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ABSTRACT
Multimodal data streams are essential for analyzing personal life,
environmental conditions, and social situations. Since these data
streams have different granularities and semantics, the semantic gap
becomes evenmore formidable. To make sense of all the multimodal
correlated streams we must first synchronize them in the context
of the application, and then analyze them to extract meaningful
information. In this paper, we consider the problem of modeling an
individual by using daily activity in order to understand their health
and behavior. The first step is to correlate diverse data streams with
atomic-interval, and segment a person’s day into her daily activities.
We collect the diverse data streams from the person’s smartphone to
classify every atomic-interval into a daily activity. Next, we use an
interval growing technique for determining daily-activity-intervals
and their attributes. Then, these daily-activity-intervals are labeled
as the daily activities by using Bagging Formal Concept Analysis
(BFCA). Finally, we build a personal chronicle, which is a person’s
time-ordered list of daily activities. This personal chronicle can
then be used to model the person using learning techniques applied
to daily activities in the chronicle and relating them to biomedical
or behavioral signals. We present the results for this daily activity
segmentation and recognition by using lifelogs of 23 participants.

CCS CONCEPTS
• Information systems→Mobile informationprocessing sys-
tems; • Human-centered computing → Ubiquitous comput-
ing;Mobile computing; Ambient intelligence; Smartphones;

KEYWORDS
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1 INTRODUCTION
Understanding the daily lives of human beings, what people have
experienced, how people have spent their time, when and where
they have been and whom they have been with, has long been the
subject of scientific inquiry. This interest has led people in the field
of multimedia to develop scientific approaches to monitoring and
analyzing personal lifestyles and behavioral patterns. Multimedia
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Figure 1: From multi-modal sensor data streams to atomic-
interval, daily-activity-interval and chronicle of daily activ-
ities.

researchers have tried to extract semantic level information from
visual content so that they can analyze people’s lives, and even
environmental conditions and social situations. They also have
analyzed real-time behavior data, which is collected via wearable
devices, such as smartphones or smartbands, and social media, to
understand more about personal lifestyles and behavioral patterns.
However, recognizing people’s daily lives at higher cognitive and
more abstract levels (e.g., working, exercising, shopping, or relaxing)
than low-level multimedia lifelogs (e.g., step count, GPS, venue, or
physical activity), which makes inferring and predicting people’s
lifestyles more intuitive, remains relatively undeveloped.

Advances in sensor technology have increased the number of
quantitative and qualitative multimedia lifelogs that are captured
via wearable devices. Thus, we can now automatically aggregate
and analyze heterogeneous multimedia data streams. Since these
data streams have different granularity and semantics, the data
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streams need to be correlated by synchronizing them in the con-
text of the application. The synchronized data streams can then
be raised up to higher-level forms, so-called daily activity, by ana-
lyzing relationships between the daily activity and their temporal,
causal, spatial, experiential, informational, and structural aspects
[35]. Finally, the personal chronicle of the daily activity can be gen-
erated by chronologically ordering the recognized results [21]. In
this paper, we automatically recognize these daily activities using
multimodal data streams from each individual’s smartphone. Figure
1 shows the steps of our recognition approach: collecting multi-
media lifelogs, synchronizing and segmenting the data streams,
recognizing daily activities, and generating the personal chronicle.

We consider the problem of modeling an individual to ultimately
help them with personalized health management. We believe that
objectively understanding the daily activities of human beings has
a strong potential to improve health research, given that these daily
activities and the sequences of these high-level data abstractions
contain their life experiences, behavioral patterns, and even their
feelings. According to Kahneman et al., quantifying information
about time usage and its frequency, as well as stress level, pleasure,
and other affective states of each individual user, is potentially use-
ful for health research [23]. More specifically, they tried to find this
information by identifying each person’s daily activity. Thus, the
authors first conducted a survey categorizing people’s common
daily activities, and then described how to quantify them. Jain and
Jalali’s research on objective self models has also shown that ana-
lyzing the personal chronicle of daily activities can be used to build
sophisticated models that will help the monitoring of individual
health and building disease models [20]. They built a complete
infrastructure for the objective self, but it has not yet had actual
implementations and experimental validations. Thus, with the same
goals in mind, we recognize Kahneman’s common daily activities
and generate personal chronicles of the daily activities in order to
build objective self models.

To automatically quantify the daily activity of each individual,
the recognition method should be unobtrusive and effortless, and
user tracking should only use common devices. More importantly,
we should not intervene in users’ life patterns by pushing them
to do something or putting them in specific situations in order to
recognize their daily activity. However, one major technical chal-
lenge is that this sort of fully-automated tracking is not always a
guarantee of high recognition accuracy [9]. Some daily activities
might require more diverse features than current smartphone sen-
sors, and some others might be user-dependent or subjective daily
activities, which need user feedback for personalization. This paper
describes how to overcome these challenges for fully-automated
tracking and explores to what extent Kahneman’s daily activities
can be recognized.

Our approach begins with understanding daily-activity-intervals
by classifying every atomic-interval into a daily activity. We pro-
pose the idea that daily activities in a time-line are similar to objects
in two-dimensional pixel space in that both the daily activities and
objects are determined by a correlation between the times/pixels.
We first collect multimedia logs via each individual’s smartphone.
Then, the collected logs are used to segment a person’s day into
their daily activities. We use diverse data streams from the person’s
smartphone to classify every atomic-interval into a daily activity.

Next, we use interval growing techniques for determining daily-
activity-intervals and their attributes. Then, these intervals are
labeled as the daily activities by using Bagging Formal Concept
Analysis (BFCA). Finally, we build a personal chronicle represented
as events.

We believe that recognizing atomic-level daily activities, which
can be automatically recognized, is one important step towards
higher-level activity recognitions. Our main contribution in the
area of activity recognition is 1) revealing and quantifying these
atomic-level daily activities with our automated and unobtrusive
approach, and 2) increasing the possibility of automatically recog-
nizing the higher cognitive daily activities, and thus 3) quantifying
the personal chronicle of these daily activities, as in Figure 1.

2 RELATEDWORK
Research on human behavior analysis is not a new area. It has
been around for decades in many different forms. In 1945, Van-
nevar Bush’s “Memex" vision had already presented a systematic
approach, which organized a person’s life-time knowledge, such as
books, records and communication, by providing a user-authored
data store, its linkages, and labels of the data to understand personal
experiences [6, 16]. However, the capability to greatly develop this
vision has recently become possible with advancements in technol-
ogy [16]. The significant advances in computer storage, processing
power, sensing technology, and network systems have encouraged
researchers to participate in the field of human behavior recogni-
tion [20]. Classification techniques have also contributed to the
recognition of higher-level semantics, such as physical activity
[3, 17, 24, 36], more so sensor measurements.

There have been several data-driven studies analyzing the con-
texts or lifelogs of each individual user. A. K. Dey devised an archi-
tecture named Context Toolkit, which would allow the combination
of data resulting in an abstraction that can be used to better under-
stand how people experience the real-world [1, 10]. They provided
higher-level contexts by aggregating and interpreting lower-level
contexts in the conceptual framework. Since the Context Toolkit
was introduced in 2001, the agent for human sensing has moved
from the computer-based toolkit to mobile/wearable sensor-based
loggers [5, 7, 12, 18]. With the trend of using the Internet-of-Things
for data-driven studies, the so-called lifelogging, which is focused
on a process of pervasively collecting, processing, and reflecting
on an each individual’s life experience data, has become more pop-
ular [16]. For example, Gordon Bell recorded many aspects of his
everyday life by capturing a series of real-world images using the
wearable camera, called SenseCam [14, 15], for the purpose of aid-
ing recollection of past experiences. He expected that “total capture"
of daily life would lead to “total recall" of our lives [4, 29]. P. Wang
and A. F. Smeaton have also highlighted the importance of visual
lifelogs because they identify various semantic concepts across
individual subjects. They automatically identified high-level hu-
man activities such as eating, drinking, or cooking using SenseCam
images, and data models [32–34].

Many human activity recognition systems have been based on
situation specific capture. MIT’s “PlaceLab" installed hundreds of
sensors in all parts of a home seeking to automatically record activ-
ities [29]. Kasteren et al. collected location data and voice labeled
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annotations for each activity, such as breakfast, sleeping, or toilet-
ing, from the house. They constructed a probabilistic model using a
hidden markov model (HMM) to predict future sensor readings [31].
Research on situation specific capture has drawn much attention
in Activity of Daily Living (ADL) recognition. To automatically
recognize ADL (e.g., toileting, grooming, bathing, showering or
sleeping, etc.) for the purpose of preventative medical monitoring
or building a smart home, researchers have set up low-cost sensors
at critical locations in a home [8, 13, 19, 27, 30, 31] and then have
predicted activities using naive bayes classifier [26, 30], HMM [31],
ontologies and semantic reasoning [8], and Formal Concept Analy-
sis [27], etc. Luštrek et al. used smartphone data, such as location
(GPS), physical activity (accelerometer), and sound, and combined
machine learning algorithms and symbolic reasoning to recognize
high-level activities of a diabetic patient [26].

Another research group seeks to segment events on a lifelog
of images. Doherty and Smeaton extract MPEG-7 features from
images, such as accelerometer sensor values, light-level, ambient
temperature, and passive infrared, and compare the similarity to
those of adjacent images for the purpose of event segmentation
[11]. There is another group who plans to recognize Kahneman’s
daily activities by analyzing taken photos from smartphones [2].
However, to the best of our knowledge, there is no approach for
daily activity recognition that begins with understanding physi-
cal activity patterns by using non-visual smartphone lifelogs, and
then gradually finding daily-activity-intervals in order to recognize
daily activity. Moreover, we have not seen any approach to identify
atomic-level daily activities to recognize higher cognitive and more
abstract levels.

3 METHODOLOGY OVERVIEW
In this section, we describe our overall methodology for recogniz-
ing daily activity. We first explain what daily activity is, and then
finalize the target corpus of the daily activity. Next, we categorize
the daily activity corpus into three levels that describe their char-
acteristics in terms of recognition possibility. Lastly, we provide
the definitions of each daily activity. Since we ask our participants
to label their daily activities with the exact name of that moment,
we must synchronize the exact meaning of each daily activity. We
refer to dictionaries, such as the Oxford and Cambridge English
Dictionaries, and modify the meanings to match our contexts. We
explained these definitions to each participant, and encouraged
them to correctly label their daily activities according to the defini-
tions.

We consider that daily activity is a brief name for each episode,
such as “commuting to work" or “eating lunch", that can generally
happen in the daily lives of human beings. Thus, we think that
the continuous series of the daily activities can imply the person’s
lifestyle, behavioral patterns, and even their feelings. Kahneman et
al. have also insisted that quantifying these daily activities would
potentially be useful for research on human well-being. Further-
more, they have tried to categorize common daily activities by
conducting a survey, and suggested 16 common daily activities. We
refine our daily activities into Kahneman’s daily activity corpus,
which has already been verified for human well-being research
[23].

Table 1: Kahneman’s daily activity on concept levels

Level 1 Level 2 Level 3
Still Working Watching TV

Walking Commuting Preparing food
Running Exercising Socializing
Cycling Religious event Housework
Driving Shopping Intimate relations

Direct communication Eating Relaxing
Remote communication Using toilet Taking a break
On the smartphone Home event Sleeping

We classify Kahneman’s common daily activity in three levels.
The level definitions are as follows:

• Level 1 (L1): a daily activity which can be automatically
recognized. It can be seen as the atomic-level.

• Level 2 (L2): a daily activity which has the possibility of
automatic recognition in the near future using sensing tech-
nology, but can not yet be recognized.

• Level 3 (L3): a daily activity which is not possible to be
automatically recognized, but is soon to be recognized once
richer data is gathered. We also deem subjective or user-
dependent daily activities as level 3.

Since there are limits and restrictions on smartphone-based recogni-
tion, such as the lack of sensor data, or difficulties in understanding
user-dependent or subjective activities, we think that it is not pos-
sible to recognize all the daily activities at the current stage. Our
approach is to focus on recognizing daily activities, which can be au-
tomatically recognized via smartphone first (atomic-level), and then
gradually try to recognize the daily activities which have a high
possibility of automatic recognition (L2). Once the daily activity is
recognized, we start considering that activity is the atomic-level
activity, and using it as an attribute for other daily activity recog-
nitions. Table 1 is the classification of Kahneman’s daily activities
in these three levels. In this paper, we refine the target activities
to L1 and L2 activities, and see to what extent L2 activities can be
automatically recognized.

We define Kahneman’s L2 activities based on their dictionary
definition. People might have different definitions for each daily ac-
tivity. Thus, we provide them with the following general definitions
for correctly labeling their daily activities:

• Working: the activity of doing a job at the workplace (in-
doors)1.

• Commuting: the activity of traveling regularly between
work and home1.

• Exercising: the activity of performing physical actions to
make or keep your body healthy1.

• Religious event: the activity occurring at religious places.
• Shopping: the activity of looking for things to buy in a
shopping mall1.

• Eating: the activity of taking food in a restaurant2.
• Using toilet: the activity of going to the bathroom.
• Home event: the activity occurring in a structure in which
a person lives, esp. a house or apartment1.

1http://dictionary.cambridge.org/us/dictionary/english
2http://www.oed.com/
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Table 2: Atomic-interval sample dataset. a1: still, a2: walk-
ing, a3: running, a4: bycle, a5: vehicle

atomic
interval

activity
level

activity
type

venue
type ... app

type
59 0 [a1] building ... -
60 1.15 [a1,a2,a1,a2] route ... fitness
61 1.99 [a3,a2,a1] park ... music
... ... ... ... ... ...
288 0 [a1] building ... music

4 LIFE LOGGING
Lifelogging signifies the process of gathering, processing, and stor-
ing data regarding personal life experiences [16]. We collect, pro-
cess, and record a user’s contextual information while the user is
carrying their smartphone. As shown in Figure 1, each exclusive
data receiver, which is responsible for the generation of each data
stream, pulls or processes the collectable data independently us-
ing built-in smartphone sensors and different APIs. The agent is
always running in the background of each smartphone, logging
the data without any user interventions, and storing the derived re-
sults locally on the device for user-studies. We collect the following
lifelogs:

• time: time_window (e.g., 20161028_59), time_band (e.g., 0:
00:00 - 03:59, 1: 04:00 - 07:59, 2: 08:00 - 11:59, 3: 12:00 - 15:59, 4:
16:00 - 19:59, 5: 20:00 - 23:59), week (e.g., 0: week, 1: weekend),
long_time (e.g., 1477655468)

• location: latitude3, longitude3, venue_name3 (e.g., [Cheese-
cake Factory, Starbucks, Yogurt Land]), venue _type3 (e.g.,
[restaurant, cafe, food]), venue_likelihood3 (e.g., [30%, 10%,
5%]), point_of_interest

• activity: activity_type3 (e.g., [still, walking]), duration3 (e.g.,
[250, 50]), activity_level (e.g., 0.4012)

• phone oriented lifelog:
(1) application: count, name (e.g., [off, Facebook]), category4

(e.g., [none, communication]), duration (e.g., [200, 100])
(2) photo: count, concept5 (e.g., [person, pasta, dish, man,

woman])
(3) media: play time
(4) sound setting: silence, bell, vibration
(5) calendar: event (e.g., birthday party), where (e.g., Cheese-

cake Factory), start_time, end_time
We collect not only low-level lifelogs, such as latitude and longitude,
but also high-level semantics. For example, we provide venue name
set (e.g., [Cheesecake Factory, Starbucks, Yogurt Land]), which is
the exact names of a given GPS point, and the categories of that
venue (e.g., [restaurant, cafe, food]). Considering one GPS point
may contain multiple venues, we also provide the probabilities of
being at each venue (e.g., [30%, 10%, 5%]). In addition, we analyze
the places the user frequently visited, and provide the user’s point
of interests. Furthermore, we accumulate a sequence of the user’s
physical activity, calculate activity level, which is an average score

3https://developers.google.com/android/guides/overview
4https://play.google.com/store
5https://clarifai.com/

of the physical activity set [28], and then provide these as high-level
lifelogs.

Since these lifelogs are collected as data streams, and they have
different granularities and semantics, we must synchronize the
data streams by correlating them with a periodic time-interval.
We define this periodic time-interval as atomic-interval. Atomic-
interval is a 1 x N matrix having N kind of lifelogs collected for a
given time-interval. Each row in Table 2 shows the atomic-interval.
The numbers in the first column indicate the order of the atomic-
interval of the day. The sequentially collected lifelogs, such as
activity type, are chronologically collected in an array. Average
value, such as activity level, calculated based on pre-defined weights
and their amount. Semantic data, such as activity type, venue, photo
concept, or application category, are gathered by trustworthy APIs.
The length of the atomic-interval can be decided by the designer
depending on the precision requirement of the application, and
thus there can exist the following separated atomic-intervals per
day if we assume the unit of interval as minute.

number_o f _atomic_intervals =
24hours × 60minutes

time_interval
(1)

We organize these atomic-intervals as json format in Figure 1, and
then store them in the mobile phone database. We also define daily-
activity-interval as a length of the daily activity. This daily-activity-
interval can be determined by using our interval growing technique.
This technique analyzes the characteristics of sequential atomic-
intervals, and groups similar atomic-intervals together to make the
daily-activity-interval. This is also shown in Figure 1.

5 DAILY ACTIVITY RECOGNITION
5.1 Daily Activity Segmentation
Daily activity segmentation is the process of partitioning a day
into multiple sets of daily-activity-intervals. We pull diverse data
streams from a user’s smartphone, synchronize each data stream
by using atomic-intervals, and then segment a day with our inter-
val growing technique when chronological atomic-intervals have
similar patterns of physical activity. For these reasons, determin-
ing a length of the atomic-interval must be the first step. We have
proven that a five-minute time interval can be a reasonable amount
for the atomic-interval. We have tried to find situation transition
moments by comparing the similarities of sequential five-minute
atomic-intervals, and then proved that this amount of time can be
a base unit of daily activity segmentation [22, 28]. Thus, we use
five-minutes as the length of the atomic-interval, and then divide a
day into 288 atomic-intervals. Most importantly, we assume that
indications of the changes of physical activity pattern can be in-
volved in the changes of other attributes, which can be considered
as ending one daily activity and starting another. For example, let’s
say a user has been working at the office, and he has been sitting
on the chair. After 10 minutes, if he moves towards the cafeteria
for lunch, we recognize this change of physical activity, segment
this moment, and make a daily-activity-interval by segmenting
from the first atomic-interval to now. In other words, our daily
activity segmentation focuses on the interval-growing technique
appropriate for daily activity segmentation in which the relevant
atomic-intervals are identified by the patterns of physical activities.
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Algorithm 1 Solution for BIG
Input: current atomic-interval Ii , seed atomic-interval Sj
Output: daily-activity-interval set R;
1: Set Sj = Ii if i = 0 and j = 0, or Sj = ∅, and then

set k = 0;
2: repeat
3: Wait for next atomic-interval, Ii = Ii+1;
4: Extract activity level li , and total amount of moving

time ti from Ii ;
5: Extract activity level lj , and total amount of moving

time tj from Sj ;
6: Calculate δ (i);
7: Make a daily-activity-interval rk by segmenting from

Ij to Ii , increment k and j, set new seed atomic-interval
Sj = Ii if δ (i) = 1;

8: until the system is terminated.
9: return R

Binary Interval Growing (BIG): More specifically, we apply
our binary interval growing technique to determine whether con-
secutive atomic-intervals have similar patterns of physical activities.
In order to compare the similarities, we classify each atomic-interval
into the moving or the non-moving type of interval, and then deal
with the atomic-intervals as one or the other. Algorithm 1 shows the
procedures of how to segment atomic-intervals into daily-activity-
intervals. We first set up a seed atomic-interval Sj , and then keep
calculating δ (i) every five minutes to determine the similarity be-
tween sequential atomic-intervals. δ (i) can be represented by the
following formula:

δ (i) = ∥ f (S ′j ) − f (I ′i )∥
2
2 (2)

where S ′j is {lj , tj }, I
′
i is {li , ti }, f (x) is a classification algorithm

to classify the non-moving (0) or the moving (1) type of atomic-
interval, and δ (i) is a distance between Sj and Ii . Thus, we segment
atomic-intervals when δ (i) is equal to 1, and then make a daily-
activity-interval by segmenting from Ij to Ii . For example, if the
type of the seed atomic interval is non-moving, then f (S ′j ) is equal
to 0. After 5 minutes, if the type of the current atomic-interval is
also non-moving, f (I ′i ) will be 0, and thus δ (i) is also equal to 0.
However, after another 5 minutes, if the type of the current atomic-
interval is moving, f (I ′i ) will be 1, and we will finally get δ (i) = 1.
Then, we segment this moment, make a daily-activity-interval by
segmenting from Ij to Ii , and repeat this process again.

5.2 Daily Activity Recognition
To recognize the daily activities, we now build a common daily
activity model. Westermann et al. have built a common multimedia
event model by identifying the global unique properties of each
individual event. This model addresses several fundamental aspects
of events, such as temporal, spatial, experiential, causal, structural,
and informational aspects [35]. Specifically, Westermann et al. ap-
proach the common event modeling by understanding physical (e.g,
event occurrence time stamp and interval), logical (e.g, temporal
domain), and relative (e.g, temporal relationships to other events)
relationships between each aspect and an event. We bring in these
general aspects as the categories of our modeling attributes, and

Table 3: Simplified cross table defining relationships be-
tween daily activity and their attributes.

Attribute
Walking

(Experiential)
Medium time-duration

(Temporal)
Work

(Spatial)

O
bj
ec
t Working X X

Using Toilet X X
Commuting X X

Figure 2: Sample concept lattice derived from Table 3.

modify the physical, logical, and relative components to match the
daily activities.

We build the common daily activity model by using Formal Con-
cept Analysis (FCA) based on these general aspects of events. FCA
is one powerful technique when data sources are limited, and even
when they are uncertain, due to its specialty for discovering implicit
information based on pre-defined binary relationships between ob-
ject and attributes. FCA can be applied for daily activity recognition
as follows. One daily activity D can be represented by a triplet T
= (D,A,R), where A is a set of attributes, and R is the binary rela-
tionships between D and A, R ⊆ D × A. Once each daily activity
is defined by the triplet, the triplet can then be converted into a
cross table (e.g., Table 3). Then, all possible formal concepts (Xi , Yi ),
where Xi ⊆ Di , and Yi ⊆ Ai , are extracted from the cross table, and
then are set up as nodes in the concept lattice, which is a graphical
representation of the partially ordered knowledge. The hierarchy
of formal concepts can be constructed by the following relations:

(X1,Y1) ≤ (X2,Y2), i f X1 ⊆ X2 ↔ Y1 ⊇ Y2 (3)

Xi and Yi satisfy the following relations:

X
′
i = {ai ∈ Ai | ∀di ∈ Xi , (di ,ai ) ∈ Ri } (4)

Y
′
i = {di ∈ Di | ∀ai ∈ Yi , (di ,ai ) ∈ Ri } (5)

Table 3 shows the simplified relationships between daily activ-
ity and their attributes. In order to build the FCA model, formal
concepts should be derived from the cross table, such as (Working,
{Medium time-duration, Work}), (Using Toilet, {Walking, Work}),
(Commuting, {Walking, Medium time-duration}), ({Working, Using
Toilet}, Work), ({Working, Commuting}, Medium time-duration),
and ({Using Toilet, Commuting},Walking). These formal concept
pairs become each node in the concept lattice, and their hierarchy
is determined by formula (3). Figure 2 shows the concept lattice
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reflects the partially ordered knowledge between each node. The
top node and the bottom node indicate ({Working, Using Toilet,
Commuting}, ∅), and (∅, {Walking, Medium time-duration, Work}),
respectively. To navigate the concept lattice to obtain the expected
results, depth first search is carried out with input attributes. For
example, if input attributes are Medium time-duration and Work in
Figure 2, these two nodes will indicate one daily activity, Working.

Basically, FCA finds an expected result depending on the struc-
tural similarity between an input attribute set and pre-defined
attribute sets. Thus, different kinds of input attributes can signifi-
cantly affect the structural similarities. Because of this, it is neces-
sary to estimate what attributes are important keys to separating
each different daily activity, and find all unique daily activity struc-
tures composed of those attributes. Moreover, we also need an
effective method for estimating missing data while maintaining
accuracy, considering that we recognize the daily activities in real-
time on smartphone, and the smartphone status will not always
be in the best condition. Lastly, given that the amount of actual
user data is not always enough to train a powerful model, we also
need to come up with how we can make a strong learner by using
a group of weak learners. We believe that an ensemble classifier
that consists of many concept lattice bags, and its voting process to
obtain a majority result from all the recognitions, helps to overcome
these challenges. We suggest Bagging Formal Concept Analysis
(BFCA), which applies the ensemble approach to FCA, in order to
solve those challenges. Bagging Formal Concept Analysis (BFCA)
consists of the following steps:

(1) Categorize all the labeled daily-activity-intervals, which ob-
tained from 23 participants for two weeks, by each daily
activity.

(2) Make n number of classifiers where n is the number of the
recognizable daily activity, make m number of bags per clas-
sifier, and bootstrap training data for each bag.

(3) In each bag, use one third random attributes p
3 , where p is

the number of total attributes, and extract all unique relation-
ships between the labeled daily activity and their randomly
picked attributes.

(4) Build the cross table in each bag by using those unique re-
lationships, and generate the concept lattice. This concept
lattice only determines whether the given input attribute set
can be the labeled daily activity.

(5) When an input attribute set is given, which is an unlabeled
daily-activity-interval, we navigate all the concept lattices for
each daily activity classifier, calculate the possibility of being
each daily activity, and then choose the highest possibility
among the results.

Given that FCA requires discrete attributes, we convert our time-
series values C , such as activity level, or time duration of daily-
activity-intervals, into discrete space, such asw-dimensional space{
hiдh,medium, low

}
, by a vector C̄ = c̄1, c̄2, ..., c̄i . We use a dis-

cretization technique, SAX (Symbolic Aggregate ApproXimation),
which reduces the time series of arbitrary length n into the w-
dimensional space by the following equation [25]:

c̄i =
w

n

n
w i∑

j= n
w (i−1)+1

c j (6)

Figure 3: The system running for daily activity segmenta-
tion and recognition.

5.3 From Activities to Events
We proceed to create events with all facets by using all collectible
data sources from multiple devices. We insist that an event is just a
single unit in itself, but it can form the chronicle once it is stored
in the database. Thus, we store all the recognized daily activities in
the database as events with as many data sources as possible, such
as Personicle in Figure 1, and quantify the chronicle. This personal
chronicle can then be used to model the person by using learning
techniques and relating them to biomedical or behavioral signals.
In the current version, we use only the signals from smartphones,
but pulling heterogeneous signals from multiple devices, and then
analyzing a person with all the facets of the events will be an
important topic for further research.

6 EXPERIMENTAL VALIDATION
We implemented an android application to test our segmentation
and recognition methods. As shown in Figure 3, we asked 23 par-
ticipants to give feedback on the results of their segmentations as
well as label their daily activities for each segmented result during
an average of two weeks. We stored all the collected lifelogs in
their smartphone database, and then gathered these databases after
the experiment had been completed. The total number of collected
daily-activity-intervals was 35,967.

6.1 Segmenting User’s Day
We assume that segmentation moments can mostly be affected by
their adjacent atomic-intervals since atomic-intervals are on a one-
dimensional time-line. Thus, interval growing based approaches,
which compare contiguous atomic-intervals, must show better per-
formance for the daily activity segmentation than those of statistical
methods using all collected lifelogs. To verify the performance of
BIG, we compare the BIG results to 1) ground truth, which was
obtained by participants’ feedback, and 2) the results to those of
statistical techniques, such as clustering (k-means), and threshold-
ing (otsu). We use the jaccard coefficient, which has the obvious
advantage of similarity evaluation between two sets of binary data,
for verifying the performance. The jaccard coefficient is calculated
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Table 4: Overall segmentation results of 23 participants.

Algorithm Segmentation accuracy
Best Jc Worst Jc Average Jc Stdev

BIG 0.9583 0.7896 0.9050 0.0432
Clustering 0.7841 0.5803 0.6564 0.0601
Thresholding 0.8556 0.4370 0.5863 0.1467

as follows:

Jc (A,B) =
|A ∩ B |
|A ∪ B | (7)

where A is the ground truth and B is the algorithmic result. We see if
BIG can be uniformly applied in all the users by achieving relatively
higher results than those of other algorithms. For this reason, we
handle each user’s experimental data separately, calculate each
user’s jaccard coefficient, and then compare the best, worst, and
average results as in Table 4.

We prove the BIG’s performance by comparing the results to
the statistical approaches. From the results in Table 4, we can see
that the average accuracy of BIG is higher than those of the others.
Even the worst result of BIG is almost similar to or a little less than
other techniques’ best results. Furthermore, the standard deviation
of BIG shows that each user’s accuracy is nearly the same; however,
we can also see a 0.1687 difference between the best and worst
accuracy. There are two reasons. Given that we depend on the API
results for physical activity prediction (e.g., still, walking), some
incorrect API results may lead to incorrect segmentation results.
More specifically, the API returns “walking" or “in vehicle" activity
when a user slightly shakes his legs or has minute-long movements.
We found that the user who obtained the worst result in BIG had
many of these cases, and thus these unexpected cases resulted in
the incorrect segmentations results. The different awareness of seg-
mentation moments between users and us also caused the incorrect
results. We handle 5 minutes time-intervals, and thus we don’t
consider the short changes as segmentation moments. For example,
if a user walks only for 5 or 10 seconds, and then immediately
starts a non-moving activity, we consider this as one continuous
non-moving segment given 5 minutes length of granularity. How-
ever, some of the users who participated in our experiment gave
feedback many of these moments were segmentable moments.

The lower result of clustering and the thresholding technique
show that reflecting past physical activity patterns for current
segmentationmoments can cause a bed effect on segmenting results.
For example, if a user is a very active person, those techniques will
not segment small movements even though these are a sufficient
amount for the daily activity segmentation.

6.2 Recognizing Daily Activity
With the identified daily-activity-intervals, we now try to recognize
L2 daily activities. 23 participants had labeled L2 daily activities on
these daily-activity-intervals.

In the lifelogs, we observed that at times our system was unex-
pectedly killed by OS, which made the data discontinuous. At other
instances, participants did not label their segmented results, or the
participants’ phones ran out of battery. We tried to avoid these ex-
ceptional cases by immediately restarting the system when it was

Table 5: F-measure (%) for combination of attribute sets.
D1: Commuting, D2: Eating, D3: Exercising, D4: Home-
Event, D5: ReligiousEvent, D6: Shopping, D7: UsingToilet,
and D8:Working. S1: Temporal + Experiential, S2: Temporal
+ Spatial, S3: Spatial + Experiential, S4: S1 + Spatial, S5: S4 +
Causal, S6: S5 + Structural aspect.

Attribute set combination
# sample S1 S2 S3 S4 S5 S6

D
ai
ly

A
ct
iv
ity

D1 393 66.7 66.7 55.5 75.6 90.4 76.6
D2 404 28.2 71.9 43.2 70.7 77.8 79.6
D3 15 0 100 100 100 100 100
D4 10698 60.6 94.7 65.6 91.8 96.6 96.6
D5 588 0 98.5 98.5 97 76.4 98.5
D6 53 0 40 22.2 25 44.4 40
D7 28 56.3 0 38.5 9.5 81.2 55.2
D8 2908 6.9 69.5 44.9 81.8 90.3 89.1

terminated by OS, or asking the user to label the segments with the
pop-upmessages in the system. However, there were still many non-
labeled and non-consecutive segments. We first clean these unclear
data in order to precisely verify the performance of recognitions,
and thus the total number of considered daily-activity-intervals are
15,087 samples of 35,967. And then we split these samples into 30%
training dataset, and 70% test dataset to show that the model of
BFCA can be robust despite the relatively small training dataset.

In order to maximize the recognition performance, we assume
that each daily activity has a specific combination of the common
event attribute sets that most represent the daily activity. This
means that all the aspects of the common event model (e.g., tem-
poral, spatial, experiential, structural, informational, and causal
aspects) are not vital elements for every daily activity recognition.
For example, according to the definitions in Section 3, the “Com-
muting" activity, which refers to the activity of traveling regularly
between work and home, can be recognized by only using spatial
(e.g., work or home), structural (e.g., L1 daily activity, such as going,
or still), and causal (e.g., the relations between current and previous
daily activity) aspects. To verify this idea, we experimented with
the different combinations of the common event model aspects,
and figured out the best combinations by calculating their accuracy.
We roughly use 10 bags of concept lattice for this experiment, and
thereby calculate their f-measures to see the weighted harmonic
accuracy between precision and recall. From the results in Table
5, we can see that some combinations of the attributes have better
results than those of others, such as S5 for D1, D6, D7 and D8, and
S6 for D2. It shows that unnecessary information results in the con-
fusion of modeling, and thus we use the specialized combination
sets for each daily activity modeling.

We now try to find the best number of concept lattice bags,
which also can maximize the recognition performance. First, we
train separate BFCA models on different numbers of bags, which
are from 1 to 1000, by using the selected attribute sets. Then, we
experiment with the daily activity recognition on those trained
models, respectively, by using the same test dataset. Finally, we
calculate their f-measures to see what numbers of bags would re-
turn the best recognition accuracy. Figure 4 shows the variations
of accuracy on the different number of bags. In our results, we
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Figure 4: The Variations of BFCA accuracy on different num-
ber of concept lattice bags.

Table 6: Confusion matrix of the BFCA. D1: Commuting, D2:
Eating, D3: Exercising, D4: Home Event, D5: Religious Event,
D6: Shopping, D7: Using Toilet, and D8: Working.

Predicted (%)
D1 D2 D3 D4 D5 D6 D7 D8

D1 95.8 0 0 4.2 0 0 0 0
D2 0 97.8 0 0 0 2.2 0 0
D3 0 0 100 0 0 0 0 0
D4 0 4.3 0 95.7 0 0 0 0
D5 0 2.9 0 0 97.1 0 0 0
D6 0 16.7 0 0 0 66.7 16.7 0
D7 5.3 0 0 0 0 0 94.7 0

Ta
rg
et
ed

(%
)

D8 5.6 9.3 0 0 0 0 0 85

can see that the accuracy for under 700 bags is nearly the same;
however, the accuracy rapidly decreased by 0.7191 once bags are
over 800. Basically, the higher the number of bags, the higher the
recognition performance in ensemble technique. However, a large
number of bags in BFCA can confuse the voting process given that
these bags can make all the classifiers robust. Therefore, among the
good results under 800 bags, we choose the best accuracy, 0.9147
(bags=200).

Then, we build the confusion matrix to see the specific results
of each daily activity recognition. In Table 6, we can see that 5
minutes length of granularity results in an ambiguous segmenta-
tion boundary between “Commuting" activity and “Home Event"
activity (4.2%). We also can see that randomly picked p

3 attributes
cause confusion in the daily activity modeling. For example, “Home
Event" activity can be considered as “Eating" activity (4.3%), and
“Shopping" activity can be classified either as “Eating" (16.7%) or
“Using Toilet" activity (16.7%), if spatial aspects are missed. How-
ever, the overall accuracy of all the daily activity recognition (>90%)
shows that using the randomly picked attributes, and a certain
number of concept lattice bags can minimize the misclassification
of daily activities. This is proven in Table 7.

As shown in Table 7, BFCA has greatly improved the recogni-
tion performance compared to the FCA. FCA only depends on the
structural similarity between an input attribute set and pre-defined
relations. Thus, it sometimes recognizes multiple daily activities
if they have similar structures to the pre-defined relations. This
issue is a critical problem, which can cause lower performance,

Table 7: Accuracy for the daily activity recognition on 23 par-
ticipants.

Precision Recall F-measure
FCA 0.2522 0.5114 0.3378
BFCA 0.9098 0.9204 0.9151
Decision Tree 0.6604 0.6826 0.6643
Random Forest 0.7358 0.7464 0.7411
Support Vector Machine 0.6981 0.7081 0.7031

given that FCA does not have any statistical methods to choose the
most probable result. The result of BFCA shows that applying a
statistical method to FCA, such as the ensemble approach, can be
one solution to overcome the problem.

Since BFCA brings the idea from random forest, which uses the
ensemble technique bagged by decision trees, we also compare
BFCA to random forest. In Table 7, we can see that BFCA has better
results than the random forest. Basically, our dataset is imbalanced
data because some daily activities occupy the better part of the
day. For example, the “Sleeping", “Home Event", and “Working"
activities used to be the majority of the daily activities. Moreover,
these daily activities mostly share similar lifelogs to each other,
and thus the decision tree and random forest must have difficulty
clearly classifying them. This can also explain why the support
vector machine, which is one of the most powerful classification
algorithms, has lower recognition accuracy than BFCA.

7 CONCLUSION
Kahneman, who is a Nobel Prize winner, showed the importance of
daily activities in human life experiences. This paper builds towards
the research to develop techniques for objectively and automati-
cally understanding the daily lives of human beings via common
wearable devices. Specifically, this paper focuses on recognizing
human daily activity to understand their lifestyle and behavior
patterns for the purpose of building objective self model. Thus, it
describes the methodology behind automatically recognizing daily
activity with the goal to build a personal chronicle. We develop
a logging application that runs on Android device, collects data,
and converts the data into personal chronicle. Using the chronicle,
one may proceed to determine individual models using machine
learning techniques. Such models may play very important role in
applications for health and behavior modification. We begin with
synchronizing multimodal data streams by using atomic-intervals,
and then use an interval growing technique for determining daily-
activity-intervals and their attributes. Next, we use the common
event model and BFCA to classify each daily activity. Lastly, the
daily activities are stored in the database and consist of the chron-
icle of daily activities. Results obtained across different FCA and
classification algorithms show the potential of such an approach
for recognizing daily activities. Further research would allow for
increasing the number of detectable atomic-level daily activities by
combining more heterogeneous and higher cognitive multimedia
logs, and thus recognizing more various daily lives.
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