
Towards the Security of Motion Detection-based Video
Surveillance on IoT Devices

Xianglong Feng
University of Nebraska-Lincoln

Lincoln, NE 68588-0115
xianglong@huskers.unl.edu

Mengmei Ye
University of Nebraska-Lincoln

Lincoln, NE 68588-0115
mye@huskers.unl.edu

Viswanathan Swaminathan
Adobe Research

San Jose, CA 95110
vishy@adobe.com

Sheng Wei
University of Nebraska-Lincoln

Lincoln, NE 68588-0115
shengwei@unl.edu

ABSTRACT
Video surveillance enabled by Internet of �ings (IoT) devices, such
as smart cameras, has become a popular set of applications recently
with the trend of adopting IoT in multimedia signal processing and
smart home use cases. Despite its intelligence and convenience,
the video motion detection module deployed on the IoT devices
poses security challenges due to the sensitive nature of the cap-
tured surveillance video and the motion detection operation. In
this paper, we investigate the security vulnerabilities of IoT video
surveillance from the hardware system point of view. We �rst
develop a proof-of-concept prototype demonstrating video replay
a�acks, in which the compromised surveillance device hides the
chosen suspicious motion by overwriting the corresponding frames
with pre-recorded normal frames under the control of the a�acker.
To address the security concerns, we develop a hardware-based
IoT security framework that creates a trusted execution environ-
ment and physically isolates the security sensitive components,
such as the motion detection module, from the rest of the system.
We implement the security framework on an ARM system on chip
(SoC). Our evaluations on the real hardware reveal superior security
and low performance/power overhead in IoT video surveillance
applications.

1 INTRODUCTION
Smart surveillance cameras, such as Nest Cam [3] and Ring video
doorbell [4], have gained great popularities recently with the rapidly
growing trend of deploying IoT devices in smart home environ-
ments. Di�erent from the traditional surveillance �ow of video
capture, delivery, and playback, the Internet of �ings (IoT) surveil-
lance camera is “smart” in that it can process the captured raw
video and, in particular, automatically detect the moving objects in
the video. Such a motion detection feature can save a large amount
of network bandwidth by delivering only the video with motion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
�ematicWorkshops’17, October 23–27, 2017, Mountain View, CA, USA
© 2017 ACM. ISBN 978-1-4503-5416-5/17/10. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3126686.3126713

(i.e., containing suspicious behavior) or simply an alert to the re-
ceiver’s end. Also, it signi�cantly reduces the required manpower
in security surveillance, as the camera can automatically report
security incidents based on motion.

While conducting the capture and processing of the surveillance
video, the security and privacy of the smart camera become critical.
First, the subject under surveillance is typically a private residence,
which is privacy sensitive. Second, the video is used for security
surveillance, where the a�ackers have a natural incentive to com-
promise the system component that handles video processing, such
as the motion detection module, in order to bypass the security
screening. In both cases, the key algorithms and libraries deployed
on the smart camera must be well protected to prevent security
or privacy breaches. Furthermore, as a time sensitive application,
video surveillance requires near real-time speed and latency in
the video processing and delivery, which is challenging due to the
computational complexity involved.

�e general state-of-the-art solution to address the video security
and privacy challenges is to encrypt the video content throughout
the entire video pipeline, which has been widely adopted in enter-
tainment video streaming [31][32][34]. However, we observe that
the encryption-based security mechanism does not apply to the
protection of IoT surveillance videos. In particular, the a�ackers
are able to issue replay a�acks that pre-record non-motion video
frames to replace the ones with motion and thus bypass the video
surveillance. To the best of our knowledge, there has been neither
investigations nor solutions towards this security aspect of IoT
video surveillance.

In this paper, we �rst develop a smart video surveillance proto-
type for the purpose of security analysis and development using a
programmable system on chip (SoC). On the SoC, we develop a mo-
tion detection module using a simpli�ed Gaussian mixture model
(GMM) based algorithm, which is deployed in the programmable
logic part of the SoC representing a third-party video intellectual
property (IP) core. �en, on top of the video surveillance proto-
type, we develop a proof-of-concept threat model demonstrating
video replay a�acks, in which a malicious so�ware compromises
the surveillance IoT device by hiding the chosen motions via over-
writing the motion frames with pre-recorded normal frames. In
this way, the a�acker is able to gain full control over the motion
detection module of the surveillance system and manipulate the

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

228

motion-based alerts, which compromises the security of the surveil-
lance application.

To address the security concerns, we develop a hardware-based
IoT security framework that creates a trusted execution environ-
ment and physically isolates the security sensitive components,
such as the motion detection module, from the rest of the system.
We implement the security framework leveraging the TrustZone
technology [1] provided by the ARM processor, which is the most
popular embedded processor used in mobile and IoT devices. Our
evaluation on an ARM SoC proves the enhanced security and the
minimum performance overhead brought by the proposed multi-
media IoT security framework.

To summarize, our technical contributions in this paper include
the following:

• We develop a surveillance video prototype using hardware
motion detection on a programmable SoC;

• We showcase a replay threat model targeting the motion
detection module in IoT video surveillance; and

• We develop a hardware isolation-based security framework
that isolates the security sensitive video pipeline from the
a�acks and introduces minimum performance and power
overhead.

To the best of our knowledge, our work is the �rst investigating the
security of IoT video surveillance from the hardware system point
of view. By presenting this work we aim to motivate a new thread
of research leveraging hardware-based techniques to address IoT
multimedia security challenges.

�e remainder of the paper is organized as follows. In Section
2, we introduce the prototype video surveillance system that we
develop in the lab environment for security analysis. Section 3
focuses on the potential threat model we study in this work, namely
the replay a�ack. Based on the threat model, in Section 4, we
introduce our hardware isolation-based security framework that
serves as an e�ective countermeasure for the proposed replay a�ack.
Section 5 presents our experimental results for both the threat
model and the countermeasure. Section 6 summarizes the closely
related prior work. Section 7 discusses additional threat models we
identi�ed upon accomplishing this work, which motivate our future
work on IoT multimedia security. Finally, Section 8 concludes the
paper.

2 SURVEILLANCE VIDEO SYSTEM ON CHIP
We develop a prototype of IoT surveillance video system on a pro-
grammable SoC in order to investigate the threat models and coun-
termeasures in our lab environment. In this section, we introduce
the overall system architecture of the prototype system, as well as
the detailed design of the motion detection module, which is the
target of the security analysis and development.

2.1 System Architecture
Our prototype system is built on a small embedded SoC represent-
ing a commonly used IoT device, as shown in Figure 1. �e core
component of the video surveillance system is a Xilinx Zynq SoC
ZC702, which obtains the source surveillance video from the laptop
computer (i.e., emulating a secure camera), processes the video for

motion detection, and outputs the motion detection results to the
monitor (i.e., emulating a security alert of objects in motion).

Figure 1: Hardware setup of the surveillance video system.

Figure 2 illustrates the detailed internal architecture and work-
�ow of the SoC, which consists of two major system components,
namely the processing system (PS) and the programmable logic
(PL). �e PS is driven by the application processor (e.g., the ARM
processor) and involves user applications based on general purpose
computing conducted by the CPU. �e PL involves programmable
hardware components (e.g., FPGA) and other peripheral devices
aiming to accelerate domain speci�c computations, such as video
processing. In the prototype of video surveillance, we deploy the
motion detection module in the PL part to gain superior perfor-
mance from hardware acceleration. �e PS and the PL are connected
by the AXI interconnect, which can manage the communications
between the two components.

With the aforementioned system architecture, our motion detection-
based video surveillance work�ow is the following. First, the HDMI
input module obtains the input video data from the video source
and decodes it into the YCrCb format, which is stored in the DDR
memory through video direct memory access (VDMA). �en, the
motion detection module loads the video data from the DDR mem-
ory and conducts motion detection operations (discussed in details
in Section 2.2). Finally, the motion detection module generates
black and white output frames as the results, in which the motion
part is labeled as white and the non-motion part is labeled as black.

Figure 2: Work�ow of the surveillance video system.

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

229

2.2 Motion Detection Algorithm
In this subsection, we discuss the details of our motion detection
algorithm that is deployed in the motion detection module in the
PL part of the SoC. �e technical objective of motion detection is
to di�erentiate the foreground and background in the video and
detect the motion in the foreground. A straightforward idea to
achieve this goal is to subtract a frame from its preceding frame.
�e subtraction results would contain zeros and non-zeros, which
represent the static background and the objects in motion, respec-
tively. Such an algorithm is simple and fast, as the only required
computation is the subtraction of two frames. �erefore, it is very
easy to achieve real-time performance with this algorithm, even if
there is no hardware acceleration. However, the algorithm assumes
that the background of the video is always static, while in most
use cases the luminance of the surroundings is varying all the time
considering the environmental factors like wind, cloud, rain, and
the position of the sun. Consequently, the accuracy of the algorithm
cannot be guaranteed. In order to achieve a be�er accuracy, the
“preceding frame” should be updated regularly and, at the same
time, it should not include the foreground objects in motion.

To address the aforementioned accuracy problem, researchers
have proposed Gaussian Mixture Model (GMM) based approach
[29]. �e key observation in GMM is that the pixel values in the
background o�en �t in a Gaussian distribution. In a more com-
plicated environment, multiple Gaussian models can be adopted
to present the background and thus the name Gaussian Mixture
Model. As presented in Figure 3, the probability of a given pixel
belonging to the background can be calculated using the Gaussian
models (i.e., variations of the pixel values in the background). Note
that the Gaussian models are dynamic and can be updated using
the detection results in the real time.

Figure 3: Gaussian mixture model and our simpli�ed model
for motion detection (FG - Foreground; BG - Background).

�e GMM-based algorithm has very good accuracy and is less
in�uenced by the surrounding luminance variance. However, there
are two challenges in applying the GMM algorithm in the video
surveillance scenario. First, the complexity of computation is huge
since the algorithm must calculate the value of the Gaussian func-
tion for each pixel in a frame. Second, the algorithm needs relatively

large memory space to store a GMM for each pixel. �erefore, a bal-
anced algorithm is required for embedded systems that are resource
constrained.

In our prototype system, as shown in Figure 3, we develop a
simpli�ed mixture model algorithm where we replace the Gaussian
model with a center value and a threshold, which is illustrated
below the x-axis. Given a pixel, we subtract it from the center value
and compare the results with the threshold to determine if the pixel
belongs to the background. As a result, our algorithm does not
require the Gaussian models and thus stores fewer parameters. Fur-
thermore, we implement the motion detection algorithm in the PL
part of the SoC, which further bene�ts from the performance accel-
eration brought by the FPGA. All these design and implementation
strategies combined ensure the superior performance of the motion
detection module for the real-time video surveillance application.

3 THREAT MODEL: REPLAY ATTACK
�e video surveillance system is typically deployed as an IoT smart
camera, which helps monitor a security sensitive area, such as
private residence. �e smart camera is capable of monitoring the
video of the area under surveillance for suspicious motion and
generating a security alert if there is any detected. However, being
deployed as an IoT device connected to the Internet, the smart
camera is vulnerable to security a�acks, as the a�ackers have the
incentive to either steal the video stream (i.e., breaking privacy)
or falsify the motion data to hide the malicious behavior under
surveillance from being captured.

In this paper, we focus on the data falsifying threat and, in par-
ticular, replay a�ack where the compromised camera pre-records
non-motion frames to overwrite the frames with motion. In this
section, we show that such a replay a�ack can be implemented in
the form of a malicious so�ware embedded in the PS part of the
SoC, which can compromise the entire video surveillance system.
Figure 4 shows the overall architecture of the replay a�ack in which
the malware has the ability to compromise the DDR memory that
hosts the output video frames and thus issue the replay a�ack.

Figure 4: System architecture of the replay attack targeting
the surveillance video system.

In particular, the adversary a�empts to compromise the so�ware
portion (i.e., the PS) of the video surveillance system in order to
overwrite the motion frames. Figure 5 describes the so�ware a�ack
�ow, which includes �ve steps.

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

230

Figure 5: So�ware attack work�ow.

Step 1: Frame Bu�er Address Inference. �e very �rst step of
the so�ware a�ack is to infer the bu�er address in the memory
that hosts the sensitive output frames. An a�acker can leverage the
ARM compiler to disassemble the video system �rmware and infer
the key application parameters. Table 1 shows a fraction of the
disassembled code in the main function of the so�ware. We observe
that there are two memory addresses that appear to indicate video
bu�ers, as shown at lines #103060 and #103070. �e a�acker can
track these candidate addresses to locate the output video frame
bu�er.

Table 1: Sample of disassembled �rmware for the prototype
surveillance video system.

103054: e583200c str r2, [r3, #12]
103058: e3003040 movw r3, #64 ;0x40
10305c: e3403011 movt r3, #17
103060: e3a02201 mov r2, #268435456 ;0x10000000
103064: e5832010 str r2, [r3, #16]
103068: e3003040 movw r3, #64 ;0x40
10306c: e3403011 movt r3, #17
103070: e3a02202 mov r2, #536870912 ;0x20000000
103074: e5832018 str r2, [r3, #24]
103078: e3003040 movw r3, #64 ;0x40

Step2: Malware Insertion. With the information from Step 1, the
a�acker can insert a malware into the so�ware application, either
by compromising the so�ware update process or remotely hacking
the connected device. �e inserted malware is aware of the inferred
frame bu�er address and the VDMA address. �erefore, it has the
ability to overwrite the original output frames.

Step 3: Non-motion Frame Recording. A�er the malware is
inserted into the system, it starts to monitor the status of the video
processing pipeline. In particular, the malware examines each out-
put frame and intentionally records those that have no motion
into a certain memory space. �ese non-motion frames are used in
the replay a�ack to overwrite and hide the identi�ed motion frames.

Step 4: Malware Activation. �e a�acker has full control over
the malware and can choose to activate it only when it is necessary
to hide the suspicious behavior, while the whole system behaves
normal most of the time to bypass security checks. In particular,
the activation condition could be a timestamp under the a�acker’s
control or a speci�c pixel pa�ern in the input video frame. In our
work, we design a time-triggered malware, which is activated at a
certain time chosen by the a�acker.

Step 5: Motion Frame Replacement. Once the malware is acti-
vated, as shown in Figure 4, it issues the replay a�ack by copying

the pre-recorded non-motion frames to the output frame bu�er
in a random manner. �e randomness in the replay ensures that
the output video does not represent any noticeable pa�ern in the
background, which can be hidden in random noises that naturally
exist in the surveillance video. �erefore, the replayed frames can
be hardly distinguished from the normal non-motion scenario.

4 COUNTERMEASURE
In this section, we discuss our new countermeasures to defend
against the aforementioned replay a�acks on IoT video surveil-
lance systems. Our key idea is to employ a hardware isolation
primitive that physically isolates the sensitive hardware and so�-
ware resources from security compromises. By presenting the
countermeasure, we aim to close the loop for the replay threats in
IoT video surveillance systems.

To address the so�ware replay a�ack, we must protect both the
DDR memory and the peripheral hardware modules such as the
VDMA, so that the malicious so�ware embedded by the a�acker
cannot compromise these critical system components and issue
the replay a�ack. �e basic principle of defense in this case is that
trusted so�ware should be authorized to con�gure and access the
PL, while the untrusted so�ware should not gain access.

To realize the aforementioned principle, we develop a hardware
isolation framework based on ARM TrustZone [1][38], as shown
in Figure 6. �e hardware isolation primitive partitions all the
hardware and so�ware modules on the SoC into two isolated envi-
ronments, namely the secure world and the non-secure world. It
ensures that the Non-secure World does not have access to the se-
cure world, as the two worlds are physically isolated at the physical
bus level, and the access is strictly managed by the ARM processor.
For example, in order to access the function or data in the secure
world, a normal world application must conduct a secure monitor
call (SMC) [1] to switch the context from the normal world to the
secure world. In the video surveillance prototype, we place the
following system components in the secure world by se�ing a non-
secure (NS) bit to 0: (1) the critical components in the PL part of the
SoC, including the motion detection module, the VDMA module,
and the HDMI IN/OUT interfaces; and (2) a small secure agent (i.e.,
a so�ware application) in the PS part of the SoC, which can be
employed with access control policies to block illegal accesses to
the secure world. �e untrusted so�ware (e.g., the malware) in the
PS is deployed in the non-secure world by se�ing the NS bit to 1.
In addition, the DDR memory is also split into the two worlds.

Furthermore, Figure 7 shows the underlying hardware architec-
ture of the system realization, which enforces hardware isolation
and security. We employ the NS bit at the AMBA bus port, where
“NS=1” represents a “non-secure” property, and “NS=0” represents
a “secure” property. �en, the AXI Interconnect blocks the access
from the normal world under the condition that the NS is set to 0
and the “secure enable” property is set to 1. In the video surveil-
lance system, we set the NS bit at the AMBA Bus Port to be 0 (i.e.,
AWPROT[1] for writing and ARPROT[1] for reading) and the “se-
cure enable” to be 1 at the AXI Interconnect, which combined will
block the access from the malicious app to the PL components.

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

231

Figure 6: Hardware isolation framework.

Figure 7: ARM TrustZone con�guration to block malicious
accesses to the PL.

As a result, in our surveillance video system, even if the a�acker
embeds a malware, it has to be a separate application in the nor-
mal world and viewed by the system as non-secure. �e malware
does not have the authorization to con�gure the VDMA module or
overwrite the frame bu�ers that belong to the secure world, and
thus it cannot accomplish the “Motion Frame Replacement” step in
the so�ware a�ack �ow presented in Figure 5.

5 EXPERIMENTAL RESULTS
In this section, we evaluate both the replay threat model and the
hardware isolation-based countermeasure on the video surveillance
prototype.

5.1 Replay Attack
We conduct the following two types of evaluations for the per-
formance of the proposed replay a�ack. (1) the e�ectiveness of
the a�ack, i.e., whether it can compromise the motion detection
module and output the modi�ed video surveillance results; and

(2) Di�culty of mitigation, i.e., whether the a�ack can bypass the
existing commonly used security measures.

5.1.1 E�ectiveness of the Replay A�ack. Figure 8(a) demonstrates
the surveillance video system without any a�acks. �e surveillance
video is played on the laptop computer and fed into the motion
detection hardware. �en, the motion detection result is delivered
to the monitor for display. �e white object in the output video
represents objects in motion, while the black area represents the
background. Because of the random noises in the background, such
as waving trees and falling leaves, there may be some random white
spots shown in the output video. Once there is a car or a pedestrian
passing by, the monitor screen will display a white block with the
same shape of the object in motion and at the same position in the
video.

Once there is a malware involved in this system, it may store
the frames without motion and replay them randomly to mask the
motion in the video. As shown in Figure 8(b), there is only random
noise shown on the screen despite the presence of motion in the
input video. In this case, the tiny di�erence of the output video from
the motion-free video is hardly noticeable, indicating a successfully
issued replay a�ack.

5.1.2 Di�iculty of Mitigation. �ere are several security mech-
anisms that are typically adopted to protect embedded systems,
including encryption, so�ware virtualization, and external hard-
ware security modules. In this subsection, we discuss how the
replay a�ack could bypass these state-of-the-art solutions.

Encryption is the most commonly used data protection method,
especially for video content, as the commercially deployed video
digital rights management mechanisms today are based on encryp-
tion [31][32][34]. With encryption, the data is only exposed to the
party that holds the decryption key, which could prevent privacy
breaches caused by stealing the sensitive video frames. However,
it does not address the security concerns caused by replay a�acks,
since the a�acker can still replace the video frames even if they are
encrypted.

So�wareVirtualization is a popular security scheme that lever-
ages hypervisor and memory management unit (MMU) to manage
the access to DDR memory [19][27][18]. However, the replay a�ack
can leverage VDMA to directly access the DDR memory without
being blocked by the hypervisor or MMU.

Hardware Security Modules (HSMs), such as trusted plat-
form module (TPM) [25][40][22], leverage a secure hardware chip
to store the sensitive data, such as security keys. �is mechanism
is usually used for authorization and remote a�estation. In the
replay threat, the malware is an “insider” in the system and can
read and write the DDR memory without being blocked by the
security mechanisms enforced by the HSMs.

5.2 Hardware Isolation-based Countermeasure
Once the hardware isolation framework is deployed into the surveil-
lance video system, the malware in the normal world cannot access
the VDMA module and the memory space located in the secure
world. �erefore, the malware will fail to issue the replay a�ack.
However, the hardware isolation framework may introduce addi-
tional overhead due to the context switch that is required to execute

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

232

Figure 8: Demonstration of motion detection with and without replay attacks.

the application. In this subsection, we evaluate the overhead of
the hardware isolation framework from two aspects, namely the
timing overhead and the power overhead.

5.2.1 Performance Evaluation. We measure the timing of the
surveillance video system with the hardware isolation framework
and further compare it with baseline timing results of the original
system without protection. In the experiment, we deploy a timer in
the so�ware in order to monitor the timing of the motion detection
process for each video frame. Furthermore, for the motion detec-
tion with hardware isolation, in addition to the motion detection
processing time, the timing results also include the round trip world
switching time between the secure world and the normal world
(i.e., switch from the secure world to the normal world and switch
back from the normal world to the secure world).

For both the hardware isolation and the baseline cases, we run
the experiments 20 times, and for each execution we collect the
single-frame timing results for 50 frames in total. In other words,
the dataset includes 1000 single-frame timing results for both cases,
as shown in Table 2. We analyze the statistics of the entire dataset
by extracting the minimum, �rst quartile, median, third quartile,
and maximum values. By comparing the hardware isolation and
baseline results, we observe that the di�erences, i.e., the hardware
isolation overheads, are within 3 µs. Also, the ”minimum” value for
the hardware isolation case is lower than the no protection case
in our experiments, which indicates that the isolation overhead is
even smaller than random noises in the timing measurements. In
summary, our results indicate that the hardware isolation-based
approach does not result in signi�cant timing overhead.

5.2.2 Power Evaluation. We further evaluate the power con-
sumption for the two test cases on the ZC702 board following the
power measuring approach in [28]. Figure 9 shows the hardware
setup for the power evaluation. We apply the Texas Instruments
USB adapter on the ZC702 board and monitor the PS internal power
using the TI Fusion Power designer so�ware. In the experiment, we
execute the system for both test cases by continuously conducting
motion detection for 200 frames. In the mean time, we sample the
runtime PS internal power every 250 ms. Figure 10 shows the power
results, in which we observe that the power consumption of motion

Table 2: Timing evaluation on hardware isolation.

No Protection (µs) Hardware Isolation(µs)

Minimum 255,876 255,875
First �artile 255,886 255,887

Median 255,888 255,890
�ird �artile 255,891 255,893

Maximum 255,900 255,903

detection ranges from 0.39 W and 0.41W in both cases, and they are
almost indistinguishable. It indicates that the hardware isolation
mechanism does not introduce noticeable power overhead.

Figure 9: Experimental setup for the power evaluation.

6 RELATEDWORK
6.1 Surveillance Video Security
Surveillance video and smart cameras are becoming more and more
popular, and the security research on this topic can be divided
into two categories. One category aims to enhance the security
of the surveillance video itself, which enhances the video coding

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

233

Figure 10: System power evaluation comparing no protec-
tion and hardware isolation cases.

mechanism by hiding cryptographic keys in the video content. For
example, [24] and [26] introduce an improved approach to protect
the video system during the communication by leveraging cryptog-
raphy and steganography. [6] proposes a hierarchical key genera-
tion and distribution system using a multimedia Internet keying
protocol. �e authors developed di�erent layers of authorization
and thus di�erent users could gain access to the content in di�erent
layers. �e other category studies the video transmission network
and the associated threat models. For example, [20] presents a
DDoS a�ack on the video communication network, which causes
signi�cant packet losses during video transmission between the
client and the server. P2P pollution [13] is another a�ack method
to in�uence the quality of online P2P video system. Di�erent from
the existing studies, our work focuses on the malicious so�ware
deployed on smart camera devices.

6.2 Hardware Isolation
Hardware isolation provides the system and upper level applications
with a lower level security mechanism by physically isolating the
trusted system components from the untrusted ones. It has been
supported by several major hardware manufacturers, such as ARM
TrustZone [1], Intel SGX [2], and Apple SEP [5]. Such isolation
mechanisms have been adopted in a number of security sensitive
so�ware applications, such as one-time password token [30], OS
kernel [7], so�ware isolation [12], language runtime [21], and cloud
computing [23][11][9][39]. To the best of our knowledge, there has
been no prior work leveraging hardware isolation to enhance the
security of IoT surveillance video systems.

7 DISCUSSIONS ON ADDITIONAL ATTACK
SURFACES

In this paper, we have studied the security vulnerabilities of IoT
video surveillance systems due to the potential malicious so�ware
embedded on the devices. Upon accomplishing this research, we
note that the so�ware-based threat model is only one of the sev-
eral a�ack surfaces that may challenge sensitive IoT multimedia
applications. In this section, we further discuss the additional at-
tack surfaces we identi�ed that may be exposed to compromise
the security of the surveillance video use case. Although the de-
tailed discussions and countermeasures for these additional a�ack

surfaces are out of the scope of this paper, we aim to present the
rationales behind them at the concept level to motivate further
security research along this direction.

7.1 Hardware Trojan Attacks
On a heterogeneous SoC-based smart camera involving both PS
and PL, it is o�en the case that the device manufacturer would
outsource the critical system components, such as the motion de-
tection module, to a third party intellectual property (IP) provider.
Such a third party module, commonly referred as third party IP
core (3PIP) has the potential of signi�cantly reducing the cost of the
smart camera device and boosting the deployment of the products.

However, the production and supply chain of the 3PIPs may
introduce brand new a�ack surfaces for the security of the smart
camera. For example, the third party manufacturer may not be trust-
worthy and thus cannot be guaranteed to deliver genuine IP cores
that exactly follow the design spec. �e potentially modi�ed hard-
ware 3PIPs, if a�ribute to a malicious intent, are o�en referred to
as hardware Trojans in the hardware security community [33][14].
Although hardware Trojan threats and defense mechanisms in gen-
eral have been intensively studied [37][10][41][15][8][17][35], we
note that the community is still lacking the domain-speci�c study
of hardware Trojan threats and mitigation techniques for the IoT
multimedia applications, such as smart video surveillance. �e new
threat model introduced by hardware Trojans, e.g., a hardware-
based replay a�ack, may pose brand new challenges to the security
countermeasures and complicate the entire system design and man-
ufacturing.

7.2 Side Channel-based Attacks
In addition to the security vulnerabilities of IoT surveillance systems
studied in this work, we note that the privacy of the surveillance
video is also critical as the area under surveillance is o�en highly pri-
vate residence or properties. Given the heterogeneous computing
architecture on the SoC, it is possible for the adversary to monitor
certain side channel information (e.g., timing and power) to infer
the speci�c system operation or even the approximate content of
the video. While such a side channel-based a�ack has been a major
thread of research in the so�ware, system, and hardware security
communities [34][16][36], its consequences on surveillance video
systems have not been fully studied. We further note that the coun-
termeasures for such a�acks would be challenging, as the hardware
isolation-based approaches we adopt in this work have been known
to be ine�ective towards side channel a�acks by design. �erefore,
we foresee that the research along this direction would require addi-
tional e�orts from the community in order to enhance the security
and privacy of the IoT video surveillance system.

8 CONCLUSION
We have developed a motion detection-based IoT surveillance video
system and investigated its security vulnerabilities and counter-
measures. We �rst proposed a replay threat model, which hides
the objects in motion using pre-recorded non-motion frames. We
showed that such a reply a�ack can be implemented and activated
from the so�ware layer of the IoT device, which leaves a huge a�ack

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

234

surface to the a�ackers. Furthermore, we developed a countermea-
sure against the replay a�acks by employing a hardware isolation
framework. Our evaluation results on real hardware (i.e., Xilinx
Zynq SoC) proves the e�ectiveness and low overhead of the a�ack
and defense techniques. To the best of our knowledge, our work is
the �rst leveraging hardware isolation to protect IoT surveillance
video systems.

9 ACKNOWLEDGEMENTS
We appreciate the constructive reviews provided by the anonymous
reviewers. �is work was supported in part by the gi� donation
from Adobe Research and in part by the University of Nebraska
Foundation under the Layman Award 1024460.

REFERENCES
[1] ARM Security Technology: Building a Secure System using TrustZone

Technology. h�p://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
prd29-genc-009492c/index.html.

[2] Intel So�ware Guard Extensions. h�ps://so�ware.intel.com/en-us/
isa-extensions/intel-sgx.

[3] Nest Cam Spec Sheet. h�ps://content.abt.com/documents/73396/
NC2100ES-specs.pdf.

[4] Ring Video Doorbell. h�ps://ring.com/.
[5] 2016. iOS Security Guide. h�ps://www.apple.com/business/docs/iOS Security

Guide.pdf.
[6] Mamoona Asghar and Mohammad Ghanbari. 2011. Cryptographic keys man-

agement for H. 264 scalable coded video security. In Information Security and
Cryptology (ISCISC), 2011 8th International ISC Conference on. 83–86.

[7] Ahmed M. Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen
Wang, and Peng Ning. 2016. SKEE: A Lightweight Secure Kernel-level Execution
Environment for ARM. In�eNetwork and Distributed System Security Symposium
(NDSS).

[8] Mainak Banga and Michael S. Hsiao. 2010. A region based approach for the
identi�cation of hardware Trojans. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). 40–47.

[9] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding applications
from an untrusted cloud with Haven. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 267–283.

[10] Gedare Bloom, Bhagirath Narahari, and Rahul Simha. 2009. OS support for
detecting Trojan circuit a�acks. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). 100–103.

[11] Stefan Brenner, Colin Wulf, and Rüdiger Kapitza. 2014. Running ZooKeeper
coordination services in untrusted clouds. In USENIX Conference on Hot Topics in
System Dependability (HotDep). 2–2.

[12] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal hard-
ware extensions for strong so�ware isolation. In USENIX Security Symposium.

[13] Prithula Dhungel, Xiaojun Hei, Keith W. Ross, and Nitesh Saxena. 2007. �e
pollution a�ack in P2P live video streaming: Measurement results and defenses.
In Workshop on Peer-to-peer streaming and IP-TV. 323–328.

[14] Jeremy Dubeuf, David Hély, and Ramesh Karri. 2013. Run-time detection of hard-
ware Trojans: �e processor protection unit. In IEEE European Test Symposium
(ETS). 1–6.

[15] Andrew Ferraiuolo, Xuehui Zhang, and Mark Tehranipoor. 2012. Experimental
analysis of a ring oscillator network for hardware Trojan detection in a 90nm
ASIC. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
37–42.

[16] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Christiano Giu�rida.
2017. ASLR on the line: Practical cache a�acks on the MMU. In Network and
Distributed System Security Symposium (NDSS).

[17] Yier Jin and Yiorgos Makris. 2008. Hardware Trojan detection using path delay
�ngerprint. In IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST). 51–57.

[18] Narjes Jomaa, David Nowak, Gilles Grimaud, and Samuel Hym. 2016. Formal
proof of dynamic memory isolation based on MMU. In International Symposium
on �eoretical Aspects of So�ware Engineering (TASE). 73–80.

[19] Konstantinos Koukos, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras. 2016.
Building heterogeneous uni�ed virtual memories (UVMs) without the overhead.
ACM Transactions on Architecture and Code Optimization (TACO) 13, 1 (2016), 1.

[20] Chung-Hsin Liu and Chun-Lin Lo. 2009. �e analysis of DDoS a�ack for the video
transmission. In Proceedings of the 2nd International Conference on Interaction
Sciences: Information Technology, Culture and Human. 394–399.

[21] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. 2014. Using
ARM TrustZone to build a trusted language runtime for mobile applications. In
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 67–80.

[22] Jared Schmitz, Jason Loew, Jesse Elwell, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. 2011. TPM-SIM: a framework for performance evaluation of trusted
platform modules. In Design Automation Conference (DAC). 236–241.

[23] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustwor-
thy data analytics in the cloud using SGX. In IEEE Symposium on Security and
Privacy. 38–54.

[24] Prabira Kumar Sethy, Kamal Pradhan, and Santi Kumari Behera. 2016. A security
enhanced approach for video steganography using K-Means clustering and
direct mapping. In International Conference on Automatic Control and Dynamic
Optimization Techniques (ICACDOT). 618–622.

[25] Jianxiong Shao, Yu Qin, Dengguo Feng, and Weijin Wang. 2015. Formal analysis
of enhanced authorization in the TPM 2.0. In ACM Symposium on Information,
Computer and Communications Security (ASIA CCS). 273–284.

[26] Shikha Sharma and Devendra Somwanshi. 2016. A DWT based a�ack resistant
video steganography. In International Conference on Information and Communi-
cation Technology for Competitive Strategies. 116.

[27] Ma�hew Simpson, Bhuvan Middha, and Rajeev Barua. 2005. Segment protection
for embedded systems using run-time checks. In International Conference on
Compilers, Architectures and Synthesis for Embedded Systems. 66–77.

[28] E. Srikanth. 2014. Zynq-7000 AP SoC low power techniques part 2 - Measuring
ZC702 power using TI Fusion Power Designer tech tip. h�p://www.wiki.xilinx.
com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+
ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip.

[29] Chris Stau�er and W Eric L Grimson. 1999. Adaptive background mixture models
for real-time tracking. In Computer Vision and Pa�ern Recognition, 1999. IEEE
Computer Society Conference on., Vol. 2. 246–252.

[30] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. 2015. TrustOTP: Transforming
smartphones into secure one-time password tokens. In ACM Conference on
Computer and Communications Security (CCS). 976–988.

[31] Viswanathan Swaminathan and Sayaan Mitra. 2012. A partial encryption scheme
for AVC video. In IEEE International Conference on Emerging Signal Processing
Applications (ESPA). 1–4.

[32] Viswanathan Swaminathan and Sheng Wei. 2013. O�ine protected video play-
back on heterogeneous platforms. In IEEE International Conference on Multimedia
and Expo Workshops (ICME). 1–4.

[33] Mark Tehranipoor and Farinaz Koushanfar. 2010. A survey of hardware Trojan
taxonomy and detection. In IEEE Design & Test of Computers. 10–25.

[34] Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2013. Steal this movie: Automatically bypassing DRM protection in streaming
media services. In USENIX Security Symposium.

[35] Sheng Wei, Saro Meguerdichian, and Miodrag Potkonjak. 2010. Gate-level
characterization: Foundations and hardware security applications. In Design
Automation Conference (DAC). 222–227.

[36] Sheng Wei, James B. Wendt, Ani Nahapetian, and Miodrag Potkonjak. 2014.
Reverse engineering and prevention techniques for physical unclonable functions
using side channels. In Design Automation Conference (DAC). 1–6.

[37] Francis Wol�, Chris Papachristou, Swarup Bhunia, and Rajat S. Chakraborty.
2008. Towards Trojan-free Trusted ICs: Problem analysis and detection scheme.
In Design, Automation and Test in Europe (DATE). 1362–1365.

[38] Xilinx Inc. 2014. Programming ARM TrustZone Architecture on the Xilinx
Zynq-7000 All Programmable SoC. In UG1019 (v1.0).

[39] Yan Zhai, Lichao Yin, Je�rey Chase, �omas Ristenpart, and Michael Swi�.
2016. CQSTR: Securing cross-tenant applications with cloud containers. In ACM
Symposium on Cloud Computing (SoCC). 223–236.

[40] Dawei Zhang, Zhen Han, and Guangwen Yan. 2010. A portable TPM based on
USB key. In ACM conference on Computer and Communications Security (CCS).
750–752.

[41] Xuehui Zhang, Andrew Ferraiuolo, and Mohammad Tehranipoor. 2013. Detection
of Trojans using a combined ring oscillator network and o�-chip transient power
analysis. ACM Journal on Emerging Technologies in Computing Systems 9, 3,
Article 25 (2013), 25:1–25:20 pages.

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

235

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://content.abt.com/documents/73396/NC2100ES-specs.pdf
https://content.abt.com/documents/73396/NC2100ES-specs.pdf
https://ring.com/
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+2+-+Measuring+ZC702+Power+using+TI+Fusion+Power+Designer+Tech+Tip

	Abstract
	1 Introduction
	2 Surveillance video system on chip
	2.1 System Architecture
	2.2 Motion Detection Algorithm

	3 Threat Model: Replay Attack
	4 Countermeasure
	5 Experimental Results
	5.1 Replay Attack
	5.2 Hardware Isolation-based Countermeasure

	6 Related Work
	6.1 Surveillance Video Security
	6.2 Hardware Isolation

	7 Discussions on Additional Attack Surfaces
	7.1 Hardware Trojan Attacks
	7.2 Side Channel-based Attacks

	8 Conclusion
	9 Acknowledgements
	References

