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ABSTRACT
Traditional photo browsing systems developed for PCs are
inefficient for browsing and searching of large photo albums
on mobile devices due to the small screen size and lim-
ited mobile processing power. We propose a new concept
in this paper, the multiscale timeline, where photos are
grouped into clusters and displayed sequentially on a scaled
timeline with user controllable time scales, enabling multi-
scale overview of the photo album for efficient browsing and
searching. To address the slow speed of re-clustering when
new photos are added, a new incremental spectral clustering
algorithm is further developed, which is an order of magni-
tude faster than the traditional spectral clustering algorithm
and its conventional incremental version. Our implementa-
tion of the system on mobile devices shows a better user ex-
perience and browsing efficiency based on the experiments
over large real-world photo collections.

Categories and Subject Descriptors
H3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems

General Terms
Algorithms, Experimentation

Keywords
Multiscale timeline; mobile album; incremental clustering

1. INTRODUCTION
With the prevalence of high-quality mobile cameras with

large storage, we have witnessed an explosive amount of mo-
bile photos. It is more and more popular that a large number
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of such photos are stored on the mobile device, and effec-
tive on-device photo management has become increasingly
important. Traditional mobile photo browsers, e.g., on iOS
and Android systems, follow the file browsers in PCs, where
photos in a folder are presented in a flat grid-based view, as
shown in Fig. 1 (a). Such browsers can be very inefficient in
dealing with large-scale albums. First, mobile devices nor-
mally have small screens, and it can be very hard for users
to browse through the album or to locate individual photos.
Moreover, users often take multiple near-duplicate photos of
the same scene, e.g., in burst mode. A flat display of all these
photos on the small screen further reduces the efficiency of
on-device photo browsing. Second, it is important to convey
the photos’ time order in a browsing system, but simply lay-
ing out a large number of photos in a flat timeline (as shown
in Fig. 1 (b)) may not be efficient. It is even harder than
in the grid-based view to swipe through the large album to
locate photos of interest. Finally, in addition to the capture
time, the photos’ visual content is also useful for effective
browsing and search. For instance, in cases where a lot of
photos are captured close in time but with highly different
content, e.g., during a vacation, the visual content can help
organize such photos more efficiently.

Large-scale photo album management has been exten-
sively studied on conventional PCs, where large screens and
strong computational powers are available. For example,
systems like Time Quilt [4] and Photoland [12] organize
photos based on visual features and metadata, and systems
like PhotoMesa [2] and PhotoFinder [5] focus on screen lay-
out and/or user queries. Commercial solutions like Apple’s
iPhoto and Google’s Picasa rely heavily on user tags and
manual sorting. None of these systems, however, can easily
be used for on-device mobile photo management, due to the
limited screen size and processing power on mobile systems.

To facilitate photo browsing on mobile devices, some on-
device presentation systems have been developed to arrange
photos on non-uniform grids [11] or on three-dimensional
structures [1, 15]. However, the underlying photo organi-
zation remains unchanged. Some other work aims at both
photo organization and presentation [6, 7, 8] by clustering
photos based on time, faces, and background features. How-
ever, the clustering result is still presented in an inflexible
grid-based view or a simple flat timeline.

Addressing the characteristics of on-device mobile photo
browsing, we propose a multiscale timeline framework to
effectively organize and browse photos based on both time
and visual content. Fig. 1 (c) illustrates the concept of the
multiscale timeline. Each time scale corresponds to a certain
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(a) grid-based view

(b) single flat timeline (c) multiscale timeline

Figure 1: Comparison of different browsing schemes.

level of granularity to partition the album, where photos are
clustered at that level for users to browse. The multiscale
timeline provides multiple granularities to organize photos,
where users can quickly switch among different time scales to
examine different levels of details of the album. For efficient
browsing, each cluster is presented as a thumbnail consisting
of a set of automatically selected representative images from
the cluster. To accommodate the limited processing power
in mobile devices, a multiscale one-step incremental spectral
clustering algorithm is also proposed to quickly cluster pho-
tos at multiple time scales with a complexity approaching
O(n). To further improve browsing efficiency, near-duplicate
photos are automatically detected based on both time and
visual features, and are collapsed to a single representation
to save space on small screens. We implement our system on
an Android tablet. Evaluation over two large consumer al-
bums from Flickr demonstrates the effectiveness of our mul-
tiscale timeline system.

2. MULTISCALE TIMELINE ALBUMING
Many previous photo clustering algorithms attempt to

cluster photos by events in order to categorize the photos in
a way that the user would do. A major problem, however, is
that events are inherently multiscale. For instance, an event
could be a group of people posing in front of a camera, a
day spent at a theme park, or a week-long vacation. It is
not only difficult to predict which scale the user would want
to use to sort the album, but the scale might also change
depending on what the user is looking for at the moment.
Therefore we cluster the photo album on multiple scales and
allow the user to browse all of them. To efficiently browse
the clustering results we introduce the concept of multiscale
timeline clusters, which is illustrated in Fig. 2. On each
scale, the clusters (i.e. their representative thumbnails) are
placed sequentially on a timeline that the user can browse
using the pan and flick gestures. The user can also quickly
change the time scale using the pinch gestures, as though to
“zoom” between scales. The user can inspect the contents
of a cluster by tapping its thumbnail. The contents of the
inspected cluster is presented as either a traditional grid-
based view or as another multiscale timeline depending on
whether or not the photo number in the cluster exceeds a
predetermined threshold. The multiscale time line clusters
are created by extracting time and content-based features
from the photos and performing an efficient one-step incre-
mental clustering algorithm on the extracted feature sets.

Figure 2: Multiscale clustering of photos (scales S1-
S4), which supports multiscale timeline browsing.

2.1 Features and Near-Duplicate Detection
Both time and visual features are used for clustering and

browsing the photo album, which effectively complement
each other to improve the system performance. The times-
tamp of each photo is extracted from the metadata, and
three types of visual features are extracted from each image:
A bag-of-words representation using SURF local descriptors
(SURF BoW), a 64-bin uniform Lab color histogram, and the
global grid-based color moment (GBCM) also in Lab color
space. The SURF BoW uses a codebook of size 500, built
by K-means clustering of randomly sampled SURF descrip-
tors over the album. The 225-dimensional GBCM feature
consists of the first three color moments computed over 5x5
image grids.

For fast near-duplicate detection, we use a cascade of bi-
nary classifiers similar to [13], based on both time and visual
features. First, by comparing timestamps of image pairs,
we quickly rule out most pairs that could not possibly be
near-duplicates. Then a relatively fast binary classifier using
GBCM is used to further rule out non-near-duplicates. The
remaining pairs are finally classified by a binary classifier us-
ing the SURF BoW features. All these classifiers are trained
offline using a set of ground-truth near-duplicate images and
are tuned towards a low rate of false positives, so that the
chance of collapsing non-near-duplicate images is kept very
low. Each group of near-duplicate images is treated as one
image for clustering and browsing, whose features are the
average timestamp and visual features of the entire group.

2.2 Incremental Multiscale Clustering
Assuming that we have N different scales, the initial mul-

tiscale clustering is conducted over each scale individually
based on the spectral clustering algorithm [9]. After that,
when a new image is added, a fast one-step incremental spec-
tral clustering algorithm is performed.

2.2.1 Overall spectral clustering
On each scale, a sparse similarity matrix S of the entire

photo album is constructed based on an aggregated similar-
ity measure that is the convex combination of the K simi-
larity functions defined on time and visual features:
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S(yi, yj) =
∑K

k=1
αkSk(yi, yj) (1)

where αk≥0 for k = 1, . . . ,K and
∑K

k=1 αk=1. Each entry
Sk(yi, yj) in S is the similarity between point yi and point
yj for each feature, based on the Gaussian kernel:

Sk(yi, yj) = exp
(
−akdk(yi, yj)

2/σ2
k

)
(2)

where dk(·, ·) is the appropriate distance metric of feature
k. Both the constants ak and the scaling factors αk are
varied across different scales in such a way that, for larger
scales, the time difference dominates, since photos taken far
away from each other normally do not share similar contents
and should not be clustered together. As the scale becomes
smaller, the weights of the content features increase. All
similarity values below a sparsity threshold are set to zero.
Following the recipe of [9], the initial spectral clustering

is performed by solving the generalized eigenvalue system:

Lx = λDx (3)

where L is the graph Laplacian computed as L = D − A;
A is a similarity matrix whose entries are Aij =S(yi, yj) if
i ̸= j and Aii=0; and the degree matrix D is diagonal with
Dii=

∑
j Aij . L and D are both symmetric. The number of

clusters is automatically determined from the eigengap [14].

2.2.2 One-step incremental clustering
Even for a sparse L, efficient algorithms such as the Lanc-

zos method can still require O(n1.5) complexity to solve
Equation (3). For mobile users, reclustering the entire al-
bum everytime a new image is added can be unbearable,
especially for large n. To avoid frequent reclustering, we
propose an incremental spectral clustering algorithm based
on a well-known result from perturbation theory [10]. Let
∆L and ∆D denote the perturbations (change) to L and
D, respectively. Then the first-order perturbation of the
eigenvalue, ∆λ, is given by:

∆λ =
xT (∆L− λ∆D)x

xTDx
(4)

It is shown in [10] that the perturbation of the eigenvector,
∆x, can be obtained by solving the following linear system:

ϕ∆x = h (5)

where ϕ=L−λD and h=(∆λD+λ∆D−∆L)x. Let’s assume
that at a certain stage, n points have been clustered already.
When a new data point yn+1 is added, the perturbation ∆L
is the difference between the new Laplacian, Ln+1, and a
zero-padded Ln:

∆L = Ln+1 −
[
Ln 0
0 0

]
=

[
B −b

−bT bT1

]
(6)

where B = diag(b), 1 is a vector of all ones, and b is the n-
dimensional vector whose i-th entry is the similarity between
point yn+1 and yi. Likewise, the perturbation of the degree
matrix can be decomposed the same way:

∆D = Dn+1 −
[
Dn 0
0 0

]
=

[
B 0
0 bT1

]
(7)

By putting Equations (6) and (7) into Equation (4), we get:

∆λ = (1− λ)
xTBx

xTDx
(8)

As both B and D are diagonal, Equation (8) can be effi-
ciently computed in O(n). The perturbation method is only
a first-order approximation, so error will build up over time.

Therefore, the full clustering algorithm will be performed
again after M updates, where M is determined empirically.

We name the above proposed method the one-step incre-
mental clustering algorithm since only one step is required
to update each eigenvector. This is in comparison with
the original incremental spectral clustering method in [10],
where the effect of adding each image is decomposed into
a series of similarity changes in S, each change correspond-
ing to solving a sparse linear system for each eigenvector.
As a result, our one-step incremental clustering is dozens of
times faster than the method of [10] on average, based on
our implementation.

2.3 Selecting Representative Images
When the user browses the photo album, each cluster will

be presented by a thumbnail consisting of one or more au-
tomatically selected representative images. The thumbnail
is constructed differently depending on the size of the clus-
ter. For cluster sizes below a predetermined threshold T , the
image with the highest degree centrality is selected as the
representative image as suggested in [3]. If the clusters are
larger than T , four images are selected to create a collage
thumbnail by first dividing the cluster into four subclusters
using spectral clustering, then finding the image with the
highest degree centrality in each of the subclusters.

3. EXPERIMENTS
The proposed multiscale timeline albuming system is im-

plemented in a Samsung Galaxy Tablet, a screen capture
shown in Fig. 3. Users can use the pinch gesture or buttons
on the screen to zoom in/out the time scales, and tap the
cluster thumbnails to inspect images in a particular cluster.
In our implementation, we cluster the data on four different
scales (i.e. N =4). The top scale is over the whole collec-
tion. For smaller scales, the image collection is divided up
into chunks spanning a single month, week, or day, and each
chunk is then clustered separately. An added benefit of such
division is the further computation speedup, since spectral
clustering has superlinear complexity.

Due to the privacy concern of using private mobile photos,
we decided to create the test data sets using the images
under Creative Commons License from Flickr, where the
characteristics of many albums are very similar to those of
personal albums on mobile devices. The selection criteria
included time span, which should be several years and evenly
distributed; and content, which should not include a lot of
post-processed images. At last, two Flickr users satisfying
the above requirements were selected among 25 candidates.
Dataset 1 has 2092 photos taken over a period of 40 months,
and dataset 2 has 3442 photos taken over a period of 13
months.

The performance of the incremental clustering algorithm
is evaluated by comparing the clustering quality and speed
with the regular spectral clustering algorithm when a new
image is added. The quality is evaluated using normalized
mutual information (NMI) compared with batch spectral
clustering. That is, we use batch spectral clustering of the
entire dataset as the ground truth and compare the incre-
mentally clustered dataset at different stages to the ground
truth using NMI. Fig. 4 (a) shows the comparison results.
The NMI measures how similar the incremental result is to
the batch result of the entire dataset. As we see in the figure,
the incremental clustering becomes more unlike the ground
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Figure 3: The screenshot of the implemented system

truth after each step due to the approximation of first order
perturbation. This is remedied by rerunning batch cluster-
ing periodically to limit the error accumulation. The number
of updates to run before rerunning the batch version is cho-
sen to balance the trade-off between performance and speed.
We see that the algorithm performs considerably better on
dataset 2 than 1. The difference reflects the higher sparsity
of dataset 1, since the system in eqn. 5 becomes more ill-
conditioned as the Laplacian becomes sparser. Fig. 4 (b)
shows the speed comparison of incremental clustering and
batch clustering when one photo is added. The figure shows
that while the time lapse per increment clearly increases
with every increment for the batch version, the incremental
version stays nearly constant.

(a) quality of clustering

(b) time per increment

Figure 4: Incremental spectral clustering versus
batch clustering

4. CONCLUSION
A new album system is proposed for photo browsing on

mobile devices, which typically have limited screen size and
processing power. The multiscale timeline design is intro-
duced to address the problem of limited screen size and for
more efficient photo browsing. And a new incremental spec-
tral clustering algorithm is developed to speed up the spec-
tral clustering algorithm when new photos are added to the
album. The implemented mobile application using the mul-
tiscale timeline concept results in a more efficient browsing
experience, and the new incremental clustering algorithm
significantly accelerates the speed of album reorganization
when new photos are added on large photo albums. Future
work may include refining the system for continuous time
scale change, and further improving clustering accuracy.

5. REFERENCES
[1] D. Ahlström, and et al. A user study on image

browsing on touchscreens. In ACM Multimedia, pages
925–928, 2012.

[2] B.B. Bederson. Photomesa: a zoomable image browser
using quantum treemaps and bubblemaps. In ACM
UIST, pages 71–80, 2001.

[3] W.T. Chu and C.H. Lin. Automatic summarization of
travel photos using near-duplication detection and
feature filtering. In ACM Multimedia, pages
1129–1130, 2009.

[4] D.F. Huynh, and et al. Time quilt: scaling up
zoomable photo browsers for large, unstructured photo
collections. In ACM CHI EA, pages 1937–1940, 2005.

[5] H. Kang and B. Shneiderman. Visualization methods
for personal photo collections: Browsing and searching
in the photofinder. In IEEE ICME, 2000.

[6] J. Kim, and et al. Photo cube: An automatic
management and search for photos using mobile
smartphones. In IEEE DASC, pages 1228–1234, 2011.

[7] K. Kim, S. Kim, and H.-G. Cho. A compact photo
browser for smartphone imaging system with
content-sensitive overlapping layout. In ACM
ICUIMC, 2012.

[8] M. La Cascia, M. Morana, and S. Sorce. Mobile
interface for content-based image management. In
IEEE CISIS, pages 718–723, 2010.

[9] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering1 analysis and an algorithm. NIPS,
14:849–856, 2001.

[10] H. Ning, and et al. Incremental spectral clustering by
efficiently updating the eigen-system. Pattern
Recognition, 43(1):113–127, 2010.

[11] K. Ren and J. Calic. Freeeye: interactive intuitive
interface for large-scale image browsing. In ACM
Multimedia, pages 757–760, 2009.

[12] D. Ryu, and et al., Photoland: a new image layout
system using spatio-temporal information in digital
photos. In ACM SAC, pages 1884–1891, 2010.

[13] F. Tang and Y. Gao. Fast near duplicate detection for
personal image collections. In ACM Multimedia, pages
701–704, 2009.

[14] U. Von Luxburg. A tutorial on spectral clustering.
Statistics and computing, 17(4):395–416, 2007.

[15] S. Yousefi. 3d photo browsing for future mobile
devices. In ACM Multimedia, pages 1401–1404, 2012.

1064




