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ABSTRACT
Advanced digital holography attracts a lot of attentions for
3D visualization nowadays. The representation of digital

holographic images suffers from computational inefficiency
on the mobile devices due to the limited hardware for digi-
tal holographic processing. In this paper, we point out that

the above critical issue deteriorates the digital holographic
image representation on the mobile devices. To reduce com-
putational complexity in digital holographic image recon-

struction, we propose an efficient and effective algorithm to
simplify Fresnel transforms for the mobile devices. Our algo-
rithm outperforms previous approaches in not only smaller

running time but also the better quality of the digital holo-
graphic image representation for the mobile devices.

CCS Concepts
•Computing methodologies → Image representations;
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1. INTRODUCTION
Digital holography [3] enables PC to record and represent

the 3D information of real world objects by capturing their

illuminated part and desired perspectives. The recorded 3D
information of the object is called digital hologram. The
digital holographic image can be constructed by propagat-

ing the wave field to the digital hologram with the theory of
diffraction. Different from AR and VR, the digital hologra-
phy can represent a more real 3D object with the recorded

illuminated and perspective information of a real scene. In
recent years, the digital holography has been a promising
technology for various 3D visual applications. For exam-

ple, Microsoft 10 has launched its own holographic headset
HoloLens to interact with virtual objects appearing in your
real world [1]. The digital holography is thereby becoming

popular in the visual entertainments and video games. Since
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the optical diffraction on the digital hologram leads to large

computational complexity, the digital holographic image re-
construction suffers from large burden on running time [13]
[15] [16]. In addition to the high computational complexity

for the digital holography reconstruction, Cheng et al. [5]
pointed out that the cost for the representation of the dig-
ital holographic image is still expensive due to the need of

extra hardware on the display devices such as a high-end
GPU. Compared with the high-end digital holographic dis-
play devices, it is much more difficult for a user to view the

high quality of the digital holography with a consumer mo-
bile device because the current mobile devices lack dedicated
digital holography imaging hardware. In addition, Kantabu-

tra [10] indicated that the efficiency of the hardware-based
methods [2] [5] [15] is limited for the digital holography
imaging. This is because most hardware-based digital holog-

raphy representations adopt iteration-based arithmetic algo-
rithms to calculate exponential functions and trigonometric
functions, but they result in large convergent time to recon-

struct the holographic image. Therefore, we indeed require
a scheme to efficiently represent the digital holography for
the mobile devices.

We briefly introduce the procedure of the digital holo-
graphic reconstruction as follows. The digital hologram is
an image plane photographically recording interference pat-

tern between a wave field scattered from the real 3D object
and the reference wave. Therefore, the digital hologram con-

tains real scene information with the entire 3D wave field.
We can reconstruct a digital holographic image by super-
imposing the bright reconstruction wave with the digital

hologram. In contrast to the interference of the waves in
the digital hologram, the digital holographic image recon-
struction adopts the diffraction of the reconstruction wave.

The diffraction of the light wave at the digital hologram is
modeled as the Fresnel integral [12]. However, many prior
works [13] [15] [16] showed that the Fresnel integral still

suffers from high computational complexity due to recursive
manners in the calculation for the exponential function. Ad-
ditionally, Kim et al. [11] further demonstrated that most

lookup-table-based methods for the digital holography re-
quired large memories. In this paper, we thereby aim to re-
duce the high complexity for calculating the Fresnel integral

and large table sizes in the digital holographic reconstruc-
tion.
Given a digital hologram and a reference wave, our pro-

posed method is to reduce the computational complexity
and memory sizes for the digital holographic image recon-
struction. The complexity of calculating the Fresnel integral
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in the digital holographic reconstruction can be seriously re-
duced by many factors such as reduction in the number of
FFT (Fast Fourier Transformation) and the simplification

of an exponential function. First, we propose a method
called Efficient Digital Holographic Image Reconstruction
(EDHIR). Specifically, EDHIR re-formulate the Fresnel in-

tegral in the digital holographic reconstruction to reduce two
FFTs to one FFT. In addition, EDHIR fastens the exponen-
tial function used in the Fresnel integral. EDHIR minimizes

the tables and speeds up the exponential function. More
specifically, the domain of the argument  in the exponential
function is equally divided into smaller subintervals. Next,

EDHIR calculates the values of the exponential function for
each subinterval boundary point, and stores them in a table.

Then, EDHIR finds a close subinterval boundary point  to
 Finally, EDHIR adopt a polynomial approximation [14]
to approximate the exponential function with the remain-

ing argument  (i.e.,  =  − ). Our main contributions
focus on practical values and hardware cost to design our
algorithm in the mobile devices. With our approach im-

plemented into a practical mobile APP, the generic mobile
devices are able to efficiently view the digital holographic
image without expensive digital holographic imaging hard-

ware and large memory sizes. The main contribution of ED-
HIR is that we propose an efficient process to reconstruct
the digital holography on the current mobile devices. Our

method not only needs fewer arithmetic costs and memory
sizes allowed by the mobile devices but also achieves high
precision in the digital holographic reconstruction.

The rest of this paper is organized as follows. In Section
2, we propose algorithm EDHIR. The experimental results
are shown in Section 3. Finally, we conclude this paper in

Section 4.

2. EFFICIENT DIGITAL HOLOGRAPHIC
IMAGE RECONSTRUCTION

Digital holography image reconstruction is a critical prob-
lem for 3D visual applications on mobile devices. In view of
this, we develop an Efficient Digital Holographic Image Re-

construction (EDHIR). Our algorithm includes two stages:
the reduction of the number of FFT and the fast calculation
of the exponential function in the Fresnel integral for the

digital holography image reconstruction. We derive a for-
mulation to mitigate the number of FFT in the Fresnel in-
tegral. In the fast calculation of the exponential function in

the Fresnel integral, EDHIR equally separates the domain of
the argument in the exponential function into several subin-
tervals. EDHIR only uses a polynomial approximation to

approximate the exponential function with the remaining
argument belonging to a separated subinterval. The details
are as follows.

2.1 Digital Holographic Image Reconstruction
Gabor [7] devised holography to record and reconstruct

the amplitude and phase of a wave field in the real world.
In this method, the reference wave (e.g., laser) interferes
with the real object wave, and the interference patterns are

recorded in the photographic plate. The recorded photogra-
phy is called hologram that contains 3D information about
the entire 3D wave field that shows the effects of perspec-

tive, illumination, and depth of focus. Lighting the holo-
gram with the reference wave can reconstruct the object

wave to represent a clear perception of the 3D scene for the
human viewer. Therefore, the digital holographic image re-
construction is based on the diffraction of the light wave at

the hologram, and such an optical diffraction is modeled as
the Fresnel integral [12]. The Fresnel transformation gives
high computational complexity such that it is difficult to re-

construct the digital holographic image in a mobile device
with hardware restrictions.

2.2 Fast Fresnel Integral
We first model the diffraction of the reference wave over

the digital hologram by using the Fresnel method [12]. Ref-
erence wave  is modeled as

( ) = 0
−

2

+0


 (1)

where  is the wavelength of the reference wave, 0 is the
real-valued amplitude,  is the distance, and 0 is the initial

phase. We can assume that 0 is equal to 1 and 0 is equal
to 0 for convenience.  can be obtained as

 =

2 + (− )2 + ( − )2 (2)

where ( ) and ( ) are defined as the spatial coordinates
in the hologram and reconstructed plane respectively.  is
the distance between the reconstructed virtual image ap-
pearing at the position of the original object and the real

image. The diffraction of reference wave  over given dig-
ital hologram ( ) is described by the Fresnel integral
expressed as

( ) =




∞
−∞

∞
−∞

[( )( )] (3)

where ( ) is reconstructed holographic image in spatial
domain.
To reduce this high computational complexity, traditional

works [8] [9] efficiently implemented Eq. 3 in Fourier do-

main. Specifically, the digital holographic reconstruction
can be viewed as a linear system. Since Eq. 3 expresses the
spatial convolution between the digital hologram and the

reference wave [9], Eq. 3 can be computed as

( ) =




− 2




−1{ [( )] [( )]} (4)

where  and −1 are defined as Fourier transformation and
its inverse respectively. However, such convolution methods

take too many calculations in the Fourier transformation.
To reduce the number of the Fourier transformation, we

have to deal with Eq. 3 in discreted domain. By substituting
Eq. 1 and Eq. 2 into Eq. 3, we obtain

( ) =




− 2




− 


(2+2) ×

∞
−∞

∞
−∞

[( )



(2+2) ×


− 2


(+)] (5)

For the digital hologram, ( ) is discreted to  × 

samples at periods 4 and 4 in the  and  directions

108



respectively. Therefore,  is equal to 4 and  is equal to
4, where  and  are integer numbers Similarly, we obtain
digital reconstructed image (44) with size ×

In other words, ( ) is discreted to  ×  samples at
periods 4 and 4 in the  and  directions respectively.
Therefore,  is equal to 4 and  is equal to 4, where

 and  are integer numbers In Eq. 5, we replace the
integral and the continuous coordinates with summations
and discreted coordinates respectively. Therefore, we can

obtain

(4 4 ) =




− 2




− 


(242+242) ×


2
−1

=−
2


2
−1

=−
2

[(4  4 )×


 


(242+242) ×

− 2


(44+44)] (6)

The direct computation of Eq. 6 is () To reduce this
high complexity, we further re-formulate Eq. 6 to

(4 4 ) =




− 2




− 


(242+242) ×

 [(4  4 )×

 


(242+242)] (7)

Eq. 4 shows that the computational complexity of the digital
holographic reconstruction can be reduced to (3)
by using Fast Fourier Transform (FFT) Compared to the
convolution methods [8] [9], Eq. 7 demonstrates that we
merely take one FFT in () complexity to recon-
struct the digital holographic image.

2.3 Fast Exponential Function
To further speed up the exponential function in Eq. 7,

EDHIR adopts a polynomial approximation [14] collaborat-
ing with a lookup table. Since the argument of the expo-

nential function is a complex number, we transform  into
() + () where  is equal to

√−1. Therefore, we
focus on fast sine and cosine functions with argument 

The approximation of the sine and cosine functions gives
large domain by merely using polynomial or rational func-
tions with large degrees. This leads to large computational

complexity, and also makes the numerical error. We thereby
split the argument domain into several smaller subintervals,
and then store the solutions of the subinterval boundaries

in a table. Such a way results in fewer memory sizes than
the stored solutions in the whole argument domain. For
each small subinterval, the coefficients of a low-degree poly-

nomial approximation are sufficient for the high quality of
digital holography image reconstruction. This can also dra-
matically reduce the expensive computation.

2.3.1 Argument Domain Separation
EDHIR accelerates sine and cosine functions by equally

separating the domain of argument  into 2 small subin-
tervals, where  is a positive integer. Then, EDHIR finds
a close subinterval boundary point  to  Finally, remain-
ing argument  is defined as −  In other words, EDHIR

decomposes  to +  because  is a most significant argu-
ment to affect the solutions of the sine and cosine functions

with argument  On the other hand, remaining argument
 is a least significant argument to affect those. The goal of
the argument domain separation is to reduce the large argu-

ment to small one such that the polynomial approximation
can fast converge. In contrast to traditional methods [6],
such an argument domain separation is flexible and efficient

since the subintervals can be dependent on precision for the
sine and cosine functions.

2.3.2 Polynomial Approximation and Lookup Table
In light of trigonometric addition formulas, the ( +

) and ( + ) become ()() + ()() and
()()−()() respectively. EDHIR stores (
) and () values in tables () and () with argu-
ment  respectively, and each table has 2 entries. Next,
EDHIR adopts a polynomial approximation to approximate
the sine and cosine functions with the remaining argument
. That is, () approximates () expressed as

() = 0 + 1 + 2
2 + 3

3
 (8)

On the other hand, () approximates () modeled as

() = 0 + 1 + 2
2 + 3

3
 (9)

Coefficients  and  can be obtained from Remez’s Algo-
rithm [14], where 0 ≤  ≤ 3.
Although Taylor expansion is easy to use, it is much worse

and less efficient than the other approximations [10]. This

is because Taylor expansion only provides local approxima-
tions rather than global approximations. On the other hand,
the computation of rational approximation [14] is more ex-

pensive than the polynomial approximation due to lots of
dividers. Compared to these approximations, the polyno-
mial approximation gives more accurate and efficient in the

digital holography image reconstruction. We give an exam-
ple for the above procedure.
Example: We approximate the sine function with argument

316 in [0, 4]. EDHIR first equally separates the domain
into two intervals [0, 8] and [8, 4], where  is 1. Since
316 is in [8, 4], we decompose 316 to 8 + 16
(i.e.,  = 8 and  = 16). (316) can be rewritten
as (8 + 16) that is equal to (8)× (16) +
(8)× (16). Next, EDHIR stores the solutions of
the sine and cosine functions among the subinterval bound-
aries, i.e., (0), (8) (4) (0), (8) and
(4) in tables  and  respectively. EDHIR then

uses the polynomial approximation to approximate the so-
lutions of the sine and cosine functions with the remain-
ing argument 16 i.e., (16) and (16) With the
polynomial approximation, (16) i.e., (16) is equal
to 0+1(16)+2(16)

2+3(16)
3, and (16) i.e.,

(16) is equal to 0 + 1(16) + 2(16)
2 + 3(16)

3

Coefficients {} are {0 1−00001−01658} and {} are
{1 00001−05020 00163} both obtained from Remez’s Al-
gorithm [14], where 0 ≤  ≤ 3. Finally, we can obtain
(316) as (8)×(16)+(8)×(16) that
is equal to 0.5556, where (8) is equal to 0.3827, and
(8) is equal to 0.9239. ¥

3. EXPERIMENTAL RESULTS

3.1 Experimental Environment
In this section, we conduct several experiments to evalu-

ate the performance of algorithm EDHIR. We compare our
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Figure 1: Results of digital holographic image reconstruc-

tion under each algorithm (a) original object (b) hologram
of (a) (c) reconstructed image from (b) under THIR (d) re-
constructed image from (b) under HHIR (e) reconstructed

image from (b) under EDHIR (f) original object (g) holo-
gram of (f) (h) reconstructed image from (g) under THIR (i)
reconstructed image from (g) under HHIR (j) reconstructed

image from (g) under EDHIR

Figure 2: Digital holographic image reconstruction under
EDHIR on ASUS Transformer Pad

algorithm with Hardware-based Holographic Image Recon-
struction (HHIR) [13] and Traditional Holographic Image
Reconstruction (THIR) [16]. HHIR proposes a hardware-

based method to speed up the computation in Fast Fourier
transform for the reconstruction of digital holographic im-
ages. For the GPU dependent components of HHIR, HHIR

is implemented by using CUDA with AndroidWorks for An-
droid Development [4] that is native to the NVidia GeForce
hardware platform in the android devices. On the other

hand, THIR is a convolution method to accelerate the re-
construction of digital holographic images.

We implement our algorithm on a ASUS Transformer Pad
(TF701T) Android Pad with Quad-core 1.9 GHz Cortex-
A15, Chipset Nvidia Tegra 4 T40X, 3GB RAM, ULP GeForce

GPU processor, Android 4.2, 2560×1600 pixels Super IPS+L
CD display, and 5M pixels camera. Fig. 2 shows an example
of running EDHIR on the ASUS Transformer Android Pad.

Note that our program can be installed and runs on any
Android devices.
Before evaluating the performance of our algorithm, we

describe our data set and set up parameters as follows. Ex-
perimental images are from the USC-SIPI and European
research center databases at http://sipi.usc.edu/database/

and http://www.erc-interfere.eu/downloads.html respectivel
y. We generate synthetic holograms with size 512×512 and
their corresponding parameters. We follow traditional set-

ting for each hologram where all samples can be used for
holography reconstruction. We normalize the spatial-domain
amplitude and phase values of each hologram to [0,1] and

[0, ], respectively. The parameters for the hologram genera-
tion correspond to an off-axis configuration as = 517×10−9
4 = 4 =6×10−6, and =63×10−2. In the following, we
compare the execution time of each algorithm and the qual-
ity for different algorithms with respect to different factors
on the mobile device.

3.2 Performance Analysis
The performance of the proposed algorithm is evaluated

using the two objects, ‘Peppers’ and ‘Dice’, whose recon-

structed images are shown in Figs. 1. The distortion of
the reconstructed image is measured by peak-signal-to-noise

ratio (PSNR). The mean squared error (MSE) for recon-
structed image () and original image () with
size  × is given as

 =
1

 ×







[()−()]2 (10)
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Figure 3: Comparisons of the hardware performance under
each algorithm (a) memory consumption (b) execution time

The PSNR is expressed as

 = 10
2552


 (11)

Figs. 1 show that EDHIR with the average PSNR of 21.74dB

is superior to THIR of 15.95dB and HHIR of 14.26dB. This is
because EDHIR can achieve high accuracy for the numerical
reconstruction of the holographic image in the exponential

functions. Specifically, the accuracy of EDHIR overpasses
that of HHIR and THIR by storing the high-precision results
of the significant arguments. However, THIR and HHIR per-

form worse since they approximate these arithmetic results
by merely using polynomial algorithms [17].
Fig. 3(a) shows that the memory sizes of EDHIR are

smaller than HHIR and THIR since EDHIR effectively adopts
the lookup table to store the solutions for more significant
arguments rather than those of whole arguments. However,

HHIR and THIR still cannot effectively save the memory
since the 2D FFT is quite memory demanding. We observe

that the 2D FFT allocates almost two times the hologram
size of additional memory. Although EDHIR mainly stores
the results of the significant arguments, EDHIR with one

FFT can also conserve more memory sizes as compared to
the traditional methods.

3.3 Efficiency Analysis
In this section, Fig. 3(b) shows that our algorithm is ef-

ficient and very feasible for the digital holographic image
reconstruction on mobile devices. The computational time
of the digital holographic image reconstruction on EDHIR is

close to HHIR since EDHIR combines a lookup table and a
polynomial approximation to fast calculate the exponential
functions. Specifically, EDHIR needs fewer adders and mul-

tipliers accepted by a general-purpose CPU to execute the
sum and product for the least significant arguments. GPU is
very efficient for scientific computing since its high parallel

structure is faster than the general-purpose CPU for FFTs
and exponential functions. Although HHIR adopts GPU
to speed up the Fresnel integral, it needs lots of dividers,

multipliers, and memory sizes to burden the performance of
HHIR. THIR performs worst since lots of FFTs yield heavy
load in computation.

4. CONCLUSION
With the rapid advanced digital holographic visual tech-

nologies for mobile devices, the holographic image recon-
struction in the mobile devices has become indispensable.

However, the previous works are infeasible for the current
mobile devices due to unacceptable computational complex-
ity. In this paper, we have proposed an efficient and effec-

tive algorithm to reconstruct the digital holographic images.
The experimental results have shown that our approach is
not only of smaller running time but for higher quality of

the digital holographic image reconstruction as compared to
the existing works on the mobile devices.
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