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ABSTRACT

To support cross-modal information retrieval, cross-modal learn-
ing to rank approaches utilize ranking examples (e.g., an exam-
ple may be a text query and its corresponding ranked images) to
learn appropriate ranking (similarity) function. However, the fact
that each modality is represented with intrinsically different low-
level features hinders these approaches from better reducing the
heterogeneity-gap between the modalities and thus giving satisfac-
tory retrieval results. In this paper, we consider learning with neural
networks, from the perspective of optimizing the listwise ranking
loss of the cross-modal ranking examples. The proposed model,
named Cross-Modal Ranking Neural Network (CMRNN), benefits
from the advance of both neural networks on learning high-level se-
mantics and learning to rank techniques on learning ranking func-
tion, such that the learned cross-modal ranking function is implic-
itly embedded in the learned high-level representation for data ob-
jects with different modalities (e.g., text and imagery) to perform
cross-modal retrieval directly. We compare CMRNN to existing
state-of-the-art cross-modal ranking methods on two datasets and
show that it achieves a better performance.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval Models
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INTRODUCTION

With the rapid development of multimedia technology, today
many real-world applications involve multimodal data. For con-
ducting cross-modal retrieval, one category of approaches are based
on the rankings of the data related to the queries (e.g., an example
may be a text query and its corresponding ranked images) to learn
ranking functions which optimize for certain ranking loss, such as
PAMIR [5], SSI[1] and LSCMR [6].

It is obvious that the intra-modality feature representation plays
an important role in learning cross-modal ranking functions for
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these approaches: imagine how much easier when dealing with
multimodal data that are all with high-level semantic features. How-
ever, each modality usually has a different kind of low-level repre-
sentation and intrinsic structure. For example, text is usually repre-
sented as discrete sparse word-count vectors, whereas an image is
represented using pixel intensities or low-level visual feature vec-
tors. This makes it hard for these approaches to discover the rela-
tionships across modalities.

On the other hand, deep neural networks (DNNs) that learn a
transformation of a low-level representation to a high-level repre-
sentation have shown their powerful ability to the tasks of learn-
ing multimodal representation. One straightforward consideration
is that train individual neural network separately for different modal-
ity and then apply existing approaches based on the features pre-
viously learned by the DNNs, which will be used as baselines in
the experiments. However in this scheme, the final ranking perfor-
mance is limited since it is hard for the ranking loss to be back-
propagated to the pre-trained neural network which can boost the
discriminative representation for cross-modal ranking.

In this work, we seek to bridge the gap between neural networks
and cross-modal ranking. By adapting techniques of learning to
rank, we propose a new multimodal neural network named Cross-
Modal Ranking Neural Networks (CMRNN) to support cross-modal
ranking. Specifically, CMRNN outputs the relevance scores of the
retrieved documents given a query in another modality, and then
the documents are ranked by their relevance scores (see Figure 1).

It is worthwhile to highlight the main contribution of the pro-
posed model. Not only the model learns high-level feature repre-
sentation for data objects with different modalities, but more im-
portantly the ranking loss is back-propagated to train the modality-
specific neural networks and thus the learned cross-modal rank-
ing function is implicitly embedded in the learned high-level fea-
ture representation that are optimized for cross-modal retrieval per-
formance (in other words, the learned high-level features have the
discriminative power for cross-modal ranking). Therefore, the pro-
posed model benefits from both the most recent advances in neural
networks and learning to rank techniques.

Related work The authors of [8] propose a multimodal Deep
Boltzmann Machine for learning a generative model of data that
consists of multiple input modalities. The model works by learning
a joint representation over the space of multimodal inputs, which is
useful for cross-modal retrieval. Note that the multimodal DBM is
trained with paired multimodal training data, and it is not optimized
directly for the final retrieval performance. Methods like [7] based
on autoencoders and [4] based on CCA have similar incentive.

A model termed DeViSE, proposed in [3], leverages textual data
to learn semantic relationships between labels and explicitly maps
images into a rich semantic embedding space via a linear transfor-



mation. The model is trained to produce a high dot-product similar-
ity between the transformed visual output and the vector represen-
tation of the correct label. Given an image, pairwise ranking loss
is first calculated between the correct label and the other labels,
and then back-propagated into the core visual model to fine-tune
the visual representation. In the proposed model, the explicit linear
transformation alignment is absorbed into the process of learning
the high-level representation; Moreover, listwise ranking strategy
is used in the proposed model.

THE CMRNN MODEL

For an explicit articulation in the rest of this section, the model is
only described in the case of text-query-image retrieval. We report
the experiments in both scenarios of image-query-text retrieval and
text-query-image retrieval.

Notation

Given a training set of N samples, each contains a text query ¢*)
(i =1,...,N)as well as a list of corresponding retrieved images

D = (d(’) d . d“()l)) where n() denotes the size of D*).

Furthermore, each list of retrieved images D is associated with
their true judgments (ranking scores) Y = (ygi), yéi), e ys()i))
where y(i) denotes the judgment on image d;i) with respect to text
query ¢ The judgment y(l)
d;l) to ¢

humans. For example, y](i)

represents the relevance degree of
), and can be a score explicitly or implicitly given by
can be the number of clicks on d;i) given
query ¢, or an expert judgment on the relevance level of d;i) to

query ¢, The higher y“), the stronger relevance.

The ranking function

A ranking function f(g,d) between a text query ¢ and an im-
age d is to be learned according to a pre-defined ranking loss. The
learned function f maps each text-image pair to a ranking score
based on their semantic relevance. Given a text query ¢ and an im-
age d, we tend to learn the scoring function as a dot product of two
vectors fu(gq) and f,(d) in the K -dimensional latent space:

f(g,d) = fu(@)" fo(d)

where f.(q) € R¥ and f,(d) € R¥.

To better discover modality-intrinsic structure, neural networks
are used to represent the text queries and images in this work: fu(q)
refers to map the query text ¢ from its original text space to the K-
dimensional latent space by a neural network, and f,(d) refers to
map the retrieved image d from its original image space to the K-
dimensional latent space by another neural network. Therefore, the
text query and the retrieved image are mapped to a common K-
dimensional latent space, and then their similarity is measured by a
dot product of the two vectors in the K -dimensional space, which is
commonly used to measure the matching between textual vectors.

ey

Given a text query ¢'¥, for each image d§i) in D@, the ranking
@ _ @) 4(9) :

f(q. , de ). For the list
of images DV, a list of scores Z(” = (2,29 z(l()l)) is
obtained. The objective of learning is formalized as mimmlzmg the
empirical ranking loss with respect to the training data:

function outputs a relevance score z;

N
E=> Ly®, z"),

i=1

where L is a listwise loss function that we will define shortly.
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Document-specific NN

Query-specific NN

Figure 1: The architecture of the proposed cross-modal rank-
ing neural network. If the output layers of the two modality-
specific NN have unequal number of units, one can extend both
the architectures by one deeper layer with an equal number of
output units.

The architecture of the proposed cross-modal ranking neural net-
work is depicted in Figure 1. Consider modeling each data modality
(i.e., text or imagery) using separate neural networks where the text
and images are represented as the outputs of the modality-specific
NN, respectively. Then the document-specific NN (i.e., the image-
specific NN) is extended by an additional ranking score layer with
only one output unit, where the weights that connect the scoring
unit are specified by the outputs of the query-specific NN (i.e., the
text-specific NN). In this way, the outputs of the query-specific NN
act as part of parameters of the ranking function which ranks the
retrieved images by their relevance to the query text. It is shown
that the output of the scoring unit is exactly f (g, d) in Eq. (1) when
we set the activation function of the unit to be linear, and then the
learned multimodal representation is stored as the outputs of the
modality-specific NN.

For conducting text-query-image retrieval, the neural network is
first fed by the text query and the output of the text-specific NN
is taken as the weights that connect the score unit. The images are
then fed into the neural network to output their ranking scores. Fi-

nally, we rank the images in descending order of their scores.

Motivated by [2], the top one probability of an image being ranked
on the top for a given text query, given the scores of all the target
retrieved images, is defined as

exp(s) |

Py(d'?) =
n( )
’ exp(sy)

@

(O
J

¢ With the use of top one probability, given two lists of scores
"0 P(dY) = 1y,

where s is the ranking score of image d; with respect to query

we use Cross Entropy as metric (note that Z
the listwise loss function becomes

n(®

=3Py (dS) log P iy (d)
j=1

L(y(l) Z“) A3)

Learning method

Denote the ranking function based on the neural network model
as f, the query-specific neural network as f,, (parameterized by

"More precisely, Ps(d;i)) should be Ps(d;i)7 q) where we have
omitted the query for simplicity.



u) and the document-specific neural network as f, (parameterized
by v). The weights that connecting to the ranking score unit are
denoted as w (i.e., w = fu(q)). The rest is to learn the parameters
v and v. Note that for simplicity we have omitted the superscript ¢
denoting the i-th training example.

Given the parameters of the neural networks, a forward propa-
gation is first performed for one or a mini-batch of ranking exam-
ple(s), then the errors propagate backwards from the output nodes
to the input nodes regarding the network’s modifiable weights and
finally the weights are updated by a gradient descent step. Taking
derivatives of L(Y, Z) with respect to w, we have

Vo — 8L(Y Z) ZPy 8log£z(d )
Note that
log P=(d;) = f(a,d;) —log ) exp(f(g,d:))
i=1
ow B Z Px(d

and with some derivation we get

n

Vw =3 (P:(d))

Jj=1

= Py(d;)) fold;) @

The derivatives of L(Y, Z) with respect to u and v are deduced in
a similar manner as follows:

Va = S (Pady) - Py () 22D
j=1
= (Vw)T—a]:;Eq) ()
Vo = 3 (Pdy) - Py T (@) 20
j=1

w?’ (Z(Pz(dj)
j=1

- pyan?! gﬁfl")> ©®

Note that we can deduce df,(q)/0u and df,(d;)/0v via clas-
sical back-propagation algorithm which depend on the structure of
the query-specific NN and the document-specific NN, respectively.
Therefore, we can evaluate the required derivatives Vu and Vv,

and apply the gradient descent step.

EXPERIMENTS AND RESULTS

Datesets Two public real-world datasets are used in the compar-
ative experiments. Both the datasets are bi-modal with the image
and the associated text modalities. The statistics of the two datasets
are summarized in Table 1.

The Wikipedia feature articles” dataset consists of 2,866 images,
each with a short paragraph describing the image. The images are
labeled with exactly one of the 10 different semantic classes, such
as art and geography. For text, we extract 5,000D bag-of-words
feature vectors with the TF-IDF weighting scheme. For images,
1,000D bag-of-visual-words feature vectors are extracted by clus-
tering SIFT points with k-means. A target document is relevant to a
query if they belong to the same semantic class. The NUS-WIDE?

http://www.svcl.ucsd.edu/projects/
crossmodal/
*http://1lms.comp.nus.edu.sg/research/
NUS-WIDE.htm
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Table 1: The statistics of the datasets used.

Wikipedia NUS-WIDE
Avg. # of words/image 117.5 7.73
# of neurons in Image NN 1000-50 500-50
# of neurons in Text NN 5000-50 1000-50
Documents 1,500/500 13,320/23,977
Partition* 866 95911
Queries 1,500/500 13,320/2,000
Partition® 866 2,000

? Partitions are ordered by training/validation/testing.

dataset contains 133,208 images with 1,000 tags and 81 concepts,
which are pruned from the NUS dataset by keeping the images
that have at least one tag and one concept. For the feature repre-
sentation, we use the publicly available 1,000D text feature vector
(namely tags) and 500D image feature vector based on SIFT BoVW
kindly provided by the authors. A target document is relevant if it
shares at least one concept with the query. However, we also note
that the relevant judgement can be obtained from the abundance of
users’ clickthrough data with little overhead.

Experimental setup The training examples are generated as fol-
lows: for each text (image) query, we randomly selected 40 images
(text documents) in the other modality in the training set as candi-
dates and then the selected target documents are automatically la-
beled as relevant or irrelevant. We observed little difference when
different sampling strategies were applied. While for validation and
testing, we randomly select text (image) queries and all the images
(text documents) in the other modality in the validation/test set are
regarded as retrieval candidates.

The structures of modality-specific neural networks are listed in
Table 1. The proposed model is trained with sigmoid activation,
momentum of 0.3 and weight decay of 0.0001. We adjust the learn-
ing rate manually from 0.01 to 0.0001. The size of each mini-batch
is set to 100. Autoencoder with one hidden layer (50 units) is used
to pre-train the modality-specific neural networks. The learned fea-
tures by autoencoders are also served as the input features to all the

comparative methods.

Evaluation metric The standard ranking performance metric
Mean Average Precision (MAP) is used for comparison. Let p* =
rank(y) (true ranking with two rank value +1 and —1) and p =
rank(z) (predicted ranking with a total order). Given a query and a
set of R retrieved target documents, the Average Precision (AP) is
defined as

AP

Z Prec(j

- Rel(j) @

where M is the number of the relevant documents in the retrieved
set, Prec(j) the percentage of the relevant documents in the top j
documents in predicted ranking p and Rel(j) an indicator function
equaling 1 if the item at rank j in predicted ranking p is a relevant
document, zero otherwise. We then average the AP values from all
the queries in the query set to obtain the MAP score. In the experi-
ments, R is the number of the retrieved documents to be examined,
where we set R = 50 or R = all for all the retrieved documents.

Performance comparison We compare CMRNN with other state-
of-the-art models. All the comparative models (PAMIR[5], SSI[1]
and LSCMR[6]) are elaborately chosen to be trained with ranking
examples for fair comparison.

Table 2 reports the performance of CMRNN and the other com-
parative models on the test set of the Wiki dataset, showing that
CMRNN outperforms all the comparing methods on both direc-
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Figure 2: Precision-Recall curves on the two datasets.

Table 2: The performance comparison in terms of MAP@R
scores on the Wiki dataset.

Text Query Image Query
R=50|R=all | R=50| R=all
PAMIR | 0.2344 | 0.1361 | 0.1763 | 0.1786
SSI 0.2058 | 0.1309 | 0.1834 | 0.1470
LSCMR | 0.2520 | 0.1597 | 0.2010 | 0.1919
CMRNN [ 0.2712 | 0.1649 | 0.2563 | 0.2216

tions of the retrieval. The Precision-Recall curves on both direc-
tions are reported in Figure 2(a) and 2(b).

The improvement of CMRNN on the NUS dataset is not as sig-
nificant as that on the Wiki dataset. The MAP scores of all the
methods over NUS dataset are shown in Table 3 and the Precision-
Recall curves are reported in Figure 2(c) and 2(d). For text-query-
image retrieval, CMRNN outperforms the other comparative meth-
ods again, while for the other direction, PAMIR have a slightly
better overall performance than CMRNN. The reason why PAMIR
even beat CMRNN in the case of image-query-text retrieval may
be as follows. As shown in Table 1, the average number of words
per image in the NUS dataset is much smaller than that in the Wiki
dataset. The short text doesn’t provide sufficient word occurrences
and thus is fuzzy. Given an image query, fine-tuning the modality-
specific NN by the ranking loss with respect to fuzzy short text may
play a counteractive effect and degrade the performance.

It is observed that LSCMR performs most closely to CMRNN
on the Wiki dataset, however LSCMR fails to train a ranking model
on the NUS dataset. For NUS dataset, we sample 10% of the doc-
uments to form the training set, and thus for each direction of re-
trieval about 13k queries (with 530k corresponding documents) are
used for training. Note that the weight updating step of LSCMR
requires the full batch of training examples, which makes it hard
for LSCMR to deal with such large set of ranking examples. By
contrast, the weight updating step of the other three comparative
methods (PAMIR, SSI and CMRNN) requires only a mini-batch
of ranking examples, and consequently the three methods (includ-
ing the proposed CMRNN) can benefit from the large amount of
ranking examples.

CONCLUSION

In this paper, a new multimodal model is presented to solving
the problem of cross-modal ranking. Benefiting from both neural
networks and learning to rank techniques, the proposed model can
learn high-level feature representation which has the discrimina-
tive power for cross-modal ranking and the learning procedure is
shown efficient for practice. We have also demonstrated the ef-
fectiveness of the proposed method CMRNN and have shown sig-
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Table 3: The performance comparison in terms of MAP@R
scores on the NUS dataset.

Text Query Image Query
R=50|R=all | R=50| R=all
PAMIR | 0.2026 | 0.1265 | 0.4682 | 0.2331
SSI 0.2163 | 0.1200 | 0.4259 | 0.1830
LSCMR - - - -
CMRNN | 03193 | 0.1569 | 0.4402 | 0.2319

nificant improvements over the comparative methods on two real-
world datasets.
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