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ABSTRACT
The number of “hits” has been widely regarded as the lifeblood of
many web systems, e.g., e-commerce systems, advertising systems
and multimedia consumption systems. However, users would not
hit an item if they cannot see it, or they are not interested in the item.
Recommender system plays a critical role of discovering interested
items from near-in�nite inventory and exhibiting them to potential
users. Yet, two issues are crippling the recommender systems. One
is “how to handle new users”, and the other is “how to surprise
users”. The former is well-known as cold-start recommendation,
and the latter can be investigated as long-tail recommendation. This
paper, for the �rst time, proposes a novel approach which can si-
multaneously handle both cold-start and long-tail recommendation
in a uni�ed objective.

For the cold-start problem, we learn from side information, e.g.,
user attributes, user social relationships, etc. Then, we transfer the
learned knowledge to new users. For the long-tail recommenda-
tion, we decompose the overall interested items into two parts: a
low-rank part for short-head items and a sparse part for long-tail
items. The two parts are independently revealed in the training
stage, and transfered into the �nal recommendation for new users.
Furthermore, we e�ectively formulate the two problems into a
uni�ed objective and present an iterative optimization algorithm.
Experiments of recommendation on various real-world datasets,
such as images, blogs, videos and musics, verify the superiority of
our approach compared with the state-of-the-art work.
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1 INTRODUCTION
Imagine, for a minute, some fantastic things among which one may
experience in his life. What have you got in your mind? Love at �rst
sight? Yes, that is fantastic! It is fantastic because it involves NEW
and SURPRISE. Love at �rst sight happens. Happens a lot between
human beings. Unfortunately, it rarely happens between users and
on-line multimedia consumption systems as what they yearn for.
Why? Check the recommender system [1, 5, 6, 22, 27]. It might
have no idea about how to handle new users, or it is mediocre and
cannot surprise any customer. Even worse, both of them. In fact,
these two issues are the most challenging problems that cripple a
fantastic recommender system.

Handling new users, or items, is well-known as the cold-start
problem [10, 16, 30] in recommender systems. The user cold-start
problem concerns recommendation for a new user who did not have
any historical record in the target system. Currently, the state-of-
the-art technology pervasively deployed in recommender systems
is collaborative �ltering (CF) [11, 12, 19, 26, 29]. CF, unfortunately,
is built on past interactions between the user and the system. Thus,
it obviously cannot handle the cold-start problem. Cold-start prob-
lem has been regarded as a quite challenging problem in the com-
munity [30]. With no direct information available, previous work
advocate just recommending the most popular items to new users,
or resort to learning from side-information to facilitate the cold-
start [13, 28, 32, 38]. The side-information can be user attributes
(e.g. gender, age, occupation and location) [10] or user’s social
connections (e.g., user’s friend groups) [7, 31]. However, only rec-
ommending the most popular items may give the user a negative
impression of not being taken seriously and further considers that
the recommender system is mediocre. Studying side-information
gives us an opportunity to learn more about the user and then rec-
ommend items based on the user’s attributes. For instance, suppose
that we found out married young males spend most of their money
on beers and diapers, we should also recommend beers and diapers
for a new user who is a married young male.

The essence of side-information based cold-start is to recom-
mend the items to a new user where the recommended items are
popular among old users who have common characteristics with
the new user. Compared with the strategy of recommending the
system-wide popular items, the side-information based recommen-
dation makes a user feeling that the system knows something about
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Figure 1: Illustration of the proposed method. We handle cold-start recommendation by transfer learning, and we decompose
the recommendations into two part, a low-rank part to address short-head items and a sparse part to handle long-tail items.

him. People enjoy being taken seriously. However, only know some-
thing is not enough. Considering a real-world multimedia system,
e.g., youtube.com, there would be massive users with each one has
only single-digit of available attributes. In other words, hundred
of thousands of users would be share the same combination of
attributes [35]. The recommender system, therefore, would treat
these users with no discrimination. As a result, the system can rec-
ommend some interested items to the new user, but there is much
of a chance it would lose the individuality. In fact, losing the indi-
viduality is a pervasive problem because previous work [4, 14, 31]
generally preserve only principal components [37]. Individuality
recommendations surprises users, while commonness recommenda-
tions end up boring users. For example of music recommendation,
Mick is a big fun of pop music, he joins several music sharing
groups, e.g., the group of the Beatles and the group of Bob Dylan.
He is also the creator, as well as a member, of the group of Leonard
Cohen. Since the Beatles and Bob Dylan are more popular than
Leonard Cohen, both the group of the Beatles and the group of Bob
Dylan are much larger than the group of Leonard Cohen, let us say
there are 500, 500 and 50 members in each group, respectively. The
recommender system would recommend either Hey Jude1 or Like
a Rolling Stone2 for Mick with great con�dence because most of
his social connections are in the �rst two groups, regardless of the
fact that Mick’s favorite singer is Leonard Cohen and his favorite
song is Bird On a Wire3. Therefore, we should pay close attention to
individuality recommendations, which can be achieved by long-tail
recommendation [25, 37].

From another perspective, the perspective of items, the most
popular items are well-known by users, they are willing to consume
them with or without recommendation. However, a niche market
needs more recommendations and it also more rewarding for both
users and systems [2]. The niche items are also known as long-tail
items [2]. Compared with popular item recommendation, long-
tail recommendation has at least three bene�ts: 1) The market
of popular items are highly competitive, thus its pro�t is very
limited. Long-tail items, however, embrace relatively large marginal
pro�t [37]. 2) Long-tail items can further boost the sales for the
reason of “one-stop shopping convenience” e�ect [2]. 3) As we

1A popular song by the Beatles.
2A popular song by Bob Dylan.
3A popular song by Leonard Cohen.

stated before, recommending long-tail items will surprise the users,
and increase customer loyalty and satisfaction.

Most of previous work, e.g., CF models [32], matrix factorization
models [14] and probabilistic topic models [4], would fail either
cold-start recommendation or long-tail recommendation for the
reason that those models either depend on past interactions or
preserve only principal components (short-head items) and ignore
the niche factors (long-tail items). This paper proposes a novel
approach to challenge both of them. Technically, our approach is
motivated by the following two insights:
1) Since there is no direct information available for cold-start prob-

lem, we learn from side information. At �rst, mapping func-
tions which map side information to user-item relationship are
learned on the training dataset. Then, we transfer the learned
knowledge to new users.

2) Given a system of near-in�nite inventory, popular items are
only a small fraction of the total items. These items, however,
have positive relationship with a majority of users. In a user-
item matrix, as illustrated in Fig. 2, the popular items can be
revealed by a low-rank function [20]. At the same time, long-tail
items are a major portion of the inventory, but they have positive
relationship with only a handful of users. Thus, their relationship
can be represented by a sparse function. We, therefore, deploy
two complementary parts, a low-rank part and a sparse part, in
our formulation to handle both the principal components and
the niche factors, respectively.
At last, we formulate the cold-start recommendation and long-

tail recommendation into a uni�ed objective, and propose an e�ec-
tive optimization strategy. The main contribution of this work is
that we, for the �rst time, challenge both cold-start and long-tail
recommendation in a uni�ed objective. The main ideas of this paper
are illustrated in Fig. 1.

The remainder of this paper is organized as follows, section 2
gives a brief review of related work and highlight the di�erence of
our model. Section 3 is the problem de�nition, formulation and op-
timization. Experiments are presented in section 4. At last, section 5
is the conclusion.

2 RELATEDWORK
Since there is no previous work challenging both cold-start recom-
mendation and long-tail recommendation in a uni�ed framework.
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Here we review some related work which focus on either cold-start
commendation or long-tail recommendation.

2.1 Cold-Start Recommendation
Among the models which address cold-start recommendation, we
focus on the ones which exploit side-information to facilitate the
cold-start problem. Those models can be roughly grouped in three
categories, e.g., the similarity based models [28, 32], matrix factor-
ization models [15, 23] and feature mapping models [10].

The similarity based models are straightforward. Their formula-
tions can be expressed as

Yt =WYs , (1)

where W is the similarity matrix. Generally, W is the similarity
between the relationships Ys and Yt , the subscripts s and t denote
“source” and “target”, respectively. However, Yt is unavailable in
cold-start problems, soW represents the similarity between user
side-information.W can be calculated by several ways, typically
based on the cosine similarity.

Matrix factorization models generally factorize the relationship
matrix into two latent representations by optimizing the following
objective

min
U ,V
‖Y −UV ‖2F + Ω(U ,V ), (2)

where Ω is the regularization used to avoiding over-�tting. For
cold-start problems, one can learn a shared U or V from the side-
information, and then use it to predict Y .

Feature mapping models normally learn a feature mapping be-
tween the side-information and one of the latent feature representa-
tions. The di�erences between the matrix factorization models and
the feature mapping models is that in matrix factorization models
the sharedU is jointly learned from Y and the the side-information,
while in feature mapping models, one needs to learn an additional
feature mapping, and further learn di�erent Us and Ut by sharing
the feature mapping. More details can be found in [10, 31].

2.2 Long-Tail Recommendation
For the long-tail recommendation problems, Yin et al. [37] propose
a novel suite of graph-based algorithms. They represent user-item
information with undirected edge-weighted graph and apply hit-
ting time algorithm for long-tail item recommendation. Park and
Tuzhilin [25] handle the long-tail recommendation by clustering
algorithm. They split the whole itemset into the head and the tail
parts and clusters only the tail items. Then recommendations for
the tail items are based on the ratings in these clusters and for the
head items on the ratings of individual items. Szpektor et al. [34]
focus on the long-tail problem in query. They extend the reach of
query assistance techniques to long-tail queries by reasoning about
rules between query templates rather than individual query transi-
tions. Shi [33] proposes a graph-based recommendation approach
which trade-o� among multiple criteria of measurements, such as
accuracy, similarity, diversity, and long-tail. Domingues et al. [9]
study the long-tail recommendation in the application of one-line
music recommender systems.

The existing long-tail recommendation approaches, however,
still have some problems. Firstly, some of them, e.g., [37] and [9],
are overdoing a bit by only recommending long-tail items and

ignoring the popular items. Can you imagine a cellphone recom-
mendation list without iPhone on it? I would not risk that. Both
popular items and niche items should be considered in an “one-
stop shopping” website. Popular items help bring users, and niche
items increase customer loyalty. Secondly, none of them considers
long-tail recommendation in cold-start problem. As we afore stated,
long-tail items in cold-start recommendation will surprise the new
users and attract them for staying.

To challenging these issues, this paper proposes a novel approach
which considers both cold-start and long-tail recommendation in
an integrated optimization problem.

3 THE PROPOSED METHOD
3.1 Notations
In this paper, we use lowercase and uppercase letters to represent
vectors and matrices, respectively. A sample is denoted as a vector,
e.g., x . Speci�cally, we use U to denote the user matrix, and I to
denote the item matrix. |U | and |I | are the total number of users and
items. Let Y ∈ {0, 1} |U |∗ |I | be the relationship matrix between U
and I , where Yui = 1 means there is a positive interaction between
user u and item i . The positive interaction can be de�ned in several
ways depending on speci�c application, e.g., for a e-commercial
system, the interaction can be purchase, for a video system, the
interaction can be watching and for a text system, the interaction
can be reading.

3.2 De�nitions
De�nition 1: Side informationX ∈ R |U |∗ |Ss | is de�ned as users’ at-
tributes, preferences or social relationships, e.g., Xus can be used to
measure how much user u prefers item s in the related, or auxiliary,
domain Ss .

De�nition 2: Cold-start recommendation addresses the prob-
lem of recommendation for a new user u where u has no prior
interactions in the target system, i.e., Y [u, :] is unknown.

De�nition 3: Long-tail recommendation addresses the problem
of recommendation item i for user u where (1) i is related to u and
(2) i lies in the long tail.

Problem 1: Given a target system St and a related source system
Ss , user u is new for St , but it has interactions in Ss , recommend
top k items, i.e., i1, i2, · · · , ik for u in St , where i j (j ∈ [1,k]) are
close enough to u and some of i j lie in the long tail.

3.3 Problem Formulation
It is worth noting that most previous recommenders preserve only
principal components (short-head) and ignore the niche factors
(long-tail). They would fail to surprise the users. Yin et al. [37]
proposed a suite of graph-based algorithms for the long-tail rec-
ommendation. However, Yin et al. [37] focus on recommendations
of only long-tail items. It will surprise the users, but it is overdo-
ing a bit to make users confused. As we stated before, can you
imagine a cellphone recommendation list without iPhone on it?
We advocate the best situation is to recommend items which are a
mixture of popular items and niche items. Popular items to make
users feel reasonable and niche items to make them feel surprised.
In other words, an optimal recommender system should be out of
expectation but within understanding. To achieve this, we propose
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to decompose the relationship matrix Y into two parts, one for
short-head, and the other for long-tail. As a result, we have

Y = YSH + YLT (3)

where YSH is used to formulate the relationship between users
and short-head items, while YLT is used to specify the relationship
between users and long-tail items.

Sedhain et al. [31] found out that various cold-start recommenders
can be boiled down to a linear model represented as

Y = XW (4)

whereW is used to map the user attributes or social relationship to
the user-item matrix. For speci�c models,W can either be directly
learned (W is explicit in the objective) or be derived (W is implicit
in the objective), e.g., the objective function of [10] can be written
as the form of Eq. (4) withW = (X>X )−1X>Y .

As shown in Eq. (4), let YSH = XW and YLT = XH respectively,
our objective can be formulated as follows

min
W ,H

L(Y ,XW ,XH ) + Ω(XW ,XH ), (5)

where L is loss function, and Ω is regularization.
For a real system with millions of users and near-in�nite inven-

tory, the popular items are only a tiny fraction (short-head) of total
items. To capture this, we propose that XW should be low-rank.
On the other hand, The frequency of long-tail items is essentially
low. As a result, XH should be sparse. So, our formulation can be
written as

min
W ,H

‖Y − XW − XH ‖2F + αrank(XW ) + βsparse(XH ), (6)

where ‖ · ‖F is the Frobenius norm, α > 0 and β > 0 are two
balancing parameters. Constraints rank(·) and sparse(·) enable a
matrix to be low-rank and sparse, respectively. It is worth noting
that this formulation is not trivial, it is sound and can be veri�ed.
For a better understanding, we randomly choose 200 users from
the Flickr dataset [35], and illustrate their preferences in Fig. 2. It is
obvious that popular items can be captured by a low-rank [8, 17, 20]
matrix, and the long-tail items can be represented by a sparse [18,
39] matrix.

Eq. (6) encompasses several approaches with di�erent choices
of rank(·) and sparse(·). Since rank minimization in Eq. (6) is a
NP-hard problem, previous work generally use the trace norm ‖ · ‖∗
as a surrogate of rank(·). As a result, a straightforward approach
of Eq. (6) can be written as:

min
W ,H

‖Y − XW − XH ‖2F + α ‖XW ‖∗ + β ‖XH ‖1, (7)

where the trace norm ‖XW ‖∗ is used to encourage low-rankness
on XW , and ‖XH ‖1 is used to encourage sparsity on XH . Although
‖ · ‖∗ has been widely used as a surrogate of rank(·) in existing
work, ‖ · ‖∗ is an implicit form of the low-rank constraint. It controls
the single values of XW , but the changes of the single values do
not always lead to a change of the rank. Thus, we propose to use
an explicit form of low-rank constraint as follows:

min
W ,H

‖Y − XW − XH ‖2F + α
d∑

i=r+1
(σi (XW ))2 + β ‖XH ‖1, (8)

where σi (XW ) is the i−th singular value of XW , d is the total num-
ber of singular values of XW .

∑d
i=r+1 (σi (XW ))2 explicitly solves
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Figure 2: Illustration of the user/item matrix. White dot
means there is a positive relationship between correspond-
ing user and item. Obviously, items in the red boxes are pop-
ular items, while others, e.g., the ones marked in the green
circle, are long-tail items.

the problem of minimizing the square sum of r -smallest singular
value of XW .

Note that∑d
i=r+1 (σi (XW ))2 = tr(V> (XW ) (XW )>V ), (9)

where tr is the trace operator of a matrix, and V are the singular
vectors which corresponds to the (d − r )-smallest singular values
of (XW ) (XW )>. Thus, our �nal objective function can be written
as:

min
W ,H

‖Y − XW − XH ‖2F + α tr(V
>XWW >X>V )+

β ‖XH ‖1 + γ1‖W ‖2F + γ2‖H ‖
2
F

(10)

where γ1 > 0 and γ2 > 0 are two penalty parameters. The F -norm
onW and H are introduced to avoid over-�tting. In this paper, we
set γ1 = 1 and γ2 = 1 for simplicity.

Now, we can learn a low-rank functionW and a sparse function
H by solving Eq. (10). Function W captures the commonality of
di�erent users sharing the same interests, and function H captures
the personality of speci�c users. Thus, for a new user with its
attribute matrix (or social relationship matrix) Xnew , he will be
mapped to the user-item matrix

Ynew = XnewW + XnewH . (11)

Note that it is a transfer strategy. We learnW and H from Eq. (10),
and transfer the learned knowledge to new users in Eq. (11). It is
also worth noting that both short-head items and long-tail items are
included inYnew . Thus, our approach not only can handle cold-start
problem, but also can handle long-tail recommendation.

3.4 Problem Optimization
Since Eq. (10) is not convex over all variables, we resort to an
alternative optimization strategy. Speci�cally, we optimize only
one variable at a time and keep the others �xed. Thus, Eq. (10) can
be solved by alternatively solving the two subproblems: (1) solving
the short-head recommendation W and (2) solving the long-tail
recommendation H .
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Solving the short-head recommendationW : WhenH is �xed,
we can optimizeW via:

min
W
‖Y−XW −XH ‖2F + α tr(V

>XWW >X>V ) + γ1‖W ‖2F . (12)

Note that the problem involves both V andW . We alternatively
update them. At �rst, by treating V as a constant, we calculate the
deviation toW and set it to zero:

X> (Y − XW − XH ) = αX>VV>XW + γ1W . (13)

Then,W has the following closed solution:

W ∗ = (αX>VV>X + γ1I + X>X )−1X> (Y − XH ), (14)

where I is the identity matrix with appropriate size. After getting
W , we can update V by Eq. (9).

Solving the long-tail recommendation H : WhenW is �xed,
we can optimize H via:

min
H
‖Y − XW − XH ‖2F + β ‖XH ‖1 + γ2‖H ‖

2
F . (15)

Since the `1−norm involves both X and H , and the constraint
is not smooth. To handle this, we introduce an auxiliary variable
Z = XH . Then, Eq. (15) can be rewritten as the following equivalent
problem:

min
H,Z ,E

‖Y − XW − Z ‖2F + β ‖Z ‖1 + γ2‖H ‖
2
F + µ‖XH − Z + E‖

2
F ,

(16)
where µ > 0 is a penalty parameter, and E is the scaled dual variable.

For Z , we optimize it by �xing H and E. Then, Eq. (16) can be
reduced as:

min
Z j
‖XHj − Z j + E‖

2
F +

β
µ ‖Z j ‖1. (17)

Then, Z can be optimized via soft thresholding operation as:

Z ∗j = so�(XHj + E,
β
µ ), (18)

where
so�(a,b) = sign(a)max( |a | − b, 0). (19)

For H , by �xing Z and E, we have:

min
Hj

|U |∑
i=1
‖Yi j − xiWj − xiHj ‖

2
F + γ2‖H ‖

2
F + µ‖XHj − Z j + E‖

2
F .

(20)
Then, the gradient w.r.t. Hj can be calculated as:

∆HjJ = 2(
|U |∑
i=1

xix
>
i + γ2I + µX

>X )Hj

−2(
|U |∑
i=1

x>i (Yi j − xiWj ) + µX
> (Z j − E))

(21)

By setting Eq. (21) to zero, we have the closed form of Hj as:

H∗j = (
|U |∑
i=1

xix
>
i + γ2I + µX

>X )−1 (
|U |∑
i=1

x>i (Yi j − xiWj )+

µX> (Z j − E))
(22)

At last, the scaled dual variable E can be updated as:

E∗ = E + HX − Z . (23)
Thus, the optimal H can be achieved by alternatively updating

Z , E and H . For clarity, we show the key steps of our algorithm in
Algorithm 1.

Algorithm 1. On both cold-start and long-tail recommendation
Input: User-item matrix Y , user attributes X , parameters α , β , and µ .
Output: Recommended items for new users.
Warm-up:

Repeat
1. Optimize the short-head recommendation functionW :
W ∗ = (αX>VV >X + γ1I + X>X )−1X> (Y − XH ).

2. Optimize the long-tail recommendation function H :

H ∗j = (
|U |∑
i=1

xix>i + γ2I + µX
>X )−1 ∗ Γ,

where Γ = (
|U |∑
i=1

x>i (Yi j − xiWj ) + µX> (Z j − E )).

3. Update the dual variable E :
E∗ = E + HX − Z .

Until Convergence
Cold-start:
Ynew = XnewW + XnewH .

Recommendation:
Using the logistic regression function to predict the recommendation
probability of items, and recommend the top-k items.

3.5 Computational Complexity
Here we analysis the computational complexity of Algorithm 1
by big O notation. Suppose there are n users and m items, the
optimization of W costs O(dn2 + d3 + dnm). The optimization of H
costs O(dn2+d3+d2m+dnm). Thus, the overall computation costs
is O(n2). It is worth noting that the calculation ofV involves eigen-
decomposition of XWW >X , which would be time-consuming with
large-scale dataset. As a surrogate, we can use the trace norm ‖ · ‖∗
instead of rank(·), as shown in Eq. (7). Although it is an implicit
constraint of low-rank, we can use it to reduce the time complexity
with the cost of some e�ectiveness. Speci�cally, from previous
work [21], we know that

‖W ‖∗ = min
U ,V :W =UV >

1
2 (‖U ‖

2
F + ‖V ‖

2
F ) (24)

where ifW ∈ Rm∗n , then U ∈ Rm∗r and V ∈ Rn∗r . As a result, we
can handle U and V instead ofW [36]. The time complexity can be
signi�cantly reduced for the reason r � min(m,n).

4 EXPERIMENTS
4.1 Data Description
In this section, we evaluate the proposed approach on four real-
world datasets which include images, texts, videos and musics rec-
ommendation.

• Flickr [35] is a dataset collected from �ickr.com4, which is
a popular personal photos managing and sharing website.
Users in �ickr can tag photos and subscribe photos in terms
of tags with which he is interested. For instance, a user can
subscribe photos with tag “baseball”. The evaluated dataset
consists of 80,513 users, 195 interest groups as the items,
and a social network with 5,899,882 links.

• BlogCatalog [35] is a dataset collected from blogcata-
log.com5, which is a popular blog collaboration system.
Any article published by a blogger in blogcatalog can be
cataloged into some groups according to the topics, e.g.,

4http://www.�ickr.com
5http://www.blogcatalog.com
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Figure 3: Experimental results on Flickr dataset. The vertical axis denotes accuracy rate.
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Figure 4: Experimental results on BlogCatalog dataset. The vertical axis denotes accuracy rate.

“sports”, “business” and “technology”. The tested dataset
consists of 10,312 users, 39 topics as items, and a social
network with 333,983 links.

• YouTube [35] is a dataset collected from youtube.com6,
which is a popular video watching and sharing website.
Users in YouTube can also subscribe interested topics. The
evaluated dataset consists of 1,138,499 users, 47 categories
as items, and a social network with 2,990,443 links.

• Hetrec11-LastFM [3] is a dataset collected from last.fm7,
which is a online music system. Hetrec11-LastFM contains
social networking, tagging, and music artist listening infor-
mation. The tested dataset consists of 1,892 users, 17,632
artists as items, and 186,479 tag assignments.

4.2 Compared Methods
We compare our method with �ve previous work detailed as follows:

• CBF-KNN [10] is a straightforward recommender system
based on user similarity. The user similarity is calculated
from user-attributes.

• Cos-Cos [32] is a neighborhood-based methods for cold-
start CF in a generalized matrix algebra framework.

6http://www.youtube.com
7http://www.last.fm

• BPR-Map [10] is a method that maps entity (e.g. user or
item) attributes to the latent features of a matrix (or higher
dimensional) factorization model.

• CMF [15] is a multi-relational factorization framework
using Bayesian personalized ranking.

• LoCo [31] is a low-rank linear regression method for cold-
start recommendation.

4.3 Experimental Protocols
For the evaluated datasets, we split each of them into two subsets,
one includes 10% of the users as new users (test dataset) for cold-
start, and the remainder of 90% users are collected as training data
for warm-up. The new users are randomly selected, so we build 10
training-test folds and report the average results.

Following previous work [31], we deploy the widely used pre-
cision@k, recall@k and mean average precision (mAP@100) as
the measurements. All the hyper-parameters in the objective are
tuned by cross-validation. One can also directly set λ = 1, β = 0.1
and µ = 1 for simplicity. The parameters sensitivity is reported in
section 4.5.

4.4 Experimental Results
Fig. 3 shows the experimental results on Flickr dataset. We report
both precision and recall (@1, @3, @5, @10, @15 and @20). It can
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Figure 5: Experimental results on YouTube dataset. The vertical axis denotes accuracy rate.
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Figure 6: Experimental results on Hetrec11-LastFM dataset. The vertical axis denotes accuracy rate.

be seen that our approach always performs the best with respect
to either precision or recall. The neighbor relationship based meth-
ods, e.g., CBP-KNN and Cos-Cos, generally perform better than
the learning based approaches, e.g., BPR-Map and CMF. A possible
explanation is that using social information is e�ective when we
know nothing about the user’s preference. Users have similar at-
tributes tend to have similar tastes. Although the learning based
approaches usually perform better on regular recommendation,
the compared methods are not sophisticated enough in cold-start
recommendation.

Our approach adapts the ideas of transfer learning [24]. We
�rst learn from the side information, and then transfer the learned
knowledge to the new users. The user relationship are embedded
in the learned knowledge. Thus, our approach takes the advantage
of neighbor relationship based approaches. On the other hand, the
compared baselines commonly preserve the principal components
(short-head items) and ignore the long-tail items, which can degen-
erate the personal recommendation. Our approach independently
handles the short-head items and long-tail items, and combine them
for overall recommendation.

The same observations can also be drawn from the experimental
results on BolgCatalog dataset reported in Fig. 4. The precision
is relatively high when k is small, whist the recall is relatively
high when k is large. The latter is easy to be explained for the

reason that more relevant items will be included with larger k .
The former is, however, not straightforward. It is relevant with the
ground truth. Since the relationship matrices of both Flickr and
BlogCatalog are very sparse, e.g., the sparsity of Flickr is 99.31%, and
the average observations per user is around 1.4, the numerator of the
precision@k tends to be �xed with the increase of the denominator.

Furthermore, we show the experimental results on two addi-
tional multimedia systems, e.g., YouTube and LastFM, in Fig. 5 and
Fig. 6, respectively. Fig. 5 shows the similar observations with Fig. 4.
However, the performance on YouTube is generally better than
on BlogCatalog. A possible explanation is that YouTube dataset
has more information than BlogCatalog dataset. Both the average
observations per user and per label in YouTube dataset are larger
than in BlogCatalog dataset. In other words, the side information
is richer in YouTube dataset.

Fig. 6 shows di�erent patterns with the former ones. Experimen-
tal results reported in Fig. 6 commonly have higher precision than
recall. This is related with the ground truth of the dataset. Di�erent
from the other three datasets, the interested items (ground truth)
of each user are much more in Hetrec11-LastFM. As a result, the
recall@k is small with a small k and a big relevant number.

All in all, experiments on di�erent real-world datasets verify the
superiority of our algorithm, no matter what measurement is used.
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Figure 7: Parameters sensitivity of the proposed method.

Table 1: Results of mAP@100 on di�erent dataset.

Flickr BlogCatalog YouTube LastFM
CBF-KNN 0.2805 0.3271 0.3421 0.1712
Cos-Cos 0.3142 0.4106 0.4667 0.1226
BPR-Map 0.2159 0.2822 0.3035 0.0885

CMF 0.2141 0.2776 0.2816 0.0813
LoCo 0.3357 0.4535 0.4879 0.1809
Ours 0.3711 0.4962 0.5306 0.2113

Our formulation, therefore, is e�ective for cold-start recommenda-
tion. In addition, we report the mAP@100 on di�erent datasets in
Table 1. It can be seen that our approach achieves a signi�cant im-
provements against the compared methods, which further veri�es
the e�ectiveness of our formulation.

4.5 Parameters Sensitivity
To show the parameters sensitivity of our model, we report the ex-
perimental results with di�erent values of λ and β and µ in Fig. 7(a),
Fig. 7(b) and Fig. 7(c), respectively. Each of the parameters are tested
from a wide range from 0 to 100.

It can be seen that our approach is not sensitive to β and µ, but
the value ofα should not be too small. In practice, we suggest setting
α from 1 to 10, and �nding the optimal value by cross-validation.

4.6 E�ectiveness of Long-tail Recommendation
To evaluate the e�ectiveness of long-tail recommendation in the
cold-start process, we build two serials of experiments. In the �rst
serials, we set H = 0 to verify the contribution of long-tail rec-
ommendations w.r.t overall performance. The experimental results
shows that the overall performance degenerate 2%-5% on di�erent
evaluations. In the second serials, we study the popularity of the
recommended items to verify whether long-tail items are included
in the �nal recommendation. The measurement of popularity is
de�ned as the rating/clicking/liking frequency of items [37]. We
randomly select 1,000 users from BlogCatalog and report the av-
erage popularity of recommended items in Fig. 8. It can be seen
that our approach generally recommend more niche items than
LoCo [31]. Since our approach considers both popular items and
niche items, it tends to recommend the popular item when the
number of recommendation is only 1 (If it can recommend only 1
cellphone to users, surely it would be iPhone). LoCo continues
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Figure 8: Average popularity of recommendations.

recommending popular items with increasing number of recom-
mendations. Our approach, however, prefers recommending more
niche items.

5 CONCLUSION
Both cold-start recommendation and long-tail recommendation
are challenging problems in the community. To the best of our
knowledge, this work is the �rst one which challenges both cold-
start recommendation and long-tail recommendation in a uni�ed
optimization problem. Extensive experiments on four real-world
datasets verify the e�ectiveness of the proposed method. This paper
shows that one can use side information to warm-up the recom-
mender system when there is no available historical recorders. We
also �nd that considering long-tail items in the process of cold-start
can be bene�cial. In fact, our ideas of independently handling the
short-head items and long-tail items can also be used in regular
recommendations (relative to cold-start recommendation). It is one
of the work we will study in the future.

In many real-world applications, the number of users and items
can be quite large. Thus, how to reduce the time complexity of
the proposed method is very important. We have mentioned in
our paper, around Eq. (24), that matrix decomposition would be
helpful. In our future work, we will also study how to optimize the
formulation and deploy the system in a distributed environment.
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