

∑
ωixi)

∂θd
(17)

where d, e = 1, · · · , (J−1)+p and Qjd and Qje are below:

Qjd =

(
∂(αj+1 +

∑
ωixi)

∂θd

∑j
l=1 πl∑j+1
l=1 πl

j+1∑
l=1

πl log(

j+1∑
l=1

πl)

−
∂(αj +

∑
ωixi)

∂θd

j∑
l=1

πl log(

j∑
l=1

πl)

)
(18)

Qje =

(
∂(αj+1 +

∑
ωixi)

∂θe

∑j
l=1 πl∑j+1
l=1 πl

j+1∑
l=1

πl log(

j+1∑
l=1

πl)

−
∂(αj +

∑
ωixi)

∂θe

j∑
l=1

πl log(

j∑
l=1

πl)

)
(19)

3. EXPERIMENTS
We evaluate our Photo Air Pollution Level Estimation

(PAPLE) algorithm on the pollution images dataset which
includes photos shots taken in Beijing by ourself. The dataset
involves two major air pollutants in developing countries
including Particulate Matter 2.5 (PM2.5) and Particulate
Matter 10 (PM10) as the main targets for estimation, which
have both 6 levels [1] as listed in Table 2. The associated
ground truth, i.e. the air quality observation data, is col-
lected from the website of Beijing environmental protection
bureau [2].

Table 2: Air quality index for PM2.5 and PM10.

Level 1 2 3 4 5 6
PM2.5 Range <35 35-75 75-115 115-150 150-250 >250
PM10 Range <50 50-150 150-250 250-350 350-420 >420

We compare CNN-Softmax, PReLU-CNN-Softmax, LReLU-
CNN-Softmax, ReLU-CNN-Softmax, PCA-Negative Log-log
Ordinal Classifier (PCALL) and use their default parameter-
s to train the model. Table 3 shows our proposed PAPLE
performs competitively against the other methods on the
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Table 4: Coincidence matrix for PM2.5 by different methods on the collected real-world dataset.
1 2 3 4 5 6

1 326 13 3 1 3 2
2 63 48 11 1 0 4
3 33 23 23 8 4 1
4 11 10 4 5 8 3
5 15 4 2 10 43 9
6 3 2 2 4 12 44

1 2 3 4 5 6
1 305 25 14 0 4 0
2 57 47 19 1 2 1
3 25 25 30 6 6 0
4 7 8 7 5 9 5
5 8 3 22 5 30 15
6 8 0 4 0 18 37

1 2 3 4 5 6
1 263 50 26 5 4 0
2 38 45 27 13 3 1
3 17 17 30 19 7 2
4 5 6 11 5 6 8
5 4 6 12 12 32 17
6 0 3 4 3 20 37

(PAPLE) (CNN-Softmax) (PReLU-CNN-Softmax)

1 2 3 4 5 6
1 296 44 0 0 8 0
2 53 68 0 0 5 1
3 28 56 0 0 7 1
4 4 22 0 0 13 2
5 6 24 0 0 46 7
6 5 5 0 0 28 29

1 2 3 4 5 6
1 293 35 3 6 6 5
2 61 45 9 1 2 9
3 30 25 14 10 6 7
4 11 8 4 6 9 3
5 15 5 0 11 38 14
6 3 1 2 1 15 45

1 2 3 4 5 6
1 293 46 4 0 5 0
2 62 59 2 0 3 1
3 37 43 6 0 5 1
4 7 21 0 0 11 2
5 6 30 2 0 37 8
6 2 3 5 0 27 30

(LReLU-CNN-Softmax) (ReLU-CNN-Softmax) (PCALL)

Table 3: Average error with different methods.
Methods PM2.5 PM10
PAPLE 0.606 0.411

CNN-Softmax 0.644 0.47
PReLU-CNN-Softmax 0.691 0.492
LReLU-CNN-Softmax 0.694 0.511
ReLU-CNN-Softmax 0.699 0.526

PCALL 0.724 0.569

average error which is defined by: (
∑n
i=1 |predicted level −

actual level|)/n , where n is the number of testing samples.
Table 4 shows the coincidence matrices which show the pat-
tern of matches between each predicted level and its actual
level with different methods for the PM2.5 as target. The
rows refer to the actual PM2.5 levels, the columns show the
predicted PM2.5 levels and the content of table shows the
matching number of record. Larger diagonal numbers indi-
cate better performance. Because of the space limitation,
we do not list the PM10 results. In fact they are similar to
the PM2.5 results.

Cumulative gain [11] is also adopted to measure the per-
formance. It is calculated as the ratio between the results
obtained with and without the model and it denotes the
percentage of the overall number of cases in a given catego-
ry ”gained” by targeting a percentage of the total number
of cases: Gain = Expected Response Using Predictive Model

Expected Response From Random Mailing
. In

Figure 2, y-axis shows the percentage of positive responses,
and the result demonstrates PAPLE still outperforms all the
other methods in terms of this metric.

4. CONCLUSION
In this paper, we have proposed an effective CNN based

model for air pollution estimation from raw images. Our
model involves a negative log-log ordinal classifier to fit the
ordinal output well. We also empirically devise a new acti-
vation function for photo air pollution level estimation. The
proposed approach is validated with qualitative and quanti-
tative evaluations against several state-of-the-art methods.
One important future work is to use crowd-sourced photos
to trace contamination path. We will collect more photos
from different places to study the influence of the diversity

PM2.5 PM10

Figure 2: Cumulative gains for PM2.5, PM10.

between the training and the testing dataset. We will also
consider the image quality and noises in our model [16, 25].
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